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Abstract

We describe a system that supports arbitrarily complex SQL queries
with ”uncertain” predicates. The query semantics is based on a probabilis-
tic model and the results are ranked, much like in Information Retrieval.
Our main focus is query evaluation. We describe an optimization algo-
rithm that can compute efficiently most queries. We show, however, that
the data complexity of some queries is #P -complete, which implies that
these queries do not admit any efficient evaluation methods. For these
queries we describe both an approximation algorithm and a Monte-Carlo
simulation algorithm.

1 Introduction

Databases and Information Retrieval [5] have taken two philosophically different
approaches to queries. In databases SQL queries have a rich structure and a
precise semantics. This makes it possible for users to formulate complex queries
and for systems to apply complex optimizations, but users need to have a pretty
detailed knowledge of the database in order to formulate queries. For example,
a single misspelling of a constant in the WHERE clause leads to an empty set of
answers, frustrating casual users. By contrast, a query in Information Retrieval
(IR) is just a set of keywords and is easy for casual users to formulate. IR queries
offer two important features that are missing in databases: the results are ranked
and the matches may be uncertain, i.e. the answer may include documents that
do not match all the keywords in the query1. While several proposals exist for
extending SQL with uncertain matches and ranked results [3, 17, 14], they are
either restricted to a single table, or, when they handle join queries, adopt an
ad-hoc semantics.

To illustrate the point consider the following structurally rich query, ask-
ing for an actor whose name is like ‘Kevin’ and whose first ‘successful’ movie
appeared in 1995:

1Some IR systems only return documents that contain all keywords, but this is a feature
specific to those systems, and not of the underlying vector model used in IR.
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SELECT *
FROM Actor A
WHERE A.name ≈ ’Kevin’

and 1995 =
SELECT MIN(F.year)
FROM Film F, Casts C
WHERE C.filmid = F.filmid

and C.actorid = A.actorid
and F.rating ≈ "high"

Figure 1: An Approximate Query

The two≈ operators indicate which predicates we intend as uncertain matches.
Techniques like edit distances, ontology-based distances [13], IDF-similarity and
QF-similarity [3] can be applied to a single table: to rank all Actor tuples (ac-
cording to how well they match the first uncertain predicate), and to rank all
Film tuples. But it is unclear how to rank the entire query. To date, no system
combines structurally rich SQL queries with uncertain predicates and ranked
results.

In this paper we propose such a system. We introduce a new semantics for
database queries that supports uncertain matches and ranked results, by com-
bining the probabilistic relational algebra [11] and models for belief [4]. Given
a SQL query with uncertain predicates, we start by assigning a probability to
each tuple in the input database according to how well it matches the uncertain
predicates. Then we derive a probability for each tuple in the answer, and this
determines the output ranking.

An important characteristic of our approach is that any SQL query has a
meaning, including queries with joins, nested sub-queries, aggregates, group-by,
and existential/universal quantifiers2. Queries have now a probabilistic seman-
tics, which is simple and easy to understand by both users and implementors.

The main problem is query evaluation, and this is the focus of our paper. Our
approach is to represent SQL queries in an algebra, and modify the operators
to compute the probabilities of each output tuple. This is called extensional
semantics in [11], and is quite efficient. While this sounds simple, the prob-
lem is that it doesn’t work: the probabilities computed this way are wrong in
most cases, and lead to incorrect ranking. In [11], the workaround is to use
an intensional semantics, which is much more complex and, as we show here,
impractical. Our approach is different: we rewrite the query plans, searching for
one where the extensional evaluation is correct. We show however that certain
queries have a #P-complete data complexity under probabilistic semantics, and
hence do not admit a correct extensional plan. While they are not frequent in
practice (only 2 out of the 10 TPC/H queries fall in this category, and only
when all their predicates are uncertain), we describe two techniques to address

2In this paper we restrict our discussion to SQL queries whose normal semantics is a set,
not a bag or an ordered list.
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Sp

A B
s1 ‘m’ 1 0.8
s2 ‘n’ 1 0.5

T p

C D
t1 1 ‘p’ 0.6

Figure 2: A probabilistic database Dp

pwd(Dp) =
world prob.
D1 = {s1, s2, t1} 0.24
D2 = {s1, t1} 0.24
D3 = {s2, t1} 0.06
D4 = {t1} 0.06
D5 = {s1, s2} 0.16
D6 = {s1} 0.16
D7 = {s2} 0.04
D8 = φ 0.04

(a)

q(u) : Sp(x, y), T p(z, u), y = z
(b)

qpwd(Dp) =

answer prob.
{′p′} 0.54
∅ 0.46

(c)

Figure 3: (a) The possible worlds for Dp in Figure 2, (b) a query q, and (c) its
possible answers.

them: using heuristics to chose a plan that avoids large errors, and using a
Monte-Carlo simulation algorithm, which is more expensive but can guarantee
arbitrarily small errors.

Outline We give motivating examples in Sec. 2, define the problem in Sec. 3,
and describe our techniques in Sec. 4-8. Sec. 9 reports experiments and Sec. 10
describes related work. We conclude in Sec. 11.

2 Examples

We illustrate the main concepts and techniques of this paper with two simple
examples.

Probabilistic Database In a probabilistic database each tuple has a certain
probability of belonging to the database. Figure 2 shows a probabilistic database
Dp with two tables, Sp and T p: the tuples in Sp have probabilities 0.8 and
0.5, and the unique tuple in T p has probability 0.6. We use the superscript
p to emphasize that a table or a database is probabilistic. We assume in this
example that the tuples are independent probabilistic events, in which case the
database is called extensional [11].

The meaning of a probabilistic database is a probability distribution on all
database instances, which we call possible worlds, and denote pwd(Dp). Fig. 3
(a) shows the eight possible instances with non-zero probabilities, which are
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computed by simply multiplying the tuple probabilities, as we have assumed
them to be independent. For example, the probability of D2 is 0.8 ∗ (1− 0.5) ∗
0.6 = 0.24, since the instance contains the tuples s1 and t1 and does not contain
s2.

We now illustrate query evaluation on probabilistic databases. Consider
the conjunctive query q in Fig. 3 (b). Its meaning on Dp is a set of possible
answers, shown in Fig. 3 (c). It is obtained by applying q to each deterministic
database in pwd(Dp), and adding the probabilities of all instances that return
the same answer. In our example we have q(D1) = q(D2) = q(D3) = {′p′}, and
q(D4) = . . . = q(D8) = ∅. Thus, the probability of the answer being {′p′} is
0.24 + 0.24 + 0.06 = 0.54, while that of the answer ∅ is 0.46. This defines the
set of possible answers, denoted qpwd(Dp). Notice that we have never used the
structure of the query explicitly, but only applied it to deterministic databases
taken from pwd(Dp). Thus, one can give a similar semantics to any query q, no
matter how complex, because we only need to know its meaning on deterministic
databases.

The set of possible answers qpwd(Dp) may be very large, and it is impractical
to return it to the user. Instead, we compute for each possible tuple t a prob-
ability rank that t belongs to any answer, and sort tuples sorted by this rank.
We denote this qrank(Dp). In our example this is:

qrank(Dp) =
D Rank
’p’ 0.54

In this simple example qrank(Dp) contains a single tuple and the distinction
between qpwd and qrank is blurred. To see this distinction clearer, consider
another query, q1(x) : −Sp(x, y), T p(z, y), y = z. Here qpwd

1 and qrank
1 are given

by:

qpwd
1 (Dp) =

answer probability
{′m′,′ n′} 0.24
{′m′} 0.24
{′n′} 0.06
∅ 0.46

qrank
1 (Dp) =

D Rank
’m’ 0.48
’n’ 0.30

For example, the rank probability of ′m′ is obtained as Pr({′m′,′ n′}) +
Pr({′m′}). In general, qpwd(Dp) may be exponentially large, while qrank(Dp)
is simply a set of tuples, which are sorted by Rank. The problem in this paper
is now to compute qrank(Dp) efficiently.

