FIT Project 3 – Conway's Game of Life

- * A kind of cellular automaton
- Proposed by the mathematician John Conway in 1970.
- * Complex behavior emerges from simple rules.
- The Game of Life itself is not a realistic simulation of any actual phenomenon
- However, researchers have used cellular automata to model the spread of weeds, fire, urban sprawl, and other phenomena

FIT 100 Project 3 – Purpose

- Experience with one kind of simulation
- Experience using arrays (including 2 dimensional arrays)
- Experience modifying an existing program

The Rules of the Game

- A game in the sense of a simple set of rules that can give rise to complex behavior, rather than in the sense of several players competing.
- The game is played on a 2 dimensional array of cells.
- Each cell is either alive or dead. We are given some starting configuration of live and dead cells.
- At each step, we compute the next state of the array.
 The game continues indefinitely, although obviously
- you'll want to stop it at some point.

FIT Computing the Next State

 For each cell, calculate how many live neighbors it has. Each cell has 8 neighbors:

1	2	3
4		5
6	7	8

FIT 100 Computing the Next State (2)

- For each cell, calculate how many live neighbors it has out of its 8 neighbors.
- If the cell is alive:
 - If it has 2 or 3 live neighbors, it remains alive.
 - If it has 0 or 1 live neighbors, it does of loneliness
 - □ If it has 4 or more live neighbors, it dies of overcrowding.
- * If the cell is dead:
 - If it has 3 live neighbors, it comes alive
 - Otherwise it remains dead.

FIT 100 Computing the Next State (3)

The next state for each cell is computed using the current states of its neighbors. (You'll get wrong results if you update a cell and then use the updated state of that cell when computing the state of its neighbors.)

FIT 100 Mini-Exercise
What does this print?
Dim i As Integer For i = 3 To 6 Print i Next i
 Write a for loop that prints the integers between 0 and 10 inclusive.
@ Copyright 1999-2000 University of Washington

FIT 100 Mini-Exercise – Answer			
What does this print?	0 1 0 2		
Dim i As Integer, j As Integer For i = 0 To 4 For j = 1 To 2 Print i, j Next j Print "hi there" Next i	hi there 1 1 1 2 hi there 2 1 2 2 hi there 3 1 3 2 hi there 4 1 4 2 hi there		