
),7

���

© Copyright University of Washington 1999-2000

Programming Basics

To specify algorithms, we must be precise. To
be precise, we need a language that is more
exact than English. A programming language

offers this advantage. All programming
languages have a basic set of features.

),7

���

),7

���

© Copyright University of Washington 1999-2000

Recapping Alphabetize CDs
❖ Alphabetize CDs illustrates an intuitively

understandable process not involving a computer
❖ The Alphabetize CDs program demonstrated several

features of algorithms and programs …
❏ The program illustrated the 5 properties of algorithms -- input

and output specs, definiteness, effectiveness, finiteness
❏ In order to reference the different slots, we used two

“pointers” called Alpha and Bet

❏ Alpha referenced all slots but the last, and for each slot
Alpha referenced, Bet referenced each slot to its right

❏ Can you “visualize” Alphabetize CDs’ processing strategy?

Alphabetize CDs illustrates nearly all of the programming
concepts to be covered in FIT100, but it did so in English

),7

���

© Copyright University of Washington 1999-2000

An Approach To Programming

❖ Though Alphabetize CDs was precise enough for a
person to execute successfully, computers demand
greater precision from programs

❖ The plan …
❏ Adopt a better notation than English to express algorithms

✛ General ideas are given in lecture
✛ VB6 will be used in lecture and lab

❏ Discuss standard ways of using a programming language
❏ Practice the ideas by writing programs
❏ Add a few more language features and describe their use
❏ Practice with a few more programs

),7

���

© Copyright University of Washington 1999-2000

Variables
❖ In normal language, names are (usually) tightly fixed

to their values --
✛ “penny” means 1 cent … it doesn’t change its meaning,

and sometimes refer to $8.41 or a time zone or an action

❖ In computing names can change values
✛ Example: Alpha and Bet in Alphabetize CDs changed
✛ Names must change values in a program because

programs specify a transformation of input into output …
as the transformation proceeds the things named change
values

❖ variable is the term for program names that can
change value

Variables are analogous to titles in normal language since titles
are expected to change values: president, mayor, James Bond

),7

���

© Copyright University of Washington 1999-2000

On Variable Names

❖ The term “variable” reminds us the value can change
❖ The names used for variables are arbitrary, provided:

❏ Variable names must begin with a letter
❏ Variable names can contain any letter, numeral or _
❏ Variable names should be meaningful and accurate

✛ total, averageOverClass, average_over_class
but not o0OO0o, bet. Also (for now) not i, n, x, etc.

❏ Most languages are case sensitive: a ≠ A

Convention: In all programming for FIT100, variables should
start with lowercase letters so as to avoid confusion with
other names in VB6 … ignore this convention at your peril

),7

���

© Copyright University of Washington 1999-2000

On Variable Values
❖ A variable can be thought of as a “named container”

❖

Variables name computer memory locations, so the value of a
variable is the quantity stored in its memory

❖ Variables can take on different types of values
❏ Whole numbers or integers: 2, -9, 1048576
❏ Character sequences or strings: “2”, “&^%$#@”, “ ”
❏ Floating point numbers or doubles: 2.0, 3.14159, -999.99

(numbers that can have some digits after the
decimal point)

❖ A variable’s values have a specific type
❖ Variables are declared and their type is specified

❏ Dim averageOverClass As Double

averageOverClass 0

),7

���

© Copyright University of Washington 1999-2000

Assignment
❖ Computers must be told what value to assign to

variables, using an assignment statement such as
averageOverClass = 21.14

mayor = “Paul Schell”

❖ The general form of an assignment statement is
<variable name> <assignment symbol> <expression>
❏ Languages use different assignment symbols: = := ←
❏ Read assignment as “is assigned”, or “becomes” or “gets”
❏ All three components must always be present

❖ Fundamental property of assignment
The “flow” of information is always right-to-left
❏ destination = source

❏ changedVariable = value

Meta-brackets < >
enclose language
defining terms

),7

���

© Copyright University of Washington 1999-2000

Expressions
❖ Expressions are formulae made from variables and operators,

e.g. calculator operations: +, -, *, /, ^
❏ weeks = days / 7 divide value of days by 7
❏ grossPay = hours * rate multiply the two values

❏ area = pi * radius ^ 2 π times radius squared

❖ In the last example, the ^ operator has precedence over the *
operator.

❖ We could also write
❏ area = pi * (radius ^ 2)

❖ When in doubt, use extra parentheses in expressions! It’s
always safe.

❖ See the Snyder text for more about precedence, and page 77 of
the VB book for a complete table of operator precedence in VB.

