
���
���

© Copyright, Larry Snyder, 1999

If This, Then What?
If color = true Then

If theColor = “blue” Then
lblSuess.Caption = “blue fish”

Else
lblSuess.Caption = “red fish”

End If
Else

lblSuess.Caption = theNumber & “ “ & “fish”
End If

❖ Take out a piece of paper. Write your name on it.
❖ What does this program put into the label Suess if the variables have

the following values:
❖ A. color = false; theColor = “blue”; theNumber = “one”
❖ B. color = true; theColor = “green”; theNumber = “two”
❖ C. color = true; theColor = “blue”; the Number = “three”
❖ (I’ll collect these at the end of class today. These won’t be graded.)

���
���

© Copyright, Larry Snyder, 1999

ElseIf: Another Conditional Statement
❖ The conditional statement (If-Then-Else) is the only way (so far)

to control which statements are executed

❖ In VB6, ElseIf solves the problem of testing a long sequence of
alternatives

If <T/F condition> Then
 <statement list> Stmts for 1st cond
ElseIf <T/F condition> Then
 <statement list> Stmts for 2nd cond
ElseIf <T/F condition> Then
 <statement list> Stmts for 3rd cond
ElseIf <T/F condition> Then
 <statement list> Stmts for 4th cond

...
Else
 <statement list> Stmts for otherwise
End If

���
���

© Copyright, Larry Snyder, 1999

Example

If txtNum.Text = 1 Then

 Beatle = “John”
ElseIf txtNum.Text = 2 Then

 Beatle = “Paul”

ElseIf txtNum.Text = 3 Then

 Beatle = “George”
ElseIf txtNum.Text = 4 Then

 Beatle = “Ringo”

Else

 Beatle = “Who?”

EndIf

Executed if Text = 1

Executed if Text ≠ 1 and Text = 2

Executed if Text ≠ 1 or 2 and Text = 3

Executed if Text ≠ 1 or 2 or 3 and Text = 4

���
���

© Copyright, Larry Snyder, 1999

Caution With ElseIf

❖ An If statement that uses ElseIf passes through all of
the previous cases before reaching a given test.
Think about the consequences…

If someVar < 20 Then
 Result = “Less than 20”
ElseIf someVar < 10 Then
 Result = “Less than 10”
Else
 ...
End If

Will this statement ever be
executed?

���
���

© Copyright, Larry Snyder, 1999

Contrast With Nested If
❖ ElseIf is not a nested test as seen before, though the

logic is similar…

If txtNum.Text = 1 Then
 Beatle = “John”
ElseIf txtNum.Text = 2 Then
 Beatle = “Paul”
ElseIf txtNum.Text = 3 Then
 Beatle = “George”
ElseIf txtNum.Text = 4 Then
 Beatle = “Ringo”
Else
 Beatle = “Who?”
End If

If txtNum.Text = 1 Then
 Beatle = “John”
Else
 If txtNum.Text = 2 Then
 Beatle = “Paul”
 Else
 If txtNum.Text = 3 Then
 Beatle = “George”
 Else
 If txtNum.Text = 4 Then
 Beatle = “Ringo”
 Else
 Beatle = “Who?”
 End If
 End If
 End If
End If

���
���

© Copyright, Larry Snyder, 1999

A Thought Experiment…
❖ Think about writing a program to output the following:

10 seconds
9 seconds
8 seconds
7 seconds
6 seconds
5 seconds
4 seconds
3 seconds
2 seconds
1 second
BLAST OFF!!!

���
���

© Copyright, Larry Snyder, 1999

Iteration -- Once Is Not Enough

Though people don’t like to repeat
themselves, computers can repeat steps
systematically without tiring. If program

instructions are to be performed more than
once, the computer can be programmed to

repeat the instructions without explicitly
writing out new instructions each time.

���
���

���
���

© Copyright, Larry Snyder, 1999

The Idea of Iteration

❖ CONCEPT: Iteration is the repeated execution of a
series of statements in a program

❖ The basic idea behind iteration is to:
❏ Repeat a bunch of steps …
❏ STOP at some point and continue with the rest of the

program

❖ To perform iteration, programming languages include
special statements often called iteration statements

���
���

© Copyright, Larry Snyder, 1999

Key Elements: Repeating Statements
and a Stop Condition

❖ CONCEPT: There are two crucial components of all
iterations:

❏ The statements that will be repeated -- called the loop body

❏ A test specifying when the repetition stops – stop condition

❖ Additionally, loops typically have at least one variable
that is explicitly changed “inside” the loop -- this is
called the iteration variable

❖ When the iteration variable contains a certain value
(defined by the program), then the loop stops

Some value must change at some point between consecutive
iterations, or else the loop will never terminate … it is an
infinite loop.

���
���

© Copyright, Larry Snyder, 1999

General Form Of VB6 Iteration
❖ VB6, like most languages, has several iteration statements but we

will only study one here – the Do-While loop

❖ The semantics are as follows:
❏ The termination condition is tested and if it is false the statements are

all skipped; execution continues after Loop
❏ If it is true, the statements are performed once
❏ The termination condition is tested again, and if it is false the loop is

over and the statements are skipped; continue after Loop
❏ If it is true, the statements are performed a second time
❏ …

Do While <termination condition>
 <statements>
Loop

���
���

© Copyright, Larry Snyder, 1999

An Example

❖ An easy way to get the idea of iteration is to print out
the iteration variable ...

Private Sub Form_Click()
Dim iterateVar As Integer
 iterateVar = 0
 Do While iterateVar < 10
 iterateVar = iterateVar + 1
 MsgBox (“iterateVar is” & iterateVar)
 Loop
End Sub

Declaration of iteration variable

Initialization of iteration variable

Loop Body

���
���

© Copyright, Larry Snyder, 1999

Some Questions to Consider…

❏ Why does iterateVar have the initial value of 1?
❏ Why does the loop end?
❏ How many times does the loop execute?

Private Sub Form_Click()
Dim iterateVar As Integer
 iterateVar = 0
 Do While iterateVar < 10
 iterateVar = iterateVar + 1
 MsgBox (“iterateVar is” & iterateVar)
 Loop
End Sub