Extensional Query Semantics A natural attempt to compute qrank(Dp)
is to represent q as a query plan then compute the probabilities of all tuples
in all intermediate results. For the query q in Fig. 3 (b), such a plan is p =
ΠD(Sp 1B=C T p), and the corresponding probabilities are shown in Fig. 4. The
formulas for the probabilities assume tuple independence, are taken from [11]
and are rather straightforward (we review them in Sec. 4). For example the
probability of a joined tuple s 1 t is the product of the probabilities of s and
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A B C D prob
‘m’ 1 1 ’p’ 0.8*0.6 = 0.48
‘n’ 1 1 ’p’ 0.5*0.6 = 0.30

(a) Sp 1B=C T p

D prob
‘p’ (1 - (1 - 0.48)(1 - 0.3)) = 0.636

(b) ΠD(Sp 1B=C T p)

Figure 4: Evaluation of ΠD(Sp 1B=C T p)

B prob
1 (1 - (1 - 0.8)(1 - 0.5)) = 0.9

(a) ΠB(Sp)

B C D prob
1 1 ‘p’ 0.9 * 0.6 = 0.54

(b) ΠB(Sp) 1B=C T p

D prob
‘p’ 0.54

(c) ΠD(ΠB(Sp) 1B=C T p)

Figure 5: Evaluation of ΠD(ΠB(Sp) 1B=C T p)

t. Clearly, this approach is much more efficient than computing the possible
worlds qpwd(Dp) and then computing qrank(Dp), but it is wrong ! It’s answer is
0.636, while it should be 0.54. The reason is that the two tuples in Sp 1B=C T p

are not independent events, hence the formula used in ΠD is wrong.
However, let us consider an alternative plan, p′ = ΠD((ΠB(Sp)) 1B=D T p).

The extensional evaluation of this expression is shown in Figure 5, and this
time we do get the correct answer. As we will show later, this plan will always
compute the correct answer to q, on any probabilistic tables Sp, T p. In this
paper we show how to find automatically a plan whose extensional evaluation
returns the correct answer to a query q. Finding such a plan requires pushing
projections early (as shown in this example), join reordering, and other kinds
of rewritings.

Queries with uncertain matches While query evaluation on probabilistic
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databases is an important problem in itself, our motivation comes from answer-
ing SQL queries with uncertain matches, and ranking their results. We illustrate
here with a simple example on the Stanford movie database[1].

SELECT DISTINCT F.title, F.year
FROM Director D, Films F
WHERE D.did = F.did

and D.name ≈ ’Copolla’
and F.title ≈ ’rain man’
and F.year ≈ 1995

The predicates on the director name and the movie title and year are here
uncertain.

Our approach is to translate the query into a regular query over a proba-
bilistic databases. Each tuple in the table Films is assigned a probability based
on how well it matches the predicates title ≈ ’rain man’ and year ≈ 1995.
Several techniques for doing this exist already, and in this paper we will adopt
existing ones: see Sec. 8. In all cases, the result is a probabilistic table, denoted
Filmsp. Similarly, the uncertain predicate on Director generates a probabilis-
tic table Directorp. Then, we evaluate the following query:

SELECT DISTINCT F.title, F.year
FROM Directorp D, Filmsp F
WHERE D.did = F.did

This is similar to the query q considered earlier (Figure 3 (b)), and the same
extensional plan can be used to evaluate it. Our system returns:

title year rank
The Rainmaker (by Coppola) 1997 0.110
The Rain People (by Coppola) 1969 0.089
Rain Man (by Levinson) 1988 0.077
Finian’s Rainbow (by Coppola) 1968 0.069
Tucker, Man and Dream (Coppola) 1989 0.061
Rain or Shine (by Capra) 1931 0.059
. . . . . . . . .

3 Problem Definition

We review here the basic definitions in probabilistic databases, based on [11, 4],
and state our problem.

Basic Notations We write R for a relation name, Attr(R) for its attributes,
and r ⊆ Uk for a relation instance where k is arity(R) and U is a fixed, finite
universe. R̄ = R1, . . . , Rn is a database schema and D denotes a database
instance. We write Γ |= D when D satisfies the functional dependencies in Γ.

Probabilistic Events Let AE be a set of symbols and Pr : AE → [0, 1] a
probability function. Each element of AE is called a basic event, and we assume
that all basic events are independent. The event ⊥ ∈ AE denotes the impossible
event and Pr(⊥) = 0. A complex event is an expression constructed from atomic
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events using the operators ∧, ∨, ¬. E denotes the set of all complex events. For
each complex event e, let Pr(e) be its probability.

Example 3.1 Consider e = (s1 ∧ t1) ∨ (s2 ∧ t1), and assume Pr(s1) = 0.8,
Pr(s2) = 0.5, Pr(t1) = 0.6. To compute Pr(e) we construct the truth table for
e(s1, s2, t1) and identify the entries where e is true, namely (1, 0, 1), (0, 1, 1), (1, 1, 1).
The three entries have probabilities Pr(s1)(1−Pr(s2))Pr(t1) = 0.8×0.5×0.6 =
0.24, (1 − Pr(s1))Pr(s2)Pr(t1) = 0.06 and Pr(s1)Pr(s2)Pr(t1) = 0.24 respec-
tively. Then Pr(e) is their sum, 0.54.

This method generalizes to any complex event e(s1, . . . , sk), but it is impor-
tant to notice that this algorithm is exponential in k. This cannot be avoided:
it is known that computing Pr(e) is #P-complete [24] even for complex events
without negation.

Probabilistic Databases A probabilistic relation is a relation with a dis-
tinguished event attribute E, whose value is a complex event. We add the
superscript p to mean “probabilistic”, i.e. write Rp, rp, R̄p,Γp. Given Rp, we
write R for its “deterministic” part, obtained by removing the event attribute:
Attr(R) = Attr(Rp) − {E}. Users “see” only R, but the system needs to ac-
cess the event attribute Rp.E. The set of functional dependencies Γp always
contains:

Attr(R) → Rp.E

for every relation Rp: this ensures that we don’t associate two different events
e1 and e2 to the same tuple t (instead, we may want to associate e1 ∨ e2 to t).

In addition to this tabular representation of a probabilistic relation, we con-
sider a functional representation, where a probabilistic instance rp, of type Rp,
is described by the following function eR : Uk → E, where k = arity(R). When
t occurs in rp together with some event e, then eR(t) = e, otherwise eR(t) = ⊥.
Conversely, one can recover rp from the function eR by collecting all tuples for
which eR(t) 6= ⊥.

The input probabilistic databases we consider have only atomic events: com-
plex events are introduced only by query evaluation. A probabilistic relation
with atomic events which satisfies the FD Rp.E → Attr(R) is called exten-
sional. Otherwise, it is called intensional. For example, the database in Fig. 2
is an extensional probabilistic database, where the atomic events are s1, s2, t1
respectively.

Semantics of a probabilistic database We give a simple and intuitive
meaning to a probabilistic relation based on possible worlds. The meaning of a
probabilistic relation rp of type Rp is a probability distribution on deterministic
relations r of type R, which we call the possible worlds, and denote pwd(rp).
Let eR : Uk → E be the functional representation of rp. Given r ⊆ Uk, Pr(r) is
defined to be Pr(

∧
t∈r eR(t))∧ (

∧
t6∈r ¬eR(t)). Intuitively, this is the probability

that exactly the tuples in r are “in” and all the others are “out”. One can check
that

∑
r⊆Uk Pr(r) = 1. If we have a set of functional dependencies Γp, denote

Γ its projection to the deterministic attributes. If Γp |= rp, we want Pr(r) to
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be a probability distribution on those instances which satisfy r: this is the case,
because if Γ 6|= r, then Pr(r) = 0, hence

∑
r⊆Uk,Γ|=r Pr(r) = 1.

Similarly, the meaning of a probabilistic database Dp is a probability distri-
bution on all deterministic databases D, denoted pwd(Dp).

Query semantics Let q be a query of arity k over a deterministic schema
R̄. We define a very simple and intuitive semantics for the query. Users think
of q as normal query on a deterministic database, but the database is given by a
probability distribution rather than being fixed. As a result, the query’s answer
is also a probability distribution. Formally, given a query q and a probabilistic
database Dp: qpwd(Dp) is the following probability distribution on all possible
answers, Prq : P(Uk) → [0, 1]:

∀S ⊆ Uk, P rq(S) =
∑

D|q(D)=S

Pr(D)

We call this the possible worlds semantics. This definition makes sense for every
query q that has a well defined semantics on all deterministic databases.

It is impossible to return qpwd(Dp) to the user. Instead, we compute a
probabilistic ranking on all tuples t ∈ Uk, defined by the function: rankq(t) =∑

S{Prq(S) | S ⊆ Uk, t ∈ S}, for every tuple t ∈ Uk. We denote with qrank(Dp)
a tabular representation of the function rankq: this is a table with k + 1 at-
tributes, where the first k represent a tuple in the query’s answer while the last
attribute, called Rank is a real number in [0, 1] representing its probability.

The Query Evaluation Problem This paper addresses the following prob-
lem: given schema R̄p,Γp, a probabilistic database Dp and a query q over schema
R̄, compute the probabilistic rankings qrank(Dp).

Application to queries with uncertain predicates Consider now a de-
terministic database D and a query q≈ that explicitly mentions some uncertain
predicates. We convert this problem into evaluating a deterministic query q, ob-
tained by removing all uncertain predicates from q≈, on a probabilistic database,
obtained by associating a probability Pr(t) to each tuple t based on how well t
satisfies the uncertain predicates in the query.

