A Dichotomy on the Complexity of Consistent Query
Answering for Atoms with Simple Keys

Paraschos Koutris and Dan Suciu
{pkoutris,suciu}@cs.washington.edu
University of Washington

ABSTRACT

We study the problem of consistent query answering under
primary key violations. In this setting, the relations in a
database violate the key constraints and we are interested in
maximal subsets of the database that satisfy the constraints,
which we call repairs. For a boolean query @, the problem
CERTAINTY(Q) asks whether every such repair satisfies
the query or not; the problem is known to be always in
coNP for conjunctive queries. However, there are queries
for which it can be solved in polynomial time. It has been
conjectured that there exists a dichotomy on the complexity
of CERTAINTY(Q) for conjunctive queries: it is either in
PTIME or coNP-complete. In this paper, we prove that the
conjecture is indeed true for the case of conjunctive queries
without self-joins, where each atom has as a key either a
single attribute (simple key) or all attributes of the atom.

Categories and Subject Descriptors
H.2.4 [Database Management|: Relational Databases

General Terms
Algorithms, Theory

Keywords

Repairs, Consistent query answering, Dichotomy

1. INTRODUCTION

Uncertainty in databases arises in several applications and
domains (e.g. data integration, data exchange). An uncer-
tain (or inconsistent) database is one that violates the in-
tegrity constraints of the database schema. In this work,
we examine uncertainty under the framework of consistent
query answering, established in [2].

In this framework, the presence of uncertainty generates
many possible worlds, referred usually as repairs. For an in-
consistent database I, a repair is a subset of I that minimally

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

differs from I and also satisfies the integrity constraints. For
a given query @ on database I, the set of certain answers
contains all the answers that occur in every Q(r), where r is
a repair of I. The main research problem here is when the
certain answers can be computed efficiently.

In this paper, we will restrict the problem such that the
integrity constraints are only key constraints, and moreover,
the queries are boolean conjunctive queries. In this case,
a repair r of an inconsistent database I selects from each
relation a maximal number of tuples such that no two tuples
are key-equal. We further say that a boolean conjunctive
query @ is certain if it evaluates to true for every such repair
r. The decision problem CERTAINTY(Q) is now defined as
follows: given an inconsistent database I, does Q(r) evaluate
to true for every repair r of I7

For this setting, it is known that CERTAINTY(Q) is al-
ways in coNP [3]. However, depending on the key con-
straints and the structure of the query @, the complex-
ity of the problem may vary. For example, for the query
Q1 = R(z,y),S(y, z), CERTAINTY(Q1) is not only in P but,
since one can show that CERTAINTY(Q1) can be expressed
as a first-order query over I [6], it is in AC®. On the
other hand, for Q2 = R(z,y),S(z,y), it has been proved
in [6] that CERTAINTY(Q2) is coNP-complete. Finally, for
Q3 = R(z,y),S(y,z), one can show [14] that consistent
query answering is in P, but the problem does not admit
a first-order rewriting.

From the above examples, one can see that the complexity
landscape is fairly intricate, even for the class of conjunctive
queries. Although there has been progress in understanding
the complexity for several classes of queries, the problem
of deciding the complexity of CERTAINTY(Q) remains open.
In fact, a long-standing conjecture claims the following di-
chotomy.

CONJECTURE 1.1. Given a boolean conjunctive query Q,
CERTAINTY (Q) is either in PTIME or is coNP-complete.

The progress that has been made towards proving this
conjecture has been limited. In particular, Kolaitis and
Pema [8] have proved a dichotomy into PTIME and coNP-
complete for the case where) contains only two atoms and
no self-joins (i.e. every relation name appears once). Wi-
jsen [13] has given a necessary and sufficient condition for
first-order rewriting for acyclic conjunctive queries without
self-joins, and in a recent paper [15] further classifies several
acyclic queries into PTIME and coNP-complete.

