What your class mates want to know!

1) Figure 1 in the paper depicts the design productivity crisis: The

growth rate of the chip complexity being more than twice the growth rate

in designer productivity.

 But shouldn't chip complexity be a direct fractional proportion of

designer productivity (given the one chip one designer case) since it is

the designer who puts in the transistors (or components) in the chip.

2) It is quite apparent that vertical integration in the systems industry

is easy from a Silicon houses's perspective. But why is that trend not

being addressed even though it is mentioned that the system houses can keep

the silicon vendors at bay by moving towards IP reuse and COT?

1) The author seems to encourage a world where manufacturers provide only basic foundry functions, while most design effort comes from system vendors. Apparently the current situation is very different, with manufacturers involved at several levels of IP design. Can manufacturers survive if they stop providing these services and presumably have less to distinguish themselves from each other? The author draws an analogy with the PCB industry; what happened there? And is that a valid analogy with the huge fab costs silicon manufacturers have to face?

2) In the Libraries section, the author argues that the industry will usually tend to settle on the same set of "rules" (I guess these are parameters that IP designs must obey). Is this a justified assumption? Knowing so little about the subject, it seems to me that there would be enough variables in manufacturing processes that different manufacturers could settle on different rules for a long time, making it difficult to design cutting-edge IP that is portable across manufacturers. What is the real situation?

3) What are the VSIA and SI2 standards that the author likes? Do experienced designers think these are good, or are they examples of poor committee-designed standards? Drawing on my software experience, I see that we have successfully moved away from hand-coded assembly language to high-level languages and are in the process of moving to even more high-level tools. Doubters who thought that the lost performance outweighed the value of convenience and human readability have been proved wrong. This favors the author's argument that reuse is more important than hand-built super-optimized IP. However, I've also seen many examples of largely unsuccessful reuse in the software world. As far as I can tell, the promised utopia of component reuse has in many cases led to quite a mess, with bloated, overly generic standards and techniques that aren't really practical in a competetive product. My personal experience building software components tells me that the cost of plugging in a reused component can be enormous, sometimes comparable to the component cost itself, and it's very hard to make the component widely usable without big compromises that lower the component's usefulness. We really don't understand how to make large-scale reuse work yet in software (my opinion). Another part of the problem is that reuse standards need broad adoption, which tends to lead to design by committee and lowest-common-denominator results. So my question here is whether any of this software experience is a useful guide to the problems that digital systems people will face if they try to embrace reuse in a big way.

After reading the article "Technology for IP Reuse and Portability," I would like Mr. Thomas to comment on the customer-owned tooling (COT). I did not really catch the essence of the COT approach versus the ASIC approach.
Observations:

-Being a software guy, I always hear about how we need to be more like the

IC industry and reuse components via OOP, CORBA, COM, etc. It's humorous to

me that the industry we are trying to model ourselves after is needing to

make sweeping changes regarding reuse.

-It was interesting that incorporating reuse required changes across so many

areas (cell design, floorplanning, layout, test, etc)

Questions:

-Are VSIA and SI2 competing or coexisting intiatives? How and at what level

do they encourage standardization?

-How is the ASIC/SOC industry in general responding to standardization and

reuse initiatives? Is it something that seems to be taking hold and

improving the process or are they being dragged to it kicking and screaming

(or somewhere in between)?

Q: Is there any difference between Hardaware IP and Software IP? Isn't former easy to reuse than latter? Why?

Here is the comment comes from another article, which is “VLSI the

designer’s interface”(IEEE Circuits & Devices September 1999)

“Reducing time to market is the primary motivator for reuse of IP

 blocks. However, in many cases there appears to be a wide disparity

between what the supplier and the buyer believe the IP is worth .while

then leads to a lengthy business and legal negotiation period in turn,

obviates the potential reduction in time to market.”

I have no industry experience, but from the point of the former article,

I think it is a critical comment to the article “Technology for IP reuse

And portability.

The article emphasized that each system house should protect it's IP and not

let it be defined by the foundary or other vendors. This seemed like an

obvious point. When would you want to allow this to happen? Of course you

need to get certain things from the fab such as parametric parameters, but

wouldn't you want to work with them to finalized a design with at least 1 or

2 interations before release?

Technology for IP Reuse and Portability: a critical comment

 The basis of the whole argument in this article is the two graphs on page 2. The first graph shows a divergence between productivity and design and highlights the silicon fabrication industry’s concerns about wasting their capacity. The second graph is however not well explained. Specifically I didn’t grasp how complexity is defined as. The article seems to define it as the amount of engineering effort put in (at the system level or component level). I’m not sure if this is the right way to define it because better tools can make a big impact on how much engineering effort is put in.

 The article argues that reuse of this engineering effort (IP) and its ownership management is essential for System houses to compete effectively. It does a good job of explaining the advantage of COT over ASIC and why it makes sense for System houses to own the IP and decrease dependence on vendors. It would be better if some real examples of companies using ASIC or COT approach were provided.

 Lastly a minor point is that a few jargons are unexplained like GDS-II standard, “DFT at the macro level” and a few others. These are probably basic jargons, but it would be good if there were a single line definition somewhere.

TECHNOLOGY FOR IP REUSE AND PORTABILITY

I would understand this paper better if I had some specifics. It would be

helpful to see a list of IP types or categories for both system houses and

silicon vendors, and how they interrelate or flow between the two.

Here is the questions I have after reading the article on IP reuse:

>

> As the article is talking about IP reuse for IC design, when talking about

> different vendors, does it mean different companies who provide

> same/similar technologies which meet the requirement of part of the

> system? For a company whose products are not chips for special functions,

> but rather some systems, will it be easier to build the system from chips

> instead of building an ASIC? Is ASIC difficult to tune, with all those

> timing and performance requirements?

>

> The most famous IP reuse company, ARM, does it provide specific circuit

> design, or only ideas?

 I am really confused with the convergence property in the figure4 on

page 11, could you explain why it must be convergence along with the

process evolution?

1- As software has embraced the principals of reuse, code sizes have

grown exponentially. E.g. Visicalc was 20-30KB while Excel is 10-20MB,

MacWrite was 48KB, Word is 30-40MB. Won't this same bloat chew up much

of the gains in designing SoC circuits?

2- To design a one-off tool (in software) requires N units of effort.

To "finish off" that tool as a commercial product requires at least 3N

units of effort. To make that code into a reusable component requires

at least 5N units of effort. Isn't the same thing true in hardware

design, and won't this fact chew up much of the gains in productivity

and silicon savings in using reusable, uneditable libraries?

Here are my questions about the IP Reuse paper.

In the paper, it is stated that the industry is cautiously moving from

ASIC to COT but that there are still many open issues to be resolved.

What is/are the primary issue/issues that need to be resolved? What

effect on the migration will resolving these issues have (linear,

logarithmic, exponential increase in speed)? In your opinion, how quick

will this move be?