4 Query Evaluation

We turn now to the central problem, evaluating qrank(Dp) for a query q, and
a probabilistic database Dp. Applying the definition directly is infeasible, since
it involves iterating over a large set of database instances. Instead, we will first
review the intensional evaluation of [11] then describe our approach.

We restrict our discussion first to conjunctive queries, or, equivalently se-
lect (distinct)-project-join queries. This helps us better understand the query
evaluation problem and its complexity, and will consider more complex query
expressions in Sec. 7. We use either datalog notation for our queries q, or plans
p in the select/project/product algebra3: σ,Π,×.

3Notice that Π also does duplicate elimination
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4.1 Intensional Query Evaluation

One method for evaluating queries on probabilistic databases is to use complex
events, and was introduced in [11]. We review it here and discuss its limitations.
Start by expressing q as a query plan, using the operators σ,Π,×. Then modify
each operator to compute the event attribute E in each intermediate result:
denote σi,Πi,×i the modified operators. It is more convenient to introduce
them in the functional representation, by defining the complex event ep(t) for
each tuple t, inductively on the query plan p:

eσi
c(p)(t) =

{
ep(t) if c(t) is true
⊥ if c(t) is false

eΠi
Ā

(p)(t) =
∨

t′:ΠĀ(t′)=t

ep(t′) (1)

ep×ip′(t, t′) = ep(t) ∧ ep′(t′)

The tabular definitions for σi,Πi,×i follow easily: σi acts like σ then copies
the complex events from the input tuples to the output tuples; Πi associates
to a tuple t the complex event e1 ∨ . . . ∨ en obtained from the complex events
of all input tuples t1, . . . , tn that project into t; and ×i simply associates to a
product tuple (t, t′) the complex event e ∧ e′.

Example 4.1 Let us consider the database Dp described in Figure 2. Consider
the query plan, p = ΠD(Sp 1B=C T p). Figure 6 shows the intensional evalua-
tion of the query (we used the tuple names as atomic events). pi(Dp) contains
a single tuple ′p′ with the event (s1 ∧ t1) ∨ (s2 ∧ t1).

Thus, pi(Dp) denotes an intensional probabilistic relation. It can be shown
that this is independent on the particular choice of plan p, and we denote qi(Dp)
the value pi(Dp) for any plan p for q, and call it the intensional semantics4 of
q on the probabilistic database Dp. We prove now that it is equivalent to the
possible worlds semantics, qpwd(Dp).

Theorem 4.2. The intensional semantics and the possible worlds semantics on
probabilistic databases are equivalent for conjunctive queries. More precisely,
pwd(qi(Dp)) = qpwd(Dp) for every intensional probabilistic database Dp and
every conjunctive query q.

Proof. Every tuple t in qi(Dp) has a complex event t.E associated with it.
pwd(qi(Dp)) consists of a set of worlds, each world assigning a truth value to
the set of atomic events. A tuple t belongs to a world in pwd(qi(Dp)) if t.E is
true in that world.

qpwd(Dp) also consists of a set of worlds, each assigning a truth value to the
set of atomic events. The content of a world in qpwd(Dp) is the output of q on
the database defined by that world.

4In [11] this is the only query semantics considered.
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A B C D E
‘m’ 1 1 ’p’ s1 ∧ t1
‘n’ 1 1 ’p’ s2 ∧ t1

(a) Sp 1i
B=C T p

D E
‘p’ (s1 ∧ t1) ∨ (s2 ∧ t1)

(b) Πi
D(Sp 1i

B=C T p)

D Rank
‘p′ Pr((s1 ∧ t1) ∨ (s2 ∧ t1)) = 0.54

(c) qrank(Dp) = Pr(Πi
D(Sp 1i

B=C T p))

Figure 6: Intensional Evaluation of ΠD(Sp 1B=C T p)

Given a world W defined by an assignment of truth values to the atomic
variables, let qpwd(Dp)[W ] and pwd(qi(Dp))[W ] denote the contents of the cor-
responding worlds.

We will prove, by induction on the size of q, that for all W , qpwd(Dp)[W ] =
pwd(qi(Dp))[W ].

As a base case, if a query just selects a single relation, it holds trivially. If q
is a larger query, there are three possibilities:

1. q = ΠA(q1). Consider any world W . By induction hypothesis,

pwd(qi
1(D

p))[W ] = qpwd
1 (Dp)[W ]

Given a tuple t in ΠA(q1), its event t.E is given by ∨t1:ΠA(t1)=tt1.E.

t ∈ qpwd(Dp)[W ] ⇔ t.E = true
⇔ (∨t1:ΠA(t1)=tt1.E) = true

⇔ ∃t1,ΠA(t1) = t,

t1.E ∈ pwd(qi
1(D

p))[W ]
⇔ ∃t1,ΠA(t1) = t,

t1.E ∈ qpwd
1 (Dp)[W ]

⇔ t ∈ qpwd(Dp)[W ]

2. q = σc(q1). Consider any world W . Again, we have

pwd(qi
1(D

p))[W ] = qpwd
1 (Dp)[W ]
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t belongs to pwd(qi(Dp))[W ] iff t.E is true, i.e. t satisfies σc and t belongs
to pwd(qi

1(D
p))[W ]. Similarly, t belongs to pwd(qi(Dp))[W ] iff t satisfies

σc and t belongs to qpwd
1 (Dp)[W ]. Therefore, we get pwd(qi(Dp))[W ] =

qpwd(Dp)[W ].

3. q = q1 1 q2. We have

pwd(qi
1(D

p))[W ] = qpwd
1 (Dp)[W ],

pwd(qi
2(D

p))[W ] = qpwd
2 (Dp)[W ]

Given a tuple t = (t1, t2) belonging to q, t.E = t1.E ∧ t2.E1. Thus,

t ∈ qpwd(Dp)[W ] ⇔ t.E = true
⇔ t1.E = true, t2.E = true
⇔ t1 ∈ pwd(qi

1(D
p))[W ],

t2 ∈ pwd(qi
2(D

p))[W ]

⇔ t1 ∈ qpwd
1 (Dp)[W ],

t2 ∈ qpwd
2 (Dp)[W ]

⇔ t ∈ qpwd(Dp)[W ]

Thus, by induction, pwd(qi(Dp)) and qpwd(Dp) are equal.

Theorem 4.2 allows us to compute qrank(Dp), as follows. First compute
qi(Dp), then compute the probability Pr(e) for each complex event. Then
qrank(Dp) = Pr(qi(Dp)).

Example 4.3 Fig. 6(c) shows prank(Dp) for Ex. 4.1. Pr((s1 ∧ t1) ∨ (s2 ∧ t1))
was shown in Ex. 3.1.

It is very impractical to use the intensional semantics to compute the rank
probabilities, for two reasons. First, the event expressions in qi(Dp) can become
very large, due to the projections. In the worst case the size of such an expression
can become of the same order of magnitude as the database. This increases
the complexity of the query operators significantly, and makes the task of an
optimizer much harder, because now the cost per tuple is not longer constant.
Second, for each tuple t one has to compute Pr(e) for its event e, which is a
#P-complete problem.

4.2 Extensional Query Evaluation

We now modify the query operators to compute probabilities rather than com-
plex events: we denote σe,Πe,×e the modified operators. This is much more
efficient, since it involves manipulating real numbers rather than event expres-
sions. We define a number Prp(t) ∈ [0, 1] for each tuple t, by induction on
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the structure of the query plan p. The inductive definitions below should be
compared with those in Equations (1).

Prσe
c(p)(t) =

{
Prp(t) if c(t) is true
0 if c(t) is false

PrΠe
Ā

(p)(t) = 1−
∏

t′:ΠĀ(t′)=t

(1− Prp(t′))

Prp×ep′(t, t′) = Prp(t)× Prp′(t′)

Again, the tabular definitions of σe,Πe,×e follow easily: σe acts like σ then
propagates the tuples’ probabilities from the input to the output, Πe computes
the probability of a tuples t as 1− (1− p1)(1− p2) . . . (1− pn) where p1, . . . , pn

are the probabilities of all input tuples that project to t, while × computes the
probability of each tuple (t, t′) as p× p′.

Thus, pe(Dp) is an extensional probabilistic relation, which we call the ex-
tensional semantics of the plan p. If we know pe(Dp) = qrank(Dp), then we
simply execute the plan under the extensional semantics. But, unfortunately,
this is not always the case, as we saw in Sec. 2. Moreover, pe(Dp) depends on
the particular plan p chosen for q. Our goal is to find a plan for which the
extensional semantics is correct.

Definition 4.4. Given a schema R̄p,Γp, a plan p for a query q is safe if
pe(Dp) = qrank(Dp) for all Dp of that schema.