In this work, we significantly progress the status of the
conjecture, by settling the dichotomy for a large class of

queries: boolean conjunctive queries w/o self-joins, where
each atom has as primary key either a single attribute or all
the attributes. Observe that this class contains all queries
where atoms have arity at most 2; in particular, it also con-
tains all three of the queries @1, Q2, Q3 previously discussed.
Our results apply to a more general setting where one might
have the external knowledge that some relations are consis-
tent and others may be inconsistent. In contrast to previous
approaches, our paper introduces consistent relations since
in non-acyclic queries, certain patterns in the structure of
the query cause a relation to behave as a consistent relation
when checking for certainty. In particular, consider a query
Q@ containing two atoms Ri(z,y), Rz(z,y). If an instance
contains the tuples Ry(a,b1), R2(a,b2) such that by # ba,
we can remove the key-groups Ri(a,—), R2(a, —) without
loss of generality in order to check for certalntyﬂ Thus, the
conjunction of R, Ry behaves as a single consistent relatlon
R(z,y). Our main result is

THEOREM 1.2. For every boolean conjunctive query Q with-
out self-joins consisting only of binary relations where ex-
actly one attribute is the key, there exists a dichotomy of
CERTAINTY (Q) into PTIME and coNP-complete.

From here we derive:

COROLLARY 1.3. For every boolean conjunctive query Q
with relations of arbitrary arity, where either exactly one at-
tribute is a key, or the key consists of all attributes, there ex-
ists a dichotomy of CERTAINTY (@) into PTIME and coNP-
complete.

We prove [Corollary 1.3|in the full version of this paper [9];
this paper consists of the proof of [Theorem 1.2] The clas-

sification into PTIME and coNP-complete is based on an-
alyzing the structure of a specific graph representation of
the query along with the key constraints. The query graph,
which we denote G[Q)], is a directed graph with vertices the
variables in @, and a directed edge (z,y) for every relation
R(z,y).

Given the graph G[Q], we give a necessary and sufficient
condition for CERTAINTY(Q) to be computable in polyno-
mial time. Consider two edges er = (ur,vr),es = (us,vs)
in G[Q] that correspond to two inconsistent relations R and
S respectively. We say that er,es are source-equivalent if
uRr,us belong to the same strongly connected component of
G[Q]. We also say that er, es are coupled if (a) there exists
an undirected path Pr from vr to us such that no node in
Pr is reachable from ur through a directed path in G—{er}
and (b) there exists an undirected path Ps from vg to ur
where no node in Ps is reachable from ug through a directed
path in G — {es}. Then:

THEOREM 1.4. (1) CERTAINTY(Q) is coNP-complete if
G[Q] contains a pair of inconsistent edges that are cou-
pled and not source-equivalent. Otherwise, CERTAINTY (Q)
is in PTIME. (2) The problem: given a query Q decide
whether CERTAINTY (Q) is coNP-complete or in PTIME is
NLOGSPACE-complete.

The following example illustrates the main theorem.

'Indeed, if we want to find a repair r that does not satisfy
Q, we can always pick these two tuples to make sure that
the value a will never contribute to an answer.

ExaMPLE 1.5. Consider the following two queries:

w), T*(y, w)
w), T°(y, w), U (z, z)

Observe that the only difference between K1, Ko is the con-
sistent relation U¢. Moreover, the edges er, es are not source-
equivalent in both cases. In G[K1], the edges er,es are also
coupled. Indeed, consider the path Pr that consists of the
edges e, es and connects y with z. The nodes y,w, z of Pr
are not reachable from x in the graphs G[K1] — {er}. Simi-
larly, the path Ps that consists of the edges er,er connects
w with x and is not reached by any directed path starting
from z in G[K1] — {es}. Thus, CERTAINTY (K1) is coNP-
complete.

In contrast, the path Pgr is reachable from z in G[K2]:
consider the path that consists of ey. Since no other path
connects eg,es in G[K2], the edges er,es are not coupled.
Thus, CERTAINTY (K32) is in PTIME.

K1 = R(z,y),5(z,
K> = R(Q,y)75(§7

Note that if two edges er, es belong to two distinct weakly
connected components, then they are trivially not coupled,
which implies that @ is coNP-complete iff one of its weakly
connected components is coNP complete.

