FIT
100 Project 3 - Conway's Game of Life

* A kind of cellular automaton
* Proposed by the mathematician John Conway in 1970.
* Complex behavior emerges from simple rules.
* The Game of Life itself is not a realistic simulation of any actual phenomenon
* However, researchers have used cellular automata to model the spread of weeds, fire, urban sprawl, and other phenomena

FIT
100 Project 3 - Purpose

* Experience with one kind of simulation
* Experience using arrays (including 2 dimensional arrays)
* Experience modifying an existing program

FIT
100 The Rules of the Game

* A game in the sense of a simple set of rules that can give rise to complex behavior, rather than in the sense of several players competing.
* The game is played on a 2 dimensional array of cells.
* Each cell is either alive or dead. We are given some starting configuration of live and dead cells
* At each step, we compute the next state of the array
* The game continues indefinitely, although obviously you'll want to stop it at some point.

FIT
100 Computing the Next State

* For each cell, calculate how many live neighbors it has. Each cell has 8 neighbors:

FIT

100 Computing the Next State (2)

* For each cell, calculate how many live neighbors it has out of its 8 neighbors.
* If the cell is alive

If it has 2 or 3 live neighbors, it remains alive

- If it has 0 or 1 live neighbors, it does of loneliness

If it has 4 or more live neighbors, it dies of overcrowding.

* If the cell is dead:
- If it has 3 live neighbors, it comes alive

Otherwise it remains dead

FIT
100 Computing the Next State (3)

* The next state for each cell is computed using the current states of its neighbors. (You'll get wrong results if you update a cell and then use the updated state of that cell when computing the state of its neighbors.)

FIT
100 One and Two Dimensional Arrays

* ooops Visual Basic does allow you to declare both the lower and upper bounds of an array:

Dim a(1 To 100) as Integer

* You can have two dimensional arrays as well as one dimensional ones. This is much more natural for the Game of Life

Dim cells (0 To 31, 0 To 31) As Integer
Dim i As Integer
cells $(2,3)=1$
$\mathrm{i}=$ cells $(4,5)$

FIT
100 Visualizing a 2-D Array

* Dim a (1 To 3, 1 To 3) As Integer

We'll regard the first subscript as the row, and the second as the column

$a(1,1)$	$a(1,2)$	$a(1,3)$
$a(2,1)$	$a(2,2)$	$a(2,3)$
$a(3,1)$	$a(3,2)$	$a(3,3)$

FIT
100 For Loops

* Do while is going to get pretty tedious for the Game of Life, because we iterate through arrays all the time
* Equivalent constructs:

FIT
100 Mini-Exercise - Answer

* What does this print?

Dim i As Integer
For $i=3$ To 6
Print i
Next i

* Write a for loop that prints the integers between 0 and 10 inclusive

Dim i As Integer
For $\mathrm{i}=0$ To 10
Print i
Next i

FIT
100 Mini-Exercise -- Answer

* What does this print?

Dim i As Integer
For $i=3$ To 2
Print i
Next i

Nothing!

FIT FIT
100

* What does this print?

Dim i As Integer, j As Integer
For $\mathrm{i}=0$ To 4
For $\mathrm{j}=1$ To 2
Print i, j
Next j
Next i

FIT

Mini-Exercise

* What does this print?

Dim i As Integer, j As Integer
For $i=0$ To 4
For $j=1$ To 2
Print i, j
Next j
Print "hi there"
Next i

Mini-Exercise - Answer	
What does this print? ```Dim i As Integer, j As Integer For i = 0 To 4 Forj = 1 To 2 Print i, j Next j Print "hi there" Next i```	01 02 hi there 11 12 hi there 21 22 hi there 31 32 hi there 41 42 hi there