We show next how to find a safe plan.

4.3 The Safe-Plan Optimization Algorithm

We use the following notations for conjunctive queries:

• Rels(q) = {R1, . . . , Rk} all relation names occurring in q. We assume
that each relation name occurs at most once in the query (more on this
in Sec. 7).

• PRels(q) = the probabilistic relation names in q, PRels(q) ⊆ Rels(q).

• Attr(q) = all attributes in all relations in q. To disambiguate, we denote
attributes as Ri.A.

• Head(q) = the head attributes in q, Head(q) ⊆ Attr(q).

Let q be a conjunctive query. We define the induced functional dependencies
Γp(q) on Attr(q):

• Every FD in Γp is also in Γp(q).

• For every join predicate Ri.A = Rj .B, both Ri.A → Rj .B and Rj .B →
Ri.A are in Γp(q).
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• For every selection predicate Ri.A = c, ∅ → Ri.A is in Γp(q).

We seek a safe plan p, i.e. one that computes the probabilities correctly.
For that each operator in p must be safe, i.e. compute correct probabilities: we
define this formally next.

Let q1, q2 be two queries, and let op ∈ {σ,Π,×} be a relational operator.
Consider the new query op(q1, q2) (or just op(q1) when op is unary). We say
that ope is safe if ope(Pr(qi

1(D
p)), P r(qi

2(D
p))) = Pr(opi(qi

1(D
p)), qi

2(D
p)) (and

similarly for unary operators), ∀Dp s.t. Γp |= Dp. In other words, op is safe if,
when given correct probabilities for its inputs ope computes correct probabilities
for the output tuples.

Theorem 4.5. Let q, q′ be conjunctive queries.

1. σe
c is always safe in σc(q).

2. ×e is always safe in q × q′.

3. Πe
A1,...,Ak

is safe in ΠA1,...,Ak
(q) iff for every Rp ∈ PRels(q) the following

can be inferred from Γp(q):

A1, . . . , Ak, Rp.E → Head(q) (2)

Proof.

1. Follows trivially from definition.

2. Since we assume all relations in the query to be distinct, the complex
events in the output of q and q′ comprise of distinct atomic events. Thus,
given a tuple tjoin = (t, t′) ∈ q × q′, Pr(tjoin.E) = Pr(t.E ∧ t′.E) =
Pr(t.E)Pr(t′.E). So, the join operator is safe.

3. For each output tuple t of the project, consider the set St of input tuples
that map to t. The operator is safe if and only if, for each such t, the
complex events corresponding to tuples in St are independent. Thus,
among all tuples having the same value for A1, · · ·Ak, no basic event (i.e.
Rp.E for some probabilistic relation Rp) occurs in two of them having
different values of Head(q). Thus, the following functional dependency
must hold for each Rp.

A1, . . . , Ak, Rp.E → Head(q)

Obviously, a plan p consisting of only safe operators is safe. As we prove
below, the converse also holds.

Theorem 4.6. Let p be a safe relational algebra plan for a query q consisting
of selects, projects and joins. Then, all operators in p are safe.

13



Proof. We will prove the following statement: If p is a plan for a query q that
has atleast one unsafe operator and t is any tuple of the same arity as Heads(q),
there is a database Dp such that pe(Dp) consists of a single tuple t with incorrect
probability.

First, it is easy to see that for any plan p and database Dp, pe(Dp) ≥
qrank(Dp). This is because the only operators that are unsafe are projects, and
they can only overestimate the probabilities. Thus, there can only be one-sided
errors in the probabilities.

We will prove the theorem by induction on the size of the plan.
If p returns a single relation, its safe and the assertion holds trivially.
Consider a larger plan p and assume it is safe. There are three cases:

1. p = q1 1 q2. Since p is unsafe, at least one of q1 and q2 is unsafe. W.L.O.G,
assume q1 is unsafe. Given any tuple t = (t1, t2), a database can be con-
structed such that q1 results in a single tuple t with incorrect probability.
Since Prp(t1, t2) = Prp1(t1) ∗Prp2(t2), for the final probability to be cor-
rect, both Prp1(t1) and Prp1(t1) have to be correct (since errors can only
be one-sided). Thus, we have constructed a database that results in a
single tuple t with incorrect probability.

2. p = ΠA(q1). If q1 is safe, the final project operator must be unsafe and
hence, there exists a database where the final result is incorrect. If t is
any tuple in the output whose probability is incorrect, we can restrict the
database to produce only the tuple t (whose probability is still incorrect).

If q1 is not safe, there is a database on which q1 produces a single tuple
with wrong probability. Thus, the final project also produces a single
tuple whose probability is still wrong.

3. p = σc(q1). Consider any tuple t that satisfies the condition c and create a
database on which q1 produces t with incorrect probability. Thus, σc(q1)
also produces a single tuple with incorrect probability.

We explain safe plans with an example below.

Example 4.7 Continuing the example in Sec. 2, assume that both Sp and T p

are extensional probabilistic relations, hence Γp is:

Sp.A, Sp.B → Sp.E

T p.C, T p.D → T p.E

Sp.E → Sp.A, Sp.B

T p.E → T p.C, T p.D

The last two dependencies hold because the relations are extensional. Consider
the plan ΠD(Sp 1B=C T p). We have shown in Fig. 4 that, when evaluated
extensionally, this plan is incorrect. We explain here the reason: the operator
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Πe
D is not safe. An intuitive justification can be seen immediately by inspecting

the intensional relation Sp 1i
B=C T p in Fig. 6 (a). The two complex events share

the common atomic event t1, hence they are correlated probabilistic events. But
the formula for Πe

D only works when these events are independent. We show
how to detect formally that Πe

D is unsafe. We need to check:

T p.D, Sp.E → Sp.A, Sp.B, T p.C, T p.D

T p.D, T p.E → Sp.A, Sp.B, T p.C, T p.D

The first follows from Γp and from the join condition B = C, which adds
Sp.B → T p.C and T p.C → Sp.B. But the second fails: T p.D, T p.E 6→ Sp.A.

Example 4.8 Continuing the example, consider now the plan ΠD(ΠB(Sp) 1B=C

T p). We will prove that Πe
D is safe. For that we have to check:

T p.D, Sp.E → Sp.B, T p.C, T p.D

T p.D, T p.E → Sp.B, T p.C, T p.D

Both hold, hence Πe
D is safe. Similarly, Πe

B is safe in ΠB(Sp), which means that
the entire plan is safe.

Before we describe out algorithm for finding a safe plan, we need some
terminology.

Definition 4.9. (Separate relations) For a query ϕ, two relations Ri and Rj

are separate if none of the columns of one table that are used in the join with
the other table are projected out in ϕ.

Definition 4.10. (Separation) Two sets of relations Si and Sj are said to form
a separation for query ϕ iff

1. They partition the set PRels(ϕ)

2. For any pair of relations Ri and Rj such that Ri ∈ Si and Rj ∈ Sj , they
must be separate.

Algorithm 1 is our optimization algorithm for finding a safe plan. It proceeds
top-down, as follows. First, it tries to do all safe projections late in the query
plan. When no more late safe projections are possible for a query q, then it
tries to perform a join 1c instead, by splitting q into q1 1c q2. Since 1c is the
last operation in the query plan, all attributes in c must be in Head(q). Hence,
Rels(q1) and Rels(q2) must form a separation.

Given a query q, a separation can be found as follows. Construct a graph G
whose nodes are Rels(q) and whose edges are all pairs (Ri, Rj) s.t. q contains
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some join condition Ri.A = Rj .B with both5 Ri.A and Rj .B in Head(q). Find
the connected components of G, and choose q1 and q2 to be any partition of these
connected components: this defines Rels(qi) and Attr(qi) for i = 1, 2. Define
Head(qi) = Head(q) ∩ Attr(qi), for i = 1, 2. If G is a connected graph, then
the query has no safe plans (more on this below). If G has multiple connected
components, then we have several choices for splitting q, and we can deploy any
standard cost based optimizations algorithm that works in top-down fashion6.

Finally, the algorithm terminates when no more projections are needed. The
remaining join and/or selection operators can be done in any order.