In order to show we develop new techniques
for efficient computation of CERTAINTY(Q), as well as tech-
niques for proving hardness. We start by introducing in
[Section 2| and [Section 3 the basic notions and definitions.
In we present the case where G[Q] is a strongly
connected graph (i.e. there is a directed path from any
node to any other node) and show that CERTAINTY(Q) is
in PTIME. The algorithm for computing CERTAINTY(Q) in
this case is based on a novel use of or-sets to represent effi-
ciently answers to repairs. The polynomial time algorithm
for CERTAINTY(Q) when G[Q] satisfies the condition of[The]
is presented in and is based on a recur-
sive decomposition of G[Q]. Finally, the hardness results
are presented in where we show that we can re-
duce the NP-hard problem MONOTONE-3SAT to any graph
G[Q] that does not satisfy the condition of [Theorem 1.4]

2. PRELIMINARIES

A database schema is a finite set of relation names. Each
relation R has a set of attributes attr(R) = {A1,..., Ak},
and a key, which is a subset of attr(R). We typically write
R(z1,...,Tm,Y1,--.,Ye) to denote that the attributes on po-
sitions 1, ..., m are the primary key. Each relation is of one
of two types: consistent, or inconsistent. Sometimes we de-
note R° or R to indicate that the type of the relation is
consistent or inconsistent.

An instance I consists of a finite relation R’ for each re-
lation name R, such that, if R is of consistent type, then R’
satisfies its key constraint. In other words, in an instance [
we allow relations R’ to violate the key constraints but al-
ways require the relations R° to satisfy the key constraints.
Notice that, if the key of R consists of all attributes, then
R! always satisfies the key constraints, so we may assume
w.l.o.g. that R is of consistent-type.

We denote a tuple by R(ai,...,am,bi,...,be). We define
a key-group to be all the tuples of a relation with the same
key, in notation R(ai,...,am,—).

DEFINITION 2.1 (REPAIR). An instance r is a repair
for I if (a) r satisfies all key constraints and (b) r is a maz-
imal subset of I that satisfies property (a).

In this work, we study how to answer conjunctive queries
on inconsistent instances:

DEFINITION 2.2 (CONSISTENT QUERY ANSWER). Given
an instance I, and a conjunctive query Q, we say that a tu-
ple t is a consistent answer for Q if for every repair r < I,
te Q(r). If Q is a Boolean query, we say that Q is certain
for I, denoted I = Q, if for every repair v, Q(r) is true.

If Q is Boolean query, CERTAINTY (Q) denote the following
decision problem: given an instance I, check if I &= Q.

2.1 Frugal Repairs

Let Q be a Boolean conjunctive query Q. Denote Qf
the full query associated to), where all variables become
head variables; therefore, for any repair r, Q(r) is true iff

Q)+

DEFINITION 2.3 (FRUGAL REPAIR). A repair r of I is
frugal for Q if there exists no repairr’ of I such that QF (r) <
Q7 (r).

ExAMPLE 2.4. Let Q = R(z,v),S(z,
full query is Q' (z,y) = R(z,y), S(x,)
instance

I'={R(a1,b),

R(%v ba),

y). In this case, the
Also, consider the

R(ﬂ7 b2)> R(%v b3)7 S(%a b1)7 S(a727 b3)7
R(as, bs), S(as, ba), S(
with the following repairs:

r1 = {R(a1,b1), R(az,b3), S(a, b1), S(az, bs), R(as, ba),

S(as, bs), S(as, bs)}
= {R(ax1,b2), R(az, bs), S(a1,b1), S(az, bs), R(as, ba),
S(as, bs), S(as, bs)}

= {R(ax1,b2), R(az, bs), S(a1,b1), S(az, bs), R(as, bs),
S(as,bs), S(as,bs)}

Then, the answer sets are Q7 (r1) = {(a1,b1), (a2, b3), (as,bs)},

Q7 (r2) = {(az,bs), (a3,b1)} and Q*(r2) = {(az,b3), (a3, bs)}
respectively. Since Q7 (r2) < Q' (r1), the repair r1 is not
frugal. On the other hand, both ro and rs are frugal.

PropPOSITION 2.5. I = Q if and only if every frugal repair
of I for Q satisfies Q.

PROOF. One direction is straightforward: if some frugal
repair does not satisfy @), then @ is not certain for I. For
the other direction, assume that @ is not certain for /. Then
there exists a repair 7 s.t. Q(r) is false, hence Q7 (r) = &:
therefore r is a frugal repair, proving the claim. []

The proposition also implies that we lose no generality if
we study only frugal repairs in certain query answering. To
check I = Q it suffices to check whether Q7 (r) # & for every
frugal repair. In some cases, it is even possible to compute
Q' (r) by using a certain representation, as discussed next.

