
FIT
100

© Copyright University of Washington 1999-2000

When Trouble Comes:
The Basics of Debugging

No one is capable of writing a flawless program of
more than several lines on the first try. Therefore,

algorithm design, programming and any other logical
activity will require debugging or trouble shooting.

FIT
100

FIT
100

© Copyright University of Washington 1999-2000

An Aside on Program Correctness

❖ One area of computer science research is proving
programs correct. This is a difficult problem, and the
techniques are almost never used in practice.

❖ We can prove mathematically that certain algorithms
are correct. For example, we can prove that binary
search will always find the desired value (and within a
certain number of steps).

❖ A major problem with proofs of correctness: does the
specification cover all the circumstances of use?

FIT
100

© Copyright University of Washington 1999-2000

Testing

❖ In practice, what we must do is carefully define and
refine the problem specification, use good
programming style, and test. Testing:

❏ By the developer
❏ By testers (in large organizations)
❏ Beta test
❏ User feedback

FIT
100

© Copyright University of Washington 1999-2000

Bugs vs Faults

❖ When the car doesn�t start because of a dead
battery, figuring out the problem uses debugging
skills � but it is not technically debugging, but rather
�fault identification�

❏ When the error is a failing component of a correct design, it
is a fault � when the battery is fixed the car runs

❏ When the error is a failure of the design, it is a bug
❖ While programming the chances are overwhelming

that the error is a bug, since you�ve likely made a
reasoning error

❖ In �mature� systems it could be either one, since the
error could be a fault or a latent logical error

FIT
100

© Copyright University of Washington 1999-2000

The First Computer Bug Was A Moth

❖ The term �bug� for a computer glitch was coined by
Adm. Grace Murray Hopper when working on the
Harvard Mark II computer

The moth was found in Relay #70 -- an electro-
mechanical switch -- and taped into the logbook with
the caption �First actual case of a bug being found�

FIT
100

© Copyright University of Washington 1999-2000

Debugging Programs into Existence

❖ Sometimes students in beginning programming
classes try to debug their programs into existence.

❏ It�s gotta have an if statement�
❏ and it�s gotta have an assignment statement�
❏ maybe I should try switching them and see if that works?

❖ This is a big mistake!

FIT
100

© Copyright University of Washington 1999-2000

Guidelines For Debugging

❖ Try to avoid bugs by thinking through the design first.
❖ For big programs, test parts of it as you go.
❖ Some basic techniques:

❏ Stepping by hand through the program
❏ Adding �print� statements to get debugging output
❏ Using the Visual Basic debugger

❖ Often the error will be blindingly obvious. If not, and
you�re having to spend some time finding it, here are
some additional suggestions:

FIT
100

© Copyright University of Washington 1999-2000

Guidelines � Transient Errors?

1. Verify that the error is reproducible, i.e. make it
happen again

❏ �Transient errors� can occur
❏ The error may have been caused by a state or configuration

that was unknowingly set � get a �clean� instance of the bug

❏ When reproducing the error, try to formulate a �minimal�
version of the system or program with the bug

FIT
100

© Copyright University of Washington 1999-2000

Guidelines -- Check obvious
2. Check for the �obvious� problems

❏ Verify that the inputs are as required -- case, syntax, etc.
✛ Are there 0-O 1-l I-l or other substitution mistakes

❏ If there are multiple components or files in the buggy system,
establish that these are properly �connected�

❏ Has anything been changed recently
❏ When there are multiple inputs, does the order matter
❏ In programming, are all variables ...

✛ Declared
✛ Initialized

The chances that the problem is something �obvious�
are small because if it were so �obvious� you would
have already found the problem � but you must check

FIT
100

© Copyright University of Washington 1999-2000

Guidelines -- Isolate error
3. Isolate the problem -- since the error is likely located

in a specific place in the system or program, large
sections of it are correct and should be removed from
consideration

❏ Isolating the problem to a specific procedure is best
❏ Verifying that parts thought to be correct are correct is

essential
❏ It is even possible to use binary search ... Command 1

Command 2
...
Command n/2
...
Command n-1
Command n

Check if erroneous
results have been
produced here

program
 execution

FIT
100

© Copyright University of Washington 1999-2000

Guidelines -- Step through process

4. Once the error is isolated, reason through the
process start-to-finish, predicting what should be
computed and then verifying that it has been

❏ When a prediction is inconsistent with an observation, the
problem has been further isolated to the current step

✛ The process was OK prior to this step
✛ The process is incorrect after this step

❏ Check the inputs and reason through the step
❏ If bug not found, continue applying the guidelines

FIT
100

© Copyright University of Washington 1999-2000

Guidelines -- Assess Objectively

5. It frequently occurs that everything checks out and is
found to be OK � but the bug still persists

Don�t become so frustrated that you stop thinking
logically. Rather, evaluate your progress objectively:
how are you doing?

❏ Are you making a wrong assumption?
❏ Do you misunderstand what the data means?
❏ Have you made a wrong deduction?

Remember � it�s a mystery and you are Jane
Marple or Hercule Poirot � using those �gray
cells� you can find the culprit

FIT
100

© Copyright University of Washington 1999-2000

VB6 Assistance in Debugging
❖ Visual Basic assists you in avoiding bugs (Option

Explicit) and in finding bugs with breakpoints
❖ A breakpoint stops the program execution at a

designated location so you can examine the
variable�s values

Demo of Breakpoints

FIT
100

© Copyright University of Washington 1999-2000

The VB6 Debugger � Key Features

❖ To start out, remember these commands:
❏ Debug / Toggle Breakpoint
❏ Debug / Step Into
❏ Debug / Clear All Breakpoints

❖ Other useful commands
❏ Debug / Step Over
❏ Debug / Add Watch

❖ Stuff that might be on a quiz:
❏ What is a bug?
❏ What is a breakpoint?