Algorithm 1 Safe-Plan(q)
1: if Head(q) = Attr(q) then
2: return any plan p for q
3: (p is projection-free, hence safe)
4: end if
5: for A ∈ (Attr(q)−Head(q)) do
6: let qA be the query obtained from q
7: by adding A to the head variables
8: if ΠHead(q)(qA) is a safe operator then
9: return ΠHead(q)(Safe-Plan(qA))

10: end if
11: end for
12: Split q into q1 1c q2 (see text)
13: if no such split exists then
14: return error(“No safe plans exist”)
15: end if
16: return Safe-Plan(q1) 1c Safe-Plan(q2)

Example 4.11 Continuing the example in Sec. 2, consider the original query
in Fig. 3 (b), which we rewrite now as:

q(D) : −Sp(A,B), T p(C,D), B = C

Here Attr(q) = {A,B, C, D} and Head(q) = {D} (we write D instead of T p.D,
etc, since all attributes are distinct). The algorithm first considers the three
attributes A,B,C in Attr(q)−Head(q), trying to see if they can be projected
out late in the plan. A cannot be projected out. Indeed, the corresponding qA

is:
qA(A,D) : −Sp(A,B), T p(C,D), B = C

and Πe
D is unsafe in ΠD(qA) because T p.D, T p.E 6→ Sp.A, as we saw in Exam-

ple 4.7. However, the other two attributes can be projected out, hence the plan
5One can show that, if Ri.A is in Head(q), then so is Rj .B. Indeed, assume Rj .B 6∈

Head(q). Then ΠHead(q)(qRj .B) is safe, so we should have performed it first. Then, both

Ri.A and Rj .B are in Head(qRj .B).
6It is also possible to adapt our algorithm to work with a bottom-up optimizer.
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for q is ΠD(qBC), where:

qBC(B,C,D) : −Sp(A,B), T p(C,D), B = C

Now we optimize qBC , where Attr(qBC) = {A,B,C, D}, Head(qBC) = {B,C,D}.
No projection is possible, but we can split the query into q1 1B=C q2 where q1, q2

are:

q1(B) : − Sp(A,B)
q2(C,D) : − T p(C,D)

The split qBC = q1 1B=C q2 is indeed possible since both B and C belong
to Head(qBC). Continuing with q1, q2, we are done in q2, while in q1 we still
need to project out A, q1 = ΠB(Sp), which is safe since B,Sp.E → A. Putting
everything together gives us the following safe plan: p′ = ΠD(ΠB(Sp) 1B=C

T p).

We state now the soundness of our algorithm: the proof follows easily from
the fact that all projection operators are safe. We prove in the next section that
the algorithm is also complete.

Proposition 4.12. The safe-plan optimization algorithm is sound, i.e. any
plan it returns is safe.

Proof. Define the size of the query q to be |Rels(q)| + |Attrs(q)| − |Head(q)|.
We will prove the proposition by induction on the size of the query.

Algorithm 1 returns a plan in the following three cases:

1. It returns at line 2. In this case, the plan consists only of joins and selects,
and hence, is safe.

2. It returns at line 9. Note that qA is smaller in size that q. By induction,
Safe− Plan(qA) is safe. Also, by definition, the final project operator is
safe. Thus, the algorithm returns a safe plan.

3. The algorithm returns at line 16. q1 and q2 are both smaller that q.
By induction, both Safe− Plan(q1) and Safe− Plan(q1) are safe plans.
These plans are then connected by a join operator, which is always safe.
So the returned plan is safe.

4.4 Completeness of Safe-Plan algorithm

We have shown that Safe-Plan algorithm is sound. We next prove that it is
complete, i.e., if the query is safe, the algorithm finds a safe plan for it.

We start with few basic results about extensional evaluation.

Lemma 4.13. Under extensional evaluation, for any query q,

Πe
A(Πe

A∪B(q)) = Πe
A(q)
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Proof. These two expressions have the same output tuples. We only have to
show that the tuples have the same probability in both expressions.

Consider a tuple t belonging to ΠA(ΠA∪B(q)). Then,

1− PrΠA(ΠA∪B(q))(t)

=
∏

(t′|ΠA(t′)=t)

(1− PrΠA∪B(q)(t′))

=
∏

(t′|ΠA(t′)=t)

∏
(t′′|ΠA∪B(t′′)=t′)

(1− Prq(t′′))

=
∏

(t′′|ΠA(t′′)=t)

(1− Prq(t′′))

= 1− PrΠA(q)

This proves the lemma.

Lemma 4.14. Consider a query ϕ and let A be an attribute of one of the
relations in ϕ. If ΠA(ϕ) has a safe plan, ϕ also has a safe plan.

Proof. Let P be a safe plan for query ΠA(ϕ) and consider the project operator
op in P that projects out A. Create a new plan P ′ with op removed from P . We
will now show that this plan is safe for ϕ. Since P is a safe plan, every project
operator satisfies equation (2). For the operators in P ′ that are not ancestors
of op, Equation (2) remains same. So they are still safe. For the operators in
P ′ that are ancestors of op, A gets added to the left of equation (2). So the
functional dependencies still hold and the operators are still safe. Thus, we have
shown that a safe plan exists for ϕ.

Lemma 4.15. Consider a plan P1 = ΠA(q1 1 q2), where q1 and q2 are queries
and Heads(q1) ⊆ A. Also, let A contains all the attributes used in the join
between q1 and q2. Let P2 = q1 1 (ΠA∩Heads(q2)(q2)). Then P1 is safe =⇒ P2

is safe.

Proof. It is easy to observe that P2 is a valid plan because A contains all the
attributes that are used in the final join.

Since ΠA(q1 1 q2) is safe, the following can be inferred from Γp(q1 1 q2) for
each Rp ∈ PRels(q1 1 q2):

A,Rp.E → Heads(q1 1 q2)

The above can be rewritten as

Heads(q1), A ∩Heads(q2), Rp.E → (3)
Heads(q1) ∪Heads(q2)
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We know that plans q1 and q2 are safe. Thus, to show that P2 is safe, we
only need to show that the project operator ΠA∩Heads(q2)(q2) is safe. So, for
each Rp ∈ PRels(q2), Γp(q2) must imply the following:

A ∩Heads(q2), Rp.E → Heads(q2) (4)

Let Γjoin be the set of FDs introduced by the final join. Then, Γp(q1 1 q2) =
Γp(q1) ∪ Γp(q2) ∪ Γjoin. Since A contains all the attributes that occur in Γjoin,
Γjoin is not required for Equation (3). Thus, Γp(q1) ∪ Γp(q2) imply Equation
(2) and hence the following:

Heads(q1), A ∩Heads(q2), Rp.E → Heads(q2)

But now, since Γjoin is not present, Heads(q1) and Γp(q1) have no contribution
in the above equation. Thus, Γp(q2) alone implies Equation (4).

This shows that P2 is a safe plan.

Theorem 4.16. Let ϕ be a query that has a separation (S, T ). Then, if ϕ has
a safe plan, there must be another safe plan of the form PS 1 PT such that
PRels(PS) = S and PRels(PT ) = T (where the join may contain a set of select
conditions).

Proof. We will prove this by induction on the size of the query. The base step
corresponding to queries over a single relation holds trivially. Let P be a safe
plan for ϕ. There are three cases:

1. The top operator on P is a join. Thus, P can be written as P1 1 P2. Let
ϕ1 and ϕ2 be the queries corresponding to the plans P1 and P2. It is easy
to see that (PRels(P1) ∩ S, PRels(P1) ∩ T ) form a separation for ϕ1. By
induction, there is a safe plan PS1 1 PT1 for ϕ1 where S1 = PRels(P1)∩S
and T1 = PRels(P1)∩ T . Similarly, there is a safe plan PS2 1 PT2 for ϕ2

where S2 = PRels(P2)∩S and T2 = PRels(P2)∩T . Thus, the following
is a safe plan for ϕ:

(PS1 1 PS2) 1 (PT1 1 PT2)

The safety of the about plan follows from the safety of the individual
subplans and the safety of the join operators.

2. The top operator on P is a select. Thus, P can be written as σc(P ′). Let
ϕ′ be the query corresponding to the plan P ′. (S, T ) is still a separation
for ϕ′. By induction, there is a safe plan P ′

S 1 P ′
T for ϕ′. Adding the

select condition to the outer join, we get a safe plan as required.

3. The top operator on P is a project. Thus, P can be written as ΠA(P ′). Let
ϕ′ be the query corresponding to P ′. Note that (S, T ) is still a separation
for ϕ′. By induction hypothesis, there is a safe plan for ϕ′ of the form
P ′

S 1 P ′
T . Also, A can be written as the disjoint union of AS and AT ,
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where AS are attributes of relations from S and AT are attributes of T .
Thus, the following plan is safe for ϕ:

Π(AS ,AT )(P ′
S , P ′

T )

Using Lemma 4.13, we get the following equivalent safe plan:

ΠAS ,AT
(ΠHeads(P ′

S)∪AT
(P ′

S 1 P ′
T ))

We observe that Lemma 4.15 is applicable to the plan (ΠHeads(P ′
S)∪AS

(P ′
S 1

P ′
T )) since (S, T ) is a separation. Thus, the following equivalent plan is

also safe:
ΠAS

(P ′
S 1 (ΠAT

(P ′
T )))

Another application of Lemma 4.15 yeilds the following plan

(ΠAS
(P ′

S)) 1 (ΠAT
(P ′

T ))

Setting PS = ΠAS
(P ′

S) and PT = ΠAT
(P ′

T ), we get the required result.

