When Trouble Comes:
The Basics of Debugging

FIT
100

No one is capable of writing a flawless program of
more than several lines on the first try. Therefore,
algorithm design, programming and any other logical
activity will require debugging or trouble shooting.

© Copyright Uriversity of Washinglon 19992000

FIT)
An Aside on Program Correctness

<+ One area of computer science research is proving
programs correct. This is a difficult problem, and the
techniques are almost never used in practice.

> We can prove mathematically that certain algorithms

are correct. For example, we can prove that binary

search will always find the desired value (and within a

certain number of steps).

A major problem with proofs of correctness: does the

specification cover all the circumstances of use?

&

&

Washinglon 19952000

Testing

< In practice, what we must do is carefully define and
refine the problem specification, use good
programming style, and test. Testing:
a By the developer

By testers (in large organizations)

Beta test

0 User feedback

Qa
Qa

© Copyright University o Washingion 19962000

FIT
Bugs vs Faults

<+ When the car doesn’t start because of a dead
battery, figuring out the problem uses debugging
skills ... but it is not technically debugging, but rather
“fault identification”

0 When the error is a failing component of a correct design, it
is a fault ... when the battery is fixed the car runs

0 When the error is a failure of the design, it is a bug

» While programming the chances are overwhelming
that the error is a bug, since you've likely made a
reasoning error

» In “mature” systems it could be either one, since the
error could be a fault or a latent logical error

&

&

It Uriversity of Washinglon 1999-2000

FIT
The First Computer Bug Was A Moth

<+ The term “bug” for a computer glitch was coined by
Adm. Grace Murray Hopper when working on the
Harvard Mark Il computer

[N &

T st attaal nreto f b Vio fondk

Pt dn felay s

Relon*90 @anef F
“

The moth was found in Relay #70 -- an electro-
mechanical switch -- and taped into the logbook with
the caption “First actual case of a bug being found”

‘© Copyright Uriversity of Washington 13992000

FIT
Debugging Programs into Existence

<+ Sometimes students in beginning programming
classes try to debug their programs into existence.
0 It's gotta have an if statement...
0 and it's gotta have an assignment statement...
1 maybe | should try switching them and see if that works?

%+ This is a big mistake!

Washingion 19982000

FIT
Guidelines For Debugging

+ Try to avoid bugs by thinking through the design first.
+ For big programs, test parts of it as you go.

<+ Some basic techniques:

Stepping by hand through the program

Adding “print” statements to get debugging output

2 Using the Visual Basic debugger

a
a

2

« Often the error will be blindingly obvious. If not, and
you're having to spend some time finding it, here are
some additional suggestions:

© Copyright Uriversity of Washinglon 19992000

FIT L .
Guidelines — Transient Errors?

1. Verify that the error is reproducible, i.e. make it
happen again
0 “Transient errors” can occur

a The error may have been caused by a state or configuration
that was unknowingly set ... get a “clean” instance of the bug

1 When reproducing the error, try to formulate a “minimal”
version of the system or program with the bug

Washinglon 19952000

FIT L .
Guidelines -- Check obvious

2. Check for the “obvious” problems
o Verify that the inputs are as required -- case, syntax, etc.
+ Are there 0-O 1| |-l or other substitution mistakes
a If there are multiple components or files in the buggy system,
establish that these are properly “connected”
Has anything been changed recently
When there are multiple inputs, does the order matter
In programming, are all variables ...
+ Declared
+ Initialized

U oo

The chances that the problem is something “obvious”
are small because if it were so “obvious” you would
have already found the problem ... but you must check

© Copyright University o Washingion 19962000

FIT L
Guidelines -- Isolate error

3. Isolate the problem -- since the error is likely located
in a specific place in the system or program, large
sections of it are correct and should be removed from
consideration

0 Isolating the problem to a specific procedure is best
o Verifying that parts thought to be correct are correct is
essential
0 Itis even possible to use binary search ... Command 1
Command 2

Check if erroneous
results have been
produced here

e 60m mand n/2

Command n-1
Command n

uonnoaxe weiboid

It Uriversity of Washinglon 1999-2000

FIT
Guidelines -- Step through process

4. Once the error is isolated, reason through the
process start-to-finish, predicting what should be
computed and then verifying that it has been

1 When a prediction is inconsistent with an observation, the
problem has been further isolated to the current step

+ The process was OK prior to this step
+ The process is incorrect after this step

1 Check the inputs and reason through the step
a If bug not found, continue applying the guidelines

‘© Copyright Uriversity of Washington 13992000

FIT
Guidelines -- Assess Objectively

5. It frequently occurs that everything checks out and is
found to be OK ... but the bug still persists

Don’t become so frustrated that you stop thinking
logically. Rather, evaluate your progress objectively:
how are you doing?

0 Are you making a wrong assumption?

0 Do you misunderstand what the data means?

0 Have you made a wrong deduction?

Remember ... it's a mystery and you are Jane
Marple or Hercule Poirot ... using those “gray
cells” you can find the culprit

Washingion 19982000

FIT
VB6 Assistance in Debugging

% Visual Basic assists you in avoiding bugs (Option
Explicit) and in finding bugs with breakpoints

<+ A breakpoint stops the program execution at a
designated location so you can examine the
variable’s values

Demo of Breakpoints

© Copyright Uriversity of Washinglon 19992000

kS

FIT
The VB6 Debugger — Key Features

< To start out, remember these commands:
0 Debug / Toggle Breakpoint
0 Debug / Step Into

0 Debug / Clear All Breakpoints

Other useful commands

0 Debug / Step Over
0 Debug / Add Watch

+ Stuff that might be on a quiz:

0 What is a bug?
0 What is a breakpoint?

