
���
���

© Copyright, Larry Snyder, 1999

Question

What are the five largest cities
in the United States?

(Please jot down your answer on a piece of scratch
paper.)

���
���

© Copyright, Larry Snyder, 1999

A BIG DIFFERENCE Between
People and Computers

❖ People are very good at:
❏ Resolving ambiguity

❏ Taking context into account

❖ Computers are not very good at:
❏ Resolving ambiguity

❏ Inferring “right” interpretations based on context

Thus if we want to tell a computer what to
do, we must do so precisely and unambiguously.

���
���

© Copyright, Larry Snyder, 1999

Programming Basics

To specify algorithms, we must be precise. To
be precise, we need a language that is more
exact than English. A programming language

offers this advantage. All programming
languages have a basic set of features.

���
���

���
���

© Copyright, Larry Snyder, 1999

What’s Special
About Programming Languages?

❖ Though the Alphabetize CDs algorithm was precise
enough for a person to execute successfully,
computers demand greater precision

❖ Programming languages are formal notations
specifically designed for specifying algorithms – that
means each “word” or “sentence” in a programming
language has one and only one interpretation

❖ The programming language we will study this quarter
is Visual Basic 6.0 (VB6)

���
���

© Copyright, Larry Snyder, 1999

Our Approach To Programming

❖ The plan …
❏ Introduce you to general concepts of programming languages in

lecture – these ideas apply to virtually all programming languages
❏ Use VB6 in lecture and lab to illustrate these ideas

✛ In your next lab you’ll write your first VB6 program

❏ Practice the ideas by writing programs
❏ Add a few more language features…
❏ Practice with a few more programs…

❏ Some issues we’ll explore:
✛ How does a computer search for information?
✛ How does a computer make a decision?

✛ Can a computer create something aesthetic?

���
���

© Copyright, Larry Snyder, 1999

Order Matters

❖ CONCEPT: Programming languages execute (“do”) instructions
in order (unless told to do otherwise… more about this later)

❖ A program looks a bit like a long “to do” list; the first things on
the list get done first

❖ Each instruction is executed one at a time – then the computer
goes on to execute the next instruction

❖ Example: When you wrote your Web pages, the computer
executed the HTML code in the order you of the statements you
wrote.

���
���

© Copyright, Larry Snyder, 1999

Storing, “Remembering”, Changing,
and Accessing Data

❖ Imagine a programming language that was just made
up entirely of “sentences” like “Print this” or “Display
that”

❖ It would be very limited
❖ The program would have to do exactly the same

thing every time

❖ CONCEPT: Being able to store, “remember”, change,
and access data allows us to write programs that do
the same thing but with different data each time.

���
���

© Copyright, Larry Snyder, 1999

Variables

❖ CONCEPT: Variable is the term for a place in
memory where the program can store, access, and
restore information.

All variables have the following 3 properties:
1. A name so that the program can refer to the variable

(a location in memory)
2. A means to store a (new) value in the variable
3. A means to “see” (or make a copy of) the value

stored in the variable

���
���

© Copyright, Larry Snyder, 1999

Variables in Exchange Sort with CDs

When we acted out Exchange Sort, we used
variables as follows:
1. Each student holding a CD represented a variable
(a location in memory)
2. Each variable (student) stored a value (a CD)

 3. Each time we looked at the name of a CD we were
“seeing” the value stored in that variable

 4. When two students exchanged CDs, a new value
(CD) was stored in each of the variables (students)

���
���

© Copyright, Larry Snyder, 1999

On Variable Names

❖ The term “variable” reminds us the value can change
❖ The names used for variables are arbitrary provided:

❏ Variable names must begin with a letter

❏ Variable names can contain any letter, numeral or _

❏ Most languages are case sensitive: a ≠ A

❖ Good variable names are meaningful and accurate
❏ total, averageOverClass, etc, but not x, o0OO0o, etc

VB6: In all programming for FIT100, variable names should
start with lowercase letters so as to avoid confusion with
other names in VB6 … ignore this convention at your peril!

���
���

© Copyright, Larry Snyder, 1999

On Variable Values

❖ Values refer to the information stored in the variable
(location in memory)

❖ Variables can take on different types of values
❏ Whole numbers or integers: 2, -9, 1048576
❏ Character sequences or strings: “2”, “&^%$#@”, “ ”

❏ Decimal numbers or doubles: 2.0, 3.14159, -999.99

❖ In most programming languages, each variable can
only hold one type of value

❏ So the computer will know how much memory will be needed
to store the value (e.g., integer vs. double)

❏ To allow the computer to help detect errors in the code (e.g.,
when the program tries to put the wrong sort of value in a
variable the programmer receives an error message)

���
���

© Copyright, Larry Snyder, 1999

Declaring Variables
❖ Declaring variables is a way of telling the computer:

❏ That you want a location in memory (the variable)
❏ What you will call (how you will refer to) that location in

memory throughout your program (the variable name)
❏ What type of information you will store in that location in

memory, so the computer will know how much space to set
aside (the variable type)

❖ VB6: Some examples of declaring variables:
❏ Dim num1 As Integer

❏ Dim letter1 As String

❏ Dim averageOverClass As Double

���
���

© Copyright, Larry Snyder, 1999

Assigning Values to Variables
❖ CONCEPT: Computers must be told what value to assign to

variables

❖ CONCEPT: The general form of an assignment statement is
<variable name> <assignment symbol> <expression>
❏ Languages use different assignment symbols: = := ←
❏ Read assignment as “is assigned”, or “becomes” or “gets”
❏ All three components must always be present

❖ CONCEPT: Fundamental property of assignment
The “flow” of information is always right-to-left

❖ VB6: Some examples of variable assignment
❏ destination = 12

❏ changedVariable = value

Meta-brackets < >
enclose language
defining terms

���
���

© Copyright, Larry Snyder, 1999

Let’s Try This Out…
A VB6 Example….

Dim snap As Integer

Dim crackle As Integer

Dim pop As Integer

snap = 6
pop = 3

snap = 5

snap = pop

pop = 10

crackle = pop

Question: What’s in snap? What’s in crackle?

