Basics of Procedures

FIT
100

Procedures encapsulate useful computation
in a form that can be reused. In this regard
they extend the capability of the computer

since the procedure can be used as if it were

a primitive instruction.

FIT
Importance of Procedures

%+ Procedures encapsulate functionality so that it can be
reused. This will be the primary emphasis in today’s
lecture.

<+ Another important aspect: procedures help manage
complexity. This aspect becomes obvious only when
you start writing much more complex programs.

FIT
A Scenario: Reading Email

-

You are reading email and your friend living outside the US says
the temperature is 38°

That's Celsius, of course. What is it in Fahrenheit? Is it hot or
cold, you wonder. Why doesn’t your computer have a Celsius-
to-Fahrenheit converter?

RS

RS

This situation arises all of the time ... there are many things a
computer could do for you, but the software is not available

2 You can step through the process yourself, i.e. convert to
Centigrade

1 But what you'd like is to solve the problem once-and-for-all and
have the solution packaged-up to be always available

What you want is a procedure

-

FIT
The Idea of Procedures

< Procedures encapsulate computation for general
application
a A procedure’s operation should be hidden from view

0 It must be possible to give data to a procedure and get
results back from the procedure

a All of the possible eventualities must be considered
< The procedure concept has two parts:
a A procedure “declaration” -- defines how computation goes

a Many procedure “calls” -- requests to have the procedure
performed

The fundamental idea of procedures: Whenever
the procedure is called, “substitute” its definition

FIT
Anatomy Of A Procedure

%+ Procedures have the following features
0 Name, a brief description of operation performed
0 Parameters, variables used for passing input in, output out
0 Body, the statements that perform the desired computation
<+ The VB6 procedure to convert Celsius to Fahrenheit
0 Name is c2f (Snyder book uses convertC2F ... shortened to
fit on slides ...)
0 Parameters: input is c; output is f
0 Body is standard conversion equation
0 Blue -- key words and and symbols that are required
Private Sub c2f (c As Integer, f As Double)
f=9*c/5+32
End Sub

FIT
Using the c2f Procedure

At the start of the procedure:
c gets 38

At the end of the procedure:
' Sydney temp is 38 s gets 100.4
Call c2£(38, s)
Private Sub c2f (c As Integer,
f As Double)
£=9*c / 5+ 32
Msgbox (“Temp is ” End Sub
& s)

Tempis 100

A Guessing Game

<+ Develop a program to guess a person’s weight

0 |t starts with a guess of 0 and always stays below the correct
answer

a A weight guess is formulated as: loSide + increment
2 Questions are asked in increments of 100, then 10, then 1

The Amazing VYB6
Guesses Your Weight
While You Wait

Do You Weigh More Than

- lbs?

]

Operation ...

S Fom]
The Amazing VB6
Guesses Your Weight
While You Wait

i =]
The Amazing VB6

Guesses Your Weight
While You Wait

The Amazing VB6
Guesses Your Weight
While You Wait
Do You Weigh More Than Do You Weigh More Than

100 Ibs? 200 Ibs?

110 Ibs?

. Forml

Do You Weigh More Than

T Py 5]
The Amazing VB6
Guesses Your Weight
While You Wait

The Amazing VB6
Guesses Your Weight
While You Wait

i
The Amazing VB6
Guesses Your Weight
While You Wait

Do You Weigh More Than
120 Ibs?

Do You Weigh More Than
111 Ibs?

I

You Weigh Exactly ...
111 Ibs!

FIT
Braining Out The Logic

< When will guesses be made?
a Initially, when the program begins (called form load)
a In response to a Yes answer
2 In response to a No answer
< In addition to the first guess what happens at start
0 Initialize loside = 0
increment = 100
< In addition to a guess, what happens on a Yes?
1 Add-in increment, as weight is more than 1oSide + inc
< In addition to a guess, what happens on a No?
1 Reduce the increment by dividing by 10
0 Check if the increment is below 1 ... that'll be the answer

%+ The fact that a guess must be made in three places is
motivation to define a procedure to make the guess
(despite the fact that it is a trivial computation)

Option Explicit

Dim loSide As Integer
Dim increment As Integer

Private Sub guess()
lblGuess.Caption = loSide + increment
End Sub

Private Sub Form Load()
increment = 100
loSide = OKlelGuess.Caption = loSide + increment'
Call guess'

End Sub

The Yes/No Logic

%+ The “Yes” logic only adds-in, but the “No” logic reduces
the increment and must also test for completion

Private Sub cmdYes_Click()
loSide = loSide + increment
Call gues

End Sub 5\1 1blGuess.Caption = loSide + increment.

Private Sub cmdNo_Click ()
increment = increment \ 10
If increment < 1 Then
lblHead.Caption = "You Weigh Exactly ..."
1blGuess.Caption = loSide

1blPound.Caption "lbs!"
Else
Call guess
End If 1blGuess.Caption = loSide + incrementl
End Sub

Procedural Abstraction

<+ Whenever the same operations are performed in
different places in a program, there is an opportunity
for procedural abstraction

< Procedural abstraction gives a name to the operations

% It also encapsulates the operations so they can be
executed out-of-view, receiving input via parameters

and influencing the calling environment only by the
result(s) returned

T
n Mini-Exercise #1

< What is the value of x after the form has been
loaded?

Option Explicit
Dim x As Integer

Private Sub squid()
X = x+2
End Sub

Private Sub Form_Load()
x=0
Call squid

End Sub

FIT| . . .
Mini-Exercise #1 -- Answer

<+ What is the value of x after the form has been
loaded?

Option Explicit
Dim x As Integer

Private Sub squid()
x = x+2
End Sub X=2

Private Sub Form Load()
x =0
Call squid

End Sub

T
Mini-Exercise #2

<+ What is the value of y after the form has been loaded?
Option Explicit
Dim y As Integer

Private Sub squid()
y = y+2
End Sub

Private Sub clam()
Call squid
Call squid

End Sub

Private Sub Form_Load()
y=0
Call squid
Call clam

End Sub

FIT| . .
Mini-Exercise #2 -- Answer

<+ What is the value of y after the form has been loaded?
Option Explicit
Dim y As Integer

Private Sub squid()
y = y+2
End Sub

Private Sub clam() y=6
Call squid
Call squid

End Sub

Private Sub Form Load()
y=0
Call squid
Call clam

End Sub