The theorem then follows from the principle of induction.

Theorem 4.17. Algorithm Safe-Plan is complete.

Proof. Let q be the given query. Suppose it has an attribute A belonging to
Attr(q)−Head(q) such that the operator ΠHead(q)(qA) is a safe operator, where
qA is as defined in the algorithm. Then, by Lemma 4.14, q has a safe plan if
and only if qA has a safe plan. So the algorithm recurcively solves for qA.
On the other hand, suppose there is no such attribute A. This implies that
in any safe plan, the final operator cannot be a project operator as it is not
safe. So a safe plan must consist of a join of two subplans. These two subplans
must form a separation because after they are joined, there is no projection.
Hence, there must exist a separation for q. If not, the algorithm correctly
returns false. Otherwise, by Theorem 4.16, it is sufficient to solve each of the
subproblems corresponding to the separation separately. This completes the
proof of correctness of the algorithm.

5 Theoretical Analysis

We show here a fundamental result on the complexity of query evaluation on
probabilistic databases. It forms a sharp separation of conjunctive queries into
queries with low and high data complexity, and shows that our optimization
algorithm is complete.

The data complexity of a query q is the complexity of evaluating qrank(Dp)
as a function of the size of Dp. If q has a safe plan p, then its data complexity is
in PTIME, because all extensional operators are in PTIME. We start by showing
that, for certain queries, the data complexity is #P -complete. #P is the com-
plexity class of some hard counting problems. Given a boolean formula ϕ, count-
ing the number of satisfying assignments, denote it #ϕ, is #P -complete [24].
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(Checking satisfiability, #ϕ > 0, is NP-complete.) The data complexity of any
conjunctive query is #P , since qrank(Dp) = Pr(qi(Dp)). The following is a
variant of a result on query reliability by Gradel et al. [12]. The proof is novel
and is of independent interest in our setting.

Theorem 5.1. Consider the following conjunctive query on three probabilistic
tables:

q() := Lp(x), J(x, y), Rp(y)

Here Lp, Rp are extensional probabilistic tables and J is deterministic7. The
data complexity for q is #P -hard.

Proof. (Sketch) Provan and Ball [20] showed that computing #ϕ is #P -complete
even for bipartite monotone 2-DNF boolean formulas ϕ, i.e. when the proposi-
tional variables can be partitioned into X = {x1, . . . , xm} and Y = {y1, . . . , yn}
s.t. ϕ = C1∨ . . .∨Ck where each clause Ci has the form xj∧yk, xj ∈ X, yk ∈ Y .
(The satisfiability problem, #ϕ > 0, is trivially true.). Given ϕ, construct the
instance Dp where Lp is X, Rp is Y and J is the set of pairs (xj , yk) that occur
in some clause Ci. Assign independent probability events to tuples in Lp, Rp,
with probabilities 1/2. Then qrank(Dp) returns a single tuple, with probability
#ϕ/2m+n. Thus, computing qrank(Dp) is at least as hard as computing #ϕ.

We state now the main theoretical result in this paper. We consider it to be
a fundamental property of query evaluation on probabilistic databases.

Theorem 5.2 (Fundamental Theorem of Queries on Probabilistic DBs).
Consider a schema R̄p,Γp where all relations are probabilistic and extensional.
Attrs(R) → Rp.E, Rp.E → Attrs(R), for every Rp. Let q be a conjunctive
query s.t. each relation occurs at most once. Assuming #P6=PTIME the fol-
lowing statements are equivalent:

1. The query q contains three subgoals R, L and J , and two variables x and
y such that:

• J determines x and y, i.e., the variables in J together with the FDs
induced by q, determine x and y.

• L determines x but not y.

• R determines y but not x.

2. The data complexity of q is #P -complete.

3. The Safe-Plan optimization algorithm fails to return a plan.

Theorem 5.2 provides a sharp separation of feasible and infeasible queries
on probabilistic databases. To illustrate the proof of theorem, we prove it for
the following special case.

7Allowing J to be deterministic strengthens the result. The theorem remains true if J is
probabilistic.
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Theorem 5.3. Consider a schema R̄p,Γp where all relations are probabilistic
and Γp has only the trivial FDs8 Attrs(R) → Rp.E, Rp.E → Attrs(R), for
every Rp. Let q be a conjunctive query s.t. each relation occurs at most once.
Assuming #P 6=PTIME the following statements are equivalent:

1. The query q contains three subgoals of the form9:

L(x, . . .), J(x, y, . . .), R(y, . . .)

where x, y 6∈ Head(q).

2. The data complexity of q is #P -complete.

3. The Safe-Plan optimization algorithm fails to return a plan.

Before we give the proof, we need the following Lemma.

Lemma 5.4. Consider a schema R̄p,Γp as described in Theorem 5.2 and q be
any conjunctive query. Then, PiHeads(q)−x(q) is safe if every relation in Rels(q)
contain x.

Proof. (Lemma 5.4) Let us assume that every relation in Rels(q) contain R.
We will prove that the project operator is safe. We need to show that for each
R, the following holds

Heads(q)− x, R.E → Heads(q)

From schema, we have the following FD:

R.E → Attrs(R)

Also, since x is in all relations, we have

Attrs(R) → x

. Thus,
Heads(q)− x, R.E → Heads(q)− x, x → Heads(q)

Proof. (Theorem 5.2)
(1) ⇒ (2) is a simple extension of Th. 5.1. Let ϕ be the query as in the

proof of Th. 5.1 with X and Y as the set of variables. We construct a database
as follows: Consider the canonical database for the query q. For each relation
that contains x but not y, replicate the canonical tuple in that relation |X|
times with x replaced by the various values in X. For relations containing y but
not x, replicate the canonical tuple with y taking values from Y . For relations

8Hence, the probabilistic instances are extensional.
9Here we are using an alternate representation of conjunctive queries where all occurances

of variables that are equated are replaced by the same symbol
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containing both x and y, replicate the canonical tuple once for each clause
(xi∧yk) with x and y replaced with xi and yk. Also, set the probabilisties of all
tuples to 1 except for relations L and R where the tuple probabilisties are 0·5.
It is easy to see that the answer contains a single tuple which is the canonical
answer and its probability is #ϕ/2m+n. This reduction shows that evaluating
q is #− P complete.

(2) ⇒ (3) is obvious, since any safe plan has data complexity in PTIME.
Finally, we prove that (3) ⇒ (1). So let us suppose that Safe-Plan algo-

rithm fails to return a plan. The only way this can happen is when the algorithm
finds a sub-query that has no separation. So let q′ be the sub-query of q that has
no separation. Let AP = Head(q′)−Attrs(q′) be the set of attributes that are
projected out. So, none of the attributes in AP is safe to project out. Otherwise,
the algorithm will not stop at this query. Since the query has no separation,
any pair of relations in Rels(q′) share an attribute from AP . Also, by Lemma
5.4, no attribute in AP is contained in all the relations in Rels(q′). Let x be
the attribute that is contained in largest number of relations in Rels(q′) and let
Sx be the set of relations containing x. Thus, Sx ( Rels(q′). Some relation in
Sx, say J , must share an attribute with some relation outside Sx, say R. Let
the common attribute be y (it cannot be x because R 6∈ Sx). Also, there must
be a set L in Sx that does not contain y (otherwise, number of sets containing
y will be strictly greater than the number of sets containing x). Thus, we have
found sets L, J and R such that L contains x but not y, R contains y but not
x, and J contains both. This completes the proof.

Theorem 5.2 states that for the schemas that satisfy certain properties, un-
safe queries are #P -complete. The following theorem generalizes Theorem 5.2
(by removing the requirement that all relations be probabilitic).

Theorem 5.5. Consider a schema R̄p,Γp where all relations are extensional.
Let q be a conjunctive query s.t. each relation occurs at most once. Then, if q
is not safe, the data complexity of q is #P -complete.

Proof. It is sufficient to prove the theorem only for those queries whose head is
empty. To see this, if q is any general query that is not safe, then q′ = Πφ(q) is
also not safe. Also, the problem of evaluating q can be reduced to the problem
of evaluating q′ as follows. Consider each tuple t in the output of q. We need to
find the probability of t. Construct a new database by removing all the tuples
whose values do not match with t. Evaluate q′ on this new database. It is easy
to see that the result is a single tuple t and its probability is same as that in q.
Since there are only polynomial number of tuples in the output of q, this is a
polynomial time reduction.