2.2 Representability

In general, the number of frugal repairs is exponential in
the size of I. We describe here a compact representation
method for the set of all answers Q7 (r), where r ranges over

all frugal repairs. We use the notation of or-sets adapted
from [10]. An or-set is a set whose meaning is that one
of its elements is selected nondeterministically. Following
|10] we use angle brackets to denote or-sets. For example,
(1,2, 3) denotes the or-set that is either 1 or 2 or 3; similarly
{{1},{1, 3})> means either the set {1} or {1,3}.

Let Fo(I) = {r1,r2,...y be the or-set of all frugal repairs
of I for @, and let

Maq(I) =<Q1(r) | r € Fo(I))

be the or-set of all answers of Q@ on all frugal repairs. No-
tice that the type of Mq([) is {T'}), where T' = X le T; is
a product of atomic types. For a simple illustration, in
Maq(I) = {(az,b3), (as, ba)}, {(az, b3), (a3, b5)}),
because 72, r3 are the only frugal repairs.

Give a type T, define the function « : {{T)} — ({T'}) |10]:
a({A1,..., An}) = {x1,...,zm}z1 € A1,...,Tm € Am).
For example, a({(1,2), (3, 4)}) = ({1,3}, {1,4}, {2, 3}, {2, 4}
and a({(1),{1,2,3)}) = ({1}, {1,2},{1,3}).

DEFINITION 2.6. Let T = xle Ti;. An or-set-of-sets S
(of type {({T})) is representable if there exists a set-of-or-
sets So (of type {{T)}) such that (a) a(So) = S and (b) for
any distinct or-sets A, B € Sp, the tuples in A and B use
distinct constants in all coordinates: 1I;(A) n IL;(B) = &,
Vi=1,k.

As an example, consider the or-sets

S = <{(a17b1)7 (a27b3)}7 {(a17b2)7 (a27b3)}>
S = {(a1,b1), (az,b3)}, {(a1,b2), (a2, b2)})

S is representable, since we can find a compression Sy =
{{(a1,b1), (a1,b2)),{(az2,b3))}. Notice that a1,b1,bs appear
only in the first or-set of Sp, whereas az, bs only in the sec-
ond. On the other hand, it is easy to see that S’ is not
representable. We prove:

PROPOSITION 2.7. Let S or-set of sets of type {{ X le T},
and suppose that its active domain has size n. If S is repre-
sentable S = a(Sy), then its compression Sy has size O(n*).

PRrROOF. If Sy = {A1, A2, ...}, then every k-tuple consist-
ing of constants from the active domain occurs in at most
one or-set, thus the total size of Sp is O(n*). O

If M@ (1) is representable, then we denote Ag(I) its com-
pression; its size is at most polynomially large in I. In gen-
eral, Mg (I) may not be representable.

By the definition of frugality, if s1,s2 € Mg (I) then nei-
ther s1 € s2 nor s & s1 holds. This implies that, for any
instance I, there are two cases. Either (1) I ¥ Q; in that
case Mq(I) = {{}) is trivially representable as Aq(I) = {};
or, (2) I = @, and in that case Mq(I) = (A1, Az,...),
where A; # {} for all ¢, may be exponentially large and not
necessarily representable. For a simple illustration, in
Mq(I) is representable, and its compression is
AQ (I) = {<(a27 b3)>7 <(a37 b4)7 (a37 b5)>}

If Ag(I) exists for every instance I and can be computed
in polynomial time in the size of I, then CERTAINTY(Q)
is PTIME: to check I &= @, simply compute Ag([) and
check # {}. The converse is not true, however: for ex-
ample, consider the query H = R(z,vy),S(y, 2), for which
CERTAINTY (H) is in PTIME. However, for the instance I’ =
{R(Q7 b)7 S(b7 Cl)7 S(b7 62)}7 MH(I/) = <{(a7 b7 Cl)}7 {((l, b7 02)}>

is not representable.

