
FIT
100

© Copyright 1999-2000 University of Washington

Computers Can Do (a) Anything, (b)
Almost Nothing (Pick One)

The speed of computers and the breadth of
their application is awesome, leaving us with

the impression that they can do anything.
They cannot. Consider some of the

limitations to computation.

FIT
100

FIT
100

© Copyright 1999-2000 University of Washington

Universality
❖ One property of computers is that anything one

computer can do, any other computer can do it, too.
❏ Usually one computer can do the task faster than the other,

but they are both able to do it
❖ This is a fundamental property, called universality

❖ Thus, no one can claim to create a more powerful
computer in the sense that it is capable of more
sophisticated computations than another computer

Universality: Any problem solvable by some
computer can be solvable by any computer

Compete on speed, memory capacity, reliability, price,
etc. but not the ability to solve more complex problems

FIT
100

© Copyright 1999-2000 University of Washington

Why Is Universality True?
❖ Recall (Lecture 4) that computers interpret

instructions using the fetch/execute cycle in hardware
❖ Everything that a computer does, except the basic

instructions, is formulated as software, i.e. a series of
instructions accomplishing the task

❖ Suppose computer A has a special instruction in its
hardware that computer B doesn�t have in its
hardware � and A�s software uses that instruction

Computer A�s Program

A�s Special Instruction

FIT
100

© Copyright 1999-2000 University of Washington

Make Program Work For B
❖ It looks like B cannot execute the program �
❖ However,

❏ By writing a procedure that performs the special A operation
by simulating it with B�s instructions, and

❏ Replacing each occurrence of that instruction with a call to
that procedure,

❖ B can run software equivalent to the software A runs
❖ Therefore, the computers are equivalently powerful

A�s Program Computer B�s Program
Procedure declaration for
A�s special Instruction

Procedure call

FIT
100

© Copyright 1999-2000 University of Washington

Universality Means ...
❖ Universality sets computers apart from machines that

perform physical operations
❏ Consider a chainsaw, a bread knife and a cheese slicer

❖ Buy one computer and perform any information
processing task imaginable � you may not have the
right input/output devices to enjoy the result, but the
computer can do all the work if given the software

Universality trumps the argument that �using a
computer is like driving a car�: People drive
successfully without knowing how a car works � they
can use computers without knowing how they work �
but one needs to know more to apply a versatile tool

FIT
100

© Copyright 1999-2000 University of Washington

Practical Universality
❖ There seem to be many ways in which computers are

different �
❏ Carburetor computer, laptop computer, cell-phone computer
❏ Software for the Mac doesn�t work on a PC and vice versa

✛ Though computers mostly have the same instructions,
their encoding in binary numbers is different �

❖ A compiler is a translator from a programming
language to the machine language of a computer

Application
written in VB

VB-to-C2
Compiler

VB-to-C1
Compiler

Computer C2

Computer C1

FIT
100

© Copyright 1999-2000 University of Washington

Computers Use Resources
❖ Each operation of a computer (each step in the

Fetch/Execute Cycle) takes a small amount of time
✛ As a rough approximation, assume 1 instruction per clock tick
✛ A 500MHz computer does 500,000,000 instructions in a second

❖ Generally, the number of instructions needed to solve
a problem determines how much time it will take �

✛ A 10 billion instruction computation takes 20 seconds
❖ Networks have bandwidth limits: 100 Mb/sec
❖ Every part of a computation takes memory, too.

Every letter or digit takes 1-2 bytes
Every instruction takes 4 bytes
Every integer takes 2 or 4 bytes
Every decimal number takes 4 or 8 bytes

� And everything
is limited by the
speed of light

FIT
100

© Copyright 1999-2000 University of Washington

The Resources Limit Computation
❖ A computation�s execution time (how long it runs) is

specified in terms of the amount of data it is given �
❏ A problem that runs for a minute on a given amount of data,

and runs for two minutes on twice as much data, etc. is said
to be a �linear computation�

❏ Computing the weekly pay and deductions for employees is
an example because twice as many employees would take
twice as long to compute pay and deductions

❖ Other ways of specifying execution time are possible,
such as guesses per interval size as in Day Finder

❏ Required 5 guesses to find a day among 32 things
❏ How many guesses would it take if an interval had 64 items?
❏ How many for 128 items?
❏ Double the interval use only one more guess � logarithmic

FIT
100

© Copyright 1999-2000 University of Washington

Typically More Data, More Time
❖ There are much more complicated computations

✛ A quadratic computation takes 4 times the time when
there is twice the data, 9x time for triple the data, etc.

✛ Checking to see if an employee has the same address as
another employee might be an example

❖ There are even more complex computations ...
✛ �Exponential problems� require double the time when

adding just one more data value
✛ �Try all combinations� is a typical example

The �knapsack problem� concerns packing different sized
items to fit in a give space � need to fill maximum items

Fast solutions for the knapsack problem would
exist if computers could correctly guess

FIT
100

© Copyright 1999-2000 University of Washington

Difficult Problems
❖ There are a variety of kinds of problems that

computers �cannot� perform
✛ Some problems could be solved in principle, but it would

take so long and take so many resources that it is
impractical � simulating the positions of the stars in the
Milky Way galaxy over a million years

✛ Some problems cannot be solved because the inputs
and process determining the outcome cannot be known
� predicting today�s closing price for Amazon.Com

✛ Unsolvable problems cannot be computed � solving
them is logically inconsistent � a philosophically
interesting topic

The �halting problem� is a problem not solvable
by computer: No program can tell if another
program will halt eventually or loop forever

FIT
100

© Copyright 1999-2000 University of Washington

Halting Problem
❖ Imagine someone claims to have a program that tells

whether another program halts or not
testHalt(programCode As String, data As String, answer As String)
❖ You write a program as follows

Private Sub refuteClaim(programCode As String)
Dim ans As String

Call testHalt(programCode, programCode, ans)
If ans = �yes� Then

Do While 0=0
Loop

End If
End Sub

testHalt(�Private Sub refuteClaim(��, �Private Sub refuteClaim(��, reply)

There can be no reply � �yes� implies �no�, �no� implies �yes�!

Text of your
test program

The claimed
program cannot
exist since a task
can be set up for
it for which all
outputs are
logically
inconsistent

FIT
100

© Copyright 1999-2000 University of Washington

Summary
❖ Computers are universal � no computer is more

powerful than another; faster perhaps, but not more
powerful

❖ Computers use resources, and the amount of a
resource they use to solve a problem on a given
amount of data is how to measure the complexity of
that computation

❖ Computation introduces some deep philosophical
questions: the inability to guess correctly and
unsolvability