So we assume that Heads(q) is empty. Since it is not safe, consider a sub-
query qs that has no separation. Let U be the set of unsafe projects. For each
relation r, let Dr be the set of attributes x such that (Attrs(r) → x) can be
inferred from Γp(q). If x is in Dr, we say that r determines x. For each attribute
in U , there is at least one probabilistic relation that does not determine that
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attribute (otherwise, it would be a safe project). Let a be the attribute that
is determined by the largest number of relations and let Ra be the set of those
relations. There is at least one probabilistic relation not contained in Ra. Let
r1, r2 · · · rk+1 be the smallest sequence of relations satisfying the following: (1)
r1 ∈ Ra, (2) ri 6∈ Ra(i > 1), (3) Dri

∩Dri+1 6= φ and (4) rk+1 is probabilistic.
There is at least one such sequence because there is at least one probabilistic
relation outside Ra and it must be connected to some relation in Ra (as the
query has no separation). Since b be any attribute in Dk ∪Dk+1. Thus, there
is at least one relation r0 ∈ Ra that does not determine b (otherwise |Rb| would
be strictly greater that |Ra|).

We will now show a reduction from the problem of counting the number
of assignments of bipartite monotone 2-DNF. Let X = {x1, . . . , xm}, Y =
{y1, . . . , yn} and ϕ = C1∨. . .∨Ck where each clause Ci has the form xf(i)∧yf(i).
We will construct a database as follows. Consider a single table whose attributes
are all the variables that occur in the query. Let A = Dr0 , B = Drk+1 , I = A∪B
and Z be the set of remaining variables. Populate the table with k tuples, one
corresponding to each clause. In row i, assign a value of xf(i) to all variables in
A−B, a value of yf(i) to variables in B −A, a constant value 0 to variables in
A ∪ B and a value of Ci to variables in Z. From this table, construct individ-
ual tables by taking the projections on corresponding columns. For tables r0

and rrk+1 , let all events have a probability of 0.5 (which is valid because both
of them are probabilistic) and let all other tables have events with probability
1. To see that all the functional dependencies are satisfied, consider any FD,
X → y, where X is a set of attributes and y is an attribute. For this to be
violated, either X ⊆ A and y ∈ B −A or X ⊆ B and y ∈ A−B. None of these
can happen by definitions of A and B. Thus, resulting database does indeed
satisfy the schema.

We will now show that the number of satisfying assignments to the DNF is
the probability of the binary query q on this database times 2m+n. To show
this, it is enough to prove that when all the tables are joined, we get back the
universal table, i.e. an xi in r0 is joined to a yj in rk+1 only if (xi, yj) is a clause.
To prove this, consider the relations r1, r2 · · · rk. We have Dri

∪B = φ(1 < i < k)
(otherwise, we would have got a shorter sequence r1, r2 · · · ri, rk+1 satisfying all
the above properties). Similarly, Dri

∪ A = φ. Thus, for 1 < i < k, Dri
⊆ Z.

Thus, the sub-query qJ consisting of r1, r2, · · · rk generates exactly k tuples, one
for each clause. Also, we have Dr0 ∪Dr1 6= φ and Drk

∪Drk+1 6= φ. Thus. qJ

acts as a join between r0 and rk+1 and only joins those variables that correspond
to a clause.

This completes the reduction and proves that the query is #P -complete.

6 Unsafe Plans

When a query’s data complexity is #P -complete, then Safe-Plan fails to re-
turn a plan. Since this can indeed happen in practice, we address it and propose
two solutions.
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6.1 Least Unsafe Plans

Here we attempt to pick a plan that is less unsafe than others, i.e. minimizes
the error in computing the probabilities. Recall from Eq.(2) that Πe

A1,...,Ak
is

safe in Πe
A1,...,Ak

(q) iff A1, . . . , Ak, Rp.E → Head(q) for every Rp. Let B̄ =
{A1, . . . , Ak, Rp.E}∩Attr(Rp) (hence Rp.E ∈ B̄) and C̄ = Head(q)∩Attr(Rp).
Define Rp

fanout to be the expected number of distinct values of C̄ for a fixed value
of the attributes B̄. In a relational database system, it is possible to estimate
this value using statistics on the table Rp. Define the degree of unsafety of
Πe

A1,...,Ak
to be maxRp∈PREL(Q)(R

p
fanout − 1). Thus, a safe project has degree

of unsafety 0. Also, the higher the degree of unsafety, the higher is the expected
error that would result from using the extensional semantics for that project
operator.

We modify Algorithm 1 to cope with unsafe queries. Recall that the al-
gorithm tries to split a query q into two subqueries q1, q2 s.t. all their join at-
tributes are in Head(q). Now we relax this: we allow joins between q1 and q2 on
attributes not in Head(q), then project out these attributes. These projections
will be unsafe, hence we want to minimize their degree of unsafety. To do that,
we pick q1, q2 to be a minimum cut of the graph, where each edge representing a
join condition is labeled with the degree of unsafety of the corresponding project
operation10. The problem of finding minimum cut is polynomial time solvable
as a series of network flow problems or using the algorithm of Stoer and Wagner
[21].

6.2 Monte-Carlo Approximations

As an alternative, we present now an algorithm based on a Monte-Carlo simu-
lation, which can guarantee an arbitrarily low error.

Given a conjunctive query q over probabilistic relations Rp
1, R

p
2 · · ·R

p
k, let q′

be its body, i.e. Head(q′) = Attr(q′) = Attr(q) and q = ΠHead(q)(q′). Modify
q′ to also return all event attributes Ē = Rp

1.E, . . . , Rp
k.E. Evaluate q′ over the

probabilistic database, and group of tuples in the answer based on the values of
their attributes Head(q). Consider one such group, and assume it has n tuples
t1, . . . , tn. The group defines the following complex event expression:

∨n
i=1 Ci,

where each Ci has the form e1∧. . .∧ek. We need to compute its probability, since
this will be the probability of one tuple in qrank(Dp). For that we use the Monte
Carlo algorithm described by Karp [15]: when run for N ≥ 4n

ε2 ln 2
δ iterations,

the algorithm guarantees that the probability of the error being greater that ε
is less than δ.

7 Extensions

Additional operators So far, we have limited our discussion to conjunctive
10The estimator of Rp

fanout should make sure that the estimated value is 0 only when the

FD holds, otherwise the algorithm may favor ‘expected’ safe plans over truly safe plans.
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queries, or, equivalently to the algebra consisting of σ,Π,×. We show now how
to extend these techniques to ∪,−, γ (union, difference, groupby-aggregate). A
large fragment of SQL, including queries with nested sub-queries, aggregates,
group-by and existential/universal quantifiers can be expressed in this logical
algebra [23]. (We omit δ (duplicate elimination) since we only consider queries
with set semantics, i.e. δ is implicit after every projection and union.) We define
the extensional semantics for these operators, using the functional notation.

Prp∪ep′(t) = 1− (1− Prp(t))× (1− Prp′(t))
Prp−ep′(t) = Prp(t)× (1− Prp′(t))

Prγe
Ā,min(B)

(t) = Prp(t)×
∏

s : s.Ā = t.Ā
∧s.B < t.B

(1− Prp(s))

Prγe
Ā,max(B)

(t) = Prp(t)×
∏

s : s.Ā = t.Ā
∧s.B > t.B

(1− Prp(s))

For example, to compute the groupby-min operator γA,min(B)(Rp) one con-
siders each tuple (a, b) in Rp: the probability that (a, b) is in the output rela-
tion is p(1− p1) . . . (1− pn) where p is the probability of the tuple (a, b), while
p1, . . . , pn are the probabilities of all other tuples (a, b′) s.t. b′ < b. In the case
of sum, the aggregated attribute may take values that are not in the input table.
To compute the probabilities correctly one needs to iterate over exponentially
many possible sums. Instead, we simply compute the expected value of the sum
(details omitted). This is meaningful to the user if sum appears in the SELECT
clause, less so if it occurs in a HAVING clause. We treat count similarly.

We now give sufficient conditions for these operators to be safe.

Theorem 7.1. Let q, q′ be conjunctive queries.

1. ∪e is safe in q ∪e q′ if PRels(q) ∩ PRels(q′) = φ.

2. −e is safe in q ∩e q′ if PRels(q) ∩ PRels(q′) = φ.

3. γĀ,agg(B) is safe in γĀ,agg(B)(q) if ΠĀ(q) is safe, where agg is min or max.