2.3 Purified Instances

Let @ be a any boolean conjunctive query. An instance
I is called globally consistent |1, pp.128], or purified |15], if
for every relation R, HattT(R)(Qf (I)) = R, where Mater(r)
denotes the projection on the attributes of relation R. In
other words, no tuple in [is “dangling”.

In the rest of the paper we will assume that the instance
1 is purified. This is without loss of generality, because if
is an arbitrary instance, then we can define a new instance
I? < I such that Mg () = Mg(I?), and thus I = Q if and
only if I? = Q.

LEMMA 2.8. Given a query Q@ and an instance I, there ex-
ists a purified instance I* € I such that Mq(I) = Mg (IP).

2.4 The Query Graph

In the rest of the paper we will restrict the discussion
to the setting of and consider only Boolean
queries w/o self-joins consisting only of binary relations where
exactly one attribute is the key; in [9] we prove|Corollary 1.3|
thus extending the dichotomy to more general queries.

Given a query Q, the query graph G[Q] is a directed graph
where the vertex set V(G) consists of set of variables in Q,
and edge set E(G) contains for atom R(u,v) in @ an edge
er = (u,v) in G[Q]. Since @ has no self-joins each rela-
tion R defines a unique edge er, and we denote ur and vgr
its starting and ending node respectively. We say that the
edge is consistent (inconsistent) if the type of R is consistent
(inconsistent), and denote E*(G) (E°(G)) the set of all con-
sistent (inconsistent) edges. Thus E(G) = E*(G) u E°(G).

A directed path P is an alternating sequence of vertices
and edges vo, e1,v1,...,er, v where ; = (vi—1,v;) for i =
1,...,0 and £ > 0. We write P : x — y for a directed
path P where vo = x to v¢ = y, and every edge e; is
consistent; we write P : z ~» y for any directed path P
where vo = x and v, = y that has any type of edges.
An undirected path P is an alternating sequence of vertices
and edges wvo, e1,v1,. .., er, ve where either e; = (vi—1,v;) or
e; = (vi,vi—1) fori=1,..., £ and ¢ > 0; we write P : z < y
for an undirected path where vo = x and v, = y (that may
also have any types of edges). A path P may contain a sin-
gle vertex and no edges (when £ = 0), in which case we can
write P:x — z. If N € V(G), then P n N denotes the set
of vertices in P that occur in N. The notation x — y (or
Z ~ y, or & <> y) means “there exists a path P : z — y” (or
P:z~y,or P:x o y).

Finally, since @ uniquely defines G[Q] and vice versa, we
will often use G to denote the the query @ (for example, we
may say G(r) instead of the boolean value Q(r), for some
repair).

ExAMPLE 2.9. Consider the following query:
H=R (g? y)7 Rg (y7 Z)7 R5 (év 1:)7 Vlc(ﬂa ?J): ‘/26(£7 U)7
Vs (2,v), S(u,v), T (v, w), U (u, w)

The graph G[H)] is depicted in [Figure 1, The curly edges
denote inconsistent edges E* = {Ry, Rs, S, T}, whereas the
straight edges denote consistent ones. We also have u ~ x
(but not u — x, since the only path from u to x contains in-
consistent edges). Moreover, y — v, since there is a directed
path that goes from y to v through Ra,Vs. Finally, notice
that, although v >y, v < y.

u
S
U
T
oW

Figure 1: The query graph G[H]. The curly edges denote
inconsistent relations, whereas the straight edges consistent
relations.

2.5 The Instance Graph

Let @ be a Boolean conjunctive query without self-joins
over binary relations with single-attribute keys. Let I be
an instance for Q. We will assume w.l.o.g. that any two
attributes that are not joined by @ have disjoint domains:
otherwise, we simply rename the constants in one attribute.
For example, if Q = R(z,y),S(y,z),T(z,z) then we will
assume that I, (R) n T, (S7) = &, etc.

The instance graph is the following directed graph Fg([).
The nodes consists of all the constants occurring in I, and
there is an edge (a, b) for every tuple R'(a,b) in I. The size
of the instance graph Fg(I) is the same as the size of the
instance 1.