),7

���

© Copyright University of Washington 1999-2000

Mini-Exercise #1
❖ Suppose you have a variable that represents the total

amount of a loan. What is a good name for this
variable?

❖ Suppose the computer executes the following
statements. What is the value of total at the end?

x = 1
total = x+3

❖ What is the value of squid after executing these
statements?

clam = 1
squid = 4 + 2*clam

),7

���

© Copyright University of Washington 1999-2000

Mini-Exercise #1 -- Answers
❖ Suppose you have a variable that represents the total amount of

a loan. What is a good name for this variable?
loanAmount or loan_amount

❖ Suppose the computer executes the following statements. What
is the value of total at the end?

x = 1
total = x + 3

total is 4

❖ What is the value of squid after executing these statements?
clam = 1
squid = 4 + 2*clam

squid is 6

),7

���

© Copyright University of Washington 1999-2000

Fundamental Rule of Assignment
❖ Fundamental rule of assignment

The expression is evaluated before the assignment is made
❏ score = score + 3

❏ shotClock = shotClock - 1

Computing is NOT algebra: Though = is used in assignment
statements, it means “becomes” whereas in algebra it means
equality. So, score = score + 3 is essential to computing,
but meaningless in algebra

),7

���

© Copyright University of Washington 1999-2000

Mini-Exercise #2

❖ Suppose the computer executes the following
statements. What is the value of total at the end?

total = 1
total = total + 5

❖ Harder:
x = 0
x = x+4
x = x*2

),7

���

© Copyright University of Washington 1999-2000

Mini-Exercise #2 -- Answers

❖ Suppose the computer executes the following
statements. What is the value of total at the end?

total = 1
total = total + 5

total is 6

❖ Harder:
x = 0
x = x+4
x = x*2

x is 8

),7

���

© Copyright University of Washington 1999-2000

Operators

❖ Most programming languages have more operators
than a pocket calculator
❏ Operators like + taking 2 operands are called binary: a + b

❏ Operators like - taking 1 operand are called unary: - a

❖ A very useful operator is concatenate, & in VB6,
which connects two strings together:
❏ plural = “dog” & “s”

❖ The relational operators are:
✛ a < b less than a > b greater than
✛ a <= b less than or equal to a >= b greater than or equal
✛ a = b equal to a <> b not equal

),7

���

© Copyright University of Washington 1999-2000

Conditionals

❖ Programs must frequently test if some condition
holds, e.g. are two CDs in alphabetical order

❖ Conditional statements have been invented to make
tests
❏ If temp < 32 Then waterState = “frozen”

❖ General form of basic conditional:
If <T/F expression> Then <assignment statement>

❖ The meaning is that the <T/F expression> is evaluated
❏ If the outcome is true, then the assignment statement is

performed
❏ If the outcome is false, then the assignment statement is

skipped

),7

���

© Copyright University of Washington 1999-2000

More Complex Conditionals

❖ The basic conditional is too limited, so generalize it
❖ General form of an If-statement

If <T/F expression> Then

<statement list>

End If

❖ Example:
If temp >= 212 Then

state = “gaseous”

form = “steam”

End If

List terminator, one word

),7

���

© Copyright University of Washington 1999-2000

General Conditional Statement

❖ When operations must be performed for the true
outcome and different operations are need for a false
outcome, use the If-Then-Else statement

❖ General form
If <T/F expression> Then

<statement list>

Else

<statement list>

End If

If sideUp = sideCalled Then
coinTossWinner = hostTeam
firstHalfOffense = hostTeam
secondHalfOffense = visitorTeam

Else
coinTossWinner = visitorTeam
firstHalfOffense = visitorTeam
secondHalfOffene = hostTeam

End If

),7

���

© Copyright University of Washington 1999-2000

Example of If-Then-Else

❖ An advantage of the general conditional is that the
statement lists can contain other conditionals

If flip1 = guess1 Then
If flip2 = guess2 Then

score = “win win”
Else

score = “win lose”
End If

Else
If flip2 = guess2 Then

score = “lose win”
Else

score = “lose lose”
End If

End If

),7

���

© Copyright University of Washington 1999-2000

Mini-Exercise #3

❖ Suppose the computer executes the following
statements. What is the value of total at the end?

total = 1
total = total + 5
if total > 8 then

total = 0
else

total = 10
end if

),7

���

© Copyright University of Washington 1999-2000

Mini-Exercise #3 -- Answer

❖ Suppose the computer executes the following
statements. What is the value of total at the end?

total = 1
total = total + 5
if total > 8 then

total = 0
else

total = 10
end if

total is 10