Self-joins Self-joins on probabilistic relations may be a cause of # − P -
complete data complexity [12]. However, a query q≈ with uncertain predicate
rarely results in self-join. Even if the same table R occurs twice in q≈, the
different uncertain predicates on the two occurrences generate distinct events,
hence the system makes two probabilistic “copies”: Rp

1, Rp
2. Of course, the

Monte-Carlo algorithm works fine even in the presense of self-joins.
Extending the optimization algorithm Safe-Plan is extended to han-

dle each block of conjunctive queries separately. As an example, the query in
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Section 1, asking for an actor whose name is like ‘Kevin’ and whose first ‘suc-
cessful’ movie appeared in 1995, has a safe plan as shown below:

Πname(A 1actorid

(σyear=1995(γactorid,min(year)(Πactorid,yearC)))

8 Atomic Predicates

Our main motivation is executing a query with uncertain predicates q≈ on a
deterministic database D. As we saw, our approach is to apply the uncer-
tain predicates first, and generate a probabilistic database Dp, then evaluate
q (without the uncertain predicates). We discuss here briefly some choices for
the uncertain predicates proposed in the literature. All proposals depend on a
notion of closeness between two data values. This is domain dependent and can
be classified into three categories:

Syntactic closeness This applies to domains with proper nouns, like people’s
names. Edit distances, q-grams and phonetic similarity can be employed.
The excellent surveys on string matching techniques by Zobel and Dart [25]
and Navarro [18] describe more than 40 techniques and compare them
experimentally. Navarro also has a discussion on the probability of string
matching. In our system, we used the 3-gram distance between words,
which is the number of triplets of consecutive words common to both
words. We found it to work faster and more accurately than edit distances.

Semantic closeness This applies to domains that have a semantic meaning,
like film categories. A user query for the category ‘musical’ should match
films of category ’opera’. Semantic distance can be calculated by using
TF/IDF or with ontologies like Wordnet [2]. We do not have semantic
distances in our system currently.

Numeric closeness This applies to domains like price and age. A distance
can be just the difference of the values.

Once distances are defined between attributes, using any of the above meth-
ods, they need to be meaningfully converted into probabilities. We fitted a
Gaussian curve on the distances as follows: the curve was centered around the
distance 0 where it took value 1. The variance of the Gaussian curve is an indi-
cation of the importance of match on that attribute. Its correct value depends
on the domain and user preferences. In our experiments, we used fixed, query
independent values, for the variances.

Finally, one issue is when to generate new probability events. For example
consider the uncertain predicate Product.category ≈ . . . and assume there are
two products with the same category. Should they result in two independent
probabilistic events with the same probabilities, or in the same probabilistic
events ? Both choices are possible in our system. In the first case the func-
tional dependency is Productp.key → Productp.E while in the second the FD
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Figure 7: TPC-H Query Running Times

is Productp.category → Productp.E. In the latter case, Πcaterogy becomes
unsafe. This can be taken care of by normalizing the resulting database to 3NF,
i.e. creating a separate caterogy table that contains the events for caterogies.

9 Experiments

We performed some preliminary evaluation of our probabilistic query evalua-
tion framework, addressing four questions. How often does the Safe-Plan
optimization algorithm fail to find a plan ? What is the performance of safe
plans, when they exists ? Are naive approaches to query evaluation perhaps
almost as good as a safe plan ? And how effectively can we handle queries that
do not have safe plans ?

We did not modify the relational engine, but instead implemented a middle-
ware. SQL queries with approximate predicates were reformulated into “exten-
sional” SQL queries, using the techniques described in this paper, and calls to a
TSQL function computing 3-gram distances. These queries were then executed
by the relational engine and returned both tuples and probabilities. We used
Microsoft SQL Server.

We used the TPC-H benchmark, with a database of 0.1GB. We modified
all queries by replacing all the predicates in the WHERE clause with uncertain
matches. The constants in the queries were either misspelled or made vague.
For instance, a condition like part.container = ’PROMO PLATED GREEN’ was
replace with part.container ≈ ’GREEN PLATE’. When executed exactly, all
modified queries returned empty answers.

1. Frequency of unsafe queries In our first experiment, we wanted to
see how many queries do not have safe plans. Out of the 10 TPC-H queries, 8
turned out to have safe plans. Q7 and Q8 were the only query that were unsafe.
These also become safe if not all of their predicates are uncertain.

2. Performance Next, we measured the running times for the eight queries
that have safe plans, shown in Figure 7. All times are wall-clock. The first
column is the running time of the safe plan. The second column represents an
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optimization where at each intermediate stage, tuples with zero probability are
discarded. This optimization does not affect the final answer and as we can
see from the graph, it brings about considerable savings for some queries. This
also suggests the use of other optimizations like an early removal of tuples with
low probabilities if the user is only interested in tuples with high probability.
The third column in the graph shows the time for running safe queries without
taking into account the computation time for the uncertain predicate, which,
in our case, is the 3-gram distance. The graphs show that most of the time is
spent in computing the uncertain predicates. (For Q3 the the running time was
almost negligible.) This graph suggests that important improvements would be
achieved if the predicates were implemented in the engine.

3. Naive Approaches In the next experiment we calculated the error
produced by a naive extensional plan. We considered the naive plan that leaves
all project operators (and the associated duplicate elimination) at the end of
the plan, which are typical plans produced by database optimizers. Figure 8
shows the percentage relative error of naive plans. We only considered the 8
queries that have safe plans. The naive plans for Q1, Q4, Q6 were already
safe, hence had no errors (and Safe-Plan indeed returned the same plan):
these queries are not shown. Queries Q3, Q5 and Q10 had large errors with Q5

showing an average error of 150% in the tuple probabilities. Queries Q2 and
Q9 had negligible errors. Thus, while some naive plans were bad, others were
reasonable. But, in general, naive plans can be arbitrarily bad. However, we
argue that the low extra complexity of searching for a safe plan is a price worth
paying in order to avoid the (admittedly rare) possibility of arbitrarily large
errors.

However, since we are only interested in ranking the results, not in the actual
probabilities, it is worth asking whether high errors in the probabilities translate
into high ranking results. We plotted the recall graphs for queries Q3 and Q10

(for which the naive plan produced only medium errors). We defined recall
as the fraction of answers ranked among top N by the naive plan that should
actually have been in top N . We plotted this as a function of N . Figures 9
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and 10 show the recall graphs. By definition, the recall approaches to 1 when
N approaches the total number of possible tuples in the answer. However, as
the graphs show, the recall was bad for small values of N . A user looking for
top 50 or 100 answers to Q3 would miss half of the relevant tuples. For smaller
values of N (say, 10) the naive approach misses 80% of the relevant tuples.

4. Unsafe Queries Finally, we tested our approach to handle queries with
no safe plans on Q7 and Q8. We ran the Monte Carlo simulation to compute
their answer probabilities and used them as baseline. Figure 11 shows the errors
in evaluating them with a naive plan and the least unsafe plan (using min-cut,
Sec. 6). The graphs show that the plan chosen by the optimizer was better, or
significantly better than a naive one. Still, from two data points it is hard to
judge the improvement over a naive plan. To see a third data point we wrote a
new unsafe query, QQ, where the relation lineitem is joined with orders and
suppliers. Here the fanout is larger, and the difference between the naive plan
and the optimal break is more pronounced.

10 Related Work

The possible worlds semantics, originally put forward by Kripke for modal log-
ics, is commonly used for representing knowledge with uncertainities. Halpern,
Baccus et al [9, 4] have showed the use of possible worlds semantics to assign
degrees of beliefs to statements based of the probabilisties in the knowledge
base.

Though there has been extensive work on probabilisties in AI, relatively
little work has been done on probabilistic databases. There are probabilistic
frameworks [7, 6, 11, 16] proposed for databases, but each makes simplifying
assumptions for getting around the problem of high query evaluation complexity
that lessens their applicability.

Fuhr and Rolleke [11] define probabilistic NF2 relations and introduce the
intensional semantics for query evaluation. As we saw, this is corect, but im-
practical.
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Many of these works specialize on logic programming in deductive databases.
Ng and Subrahmaniam [19] extend deductive databases with probabilisties and
give fixed point semantics to logic programs annotated with probabilities, but
they use absolute ignorance to combine event probabilities.

Non-probabilistic approaches to imprecise queries have also been considered.
Keyword searches in databases are discussed in [14, 8, 13]. Fagin [10] gives an
algorithm to rank objects based on its scores from multiple sources: this applies
only to a single table. The VAGUE system [17] supports queries with vague
predicates, but the query semantics are ad hoc, and apply only to a limited
SQL fragments. Surajit et al. [3] consider ranking query results automatically:
this also applies to a single table. Theobald and Weikum [22] describe a query
language for XML that supports approximate matches with relevance ranking
based on ontologies and semantic similarity.

11 Conclusions

In this paper, we introduce a query semantics on probabilistic databases based
on possible worlds. Under this semantics, every query that is well defined over a
deterministic databases has a meaning on a probabilistic database. We describe
how to evaluate queries efficiently under this new semantics. Our theoretical
results capture fundamental properties of queries on probabilistic databases,
and lead to efficient evaluation techniques. We showed how this approach can
be used to evaluate arbitrarily complex SQL queries with uncertain predicates.
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