3. THE DICHOTOMY THEOREM

We present here formally our dichotomy theorem, and
start by introducing some definitions and notations. Let
ue V(G) and eg € E(G). Then,

u® = {(veV(G)|u—vin G}
ut ={veV(G) |u~vin G}
W = {weV(G) | u~vin G — {er}}

ExaMpPLE 3.1. Consider the graph G[H] from

which will be our running example. Then:

+.R +
w@ :{a:,v} T ! :{x,v,w} T :{xyvawayaz}
PROPOSITION 3.2. If Re E', u$ < uly™ < uj,.

ProOOF. Letv e u%. Then, there exists a path P : ur — v
in G. Since P is consistent, it cannot contain the incon-
sistent edge er, and thus P exists in G — {er} as well.
Consequently, v € u;‘R.

forward. [

The other inclusion is straight-

Define the binary relation R < S if us € u} The relation
< is a preorder the set of edges, since it is reflexive and
transitive. If R < S and S < R then we say that R, S are
source-equivalent and denote R ~ S. Notice that R ~ S
iff their source nodes ugr,us belong in the same strongly
connected component (SCC) of G; in particular, if R, S have
the same source node, ur = us, then R ~ S.

For R € E*, we define the following sets of coupled edges:

coupled®(R) = [R] U {S € E' | 3P : vg & us, P nu§ = &}
coupled™ (R) = [R] U {S € E' | 3P : vg < us, P N u;‘R =}

By definition, every edge S that is source-equivalent to R
is coupled with R. In addition, coupled®(R) (coupled™ (R)),
includes all inconsistent edges S whose source node us is in
the same weakly connected component as vg, in the graph
G —uf (G — ujy™ respectively). The notion of coupled® is
not necessary to express the dichotomy theorem, but it will

be heavily used in the algorithm of

EXAMPLE 3.3. Let us compule the coupled edges in our
running example, where E* = {R1, Rs,S,T}. We start by
computing the node-closures of all the four source nodes:

a® = {z,v}, 25 = {z,v,w}, 2% = {z,0}, 27T = {z,0,w},

u© = {u7yaw}7 u+,S = {%y,w,x,v,w}, U@ = {’U}, vl = {’U}

Next, we compute coupled™ (e) for every inconsistent edge
e. For example, the set coupled™ (R1) includes R1 and Rs,
because R1 ~ Rs. In addition, after we remove T =
{z,v,w} from the graph, the destination node y of Ry is still
weakly connected to the source node u of S, thus coupled™ (R1)
contains S; but y is no longer connected to the source node v
of T, therefore coupled™ (R1) does not contain T. By similar
reasoning:

coupled®(R,) ={Ri1, R3, S} coupledt (R1) = {Ru1, R3, S}

coupled®(R3) ={R1,R3,S,T} coupled™ (R3) = {R3}
coupled®(S) ={S} coupled™ (S) = {S}
coupled®(T) ={R1, R3,S, T} coupled™ (T) = {Ri1, R3, S, T}

implies:
COROLLARY 3.4. IfR e E*, coupled®(R) 2 coupled™ (R).

DEFINITION 3.5 (SPLITTABLE). Two edges R,S € E'
are coupled if R € coupled™ (S) and S € coupled™ (R).

The graph G is called unsplittable if there exists two cou-
pled edges R, S s.t. R # S. Otherwise, the graph is called
splittable.

The graph G[H] from our running example is splittable,
because the only pair of coupled edges are R1, Rs, which are
also source-equivalent. Indeed, any other pair is not coupled:
R4, S are not coupled because R1 ¢ coupled® (S); Ri1,T are
not coupled because T ¢ coupled’ (R1); etc.

We can now state our dichotomy theorem, which we will
prove in the rest of the paper.

THEOREM 3.6 (DicHOTOMY THEOREM). (1) IfG[Q)] is
splittable, then CERTAINTY (Q) is in PTIME. (2) If G[Q] is
unsplittable, then CERTAINTY (Q) is coNP-complete.

We end this section with a few observations. First, if @
consists of several weak connected components Q1,Qa, ...,
in other words, @Q;,Q; do not share any variables for all
i # j, then @Q is unsplittable iff some @Q; is unsplittable:
this follows from the fact that coupled® (R) is included in
the weakly connected component); that contains R. In
this case, implies that CERTAINTY(Q) is coNP-
complete iff CERTAINTY(Q;) is coNP-complete for some 4.

Second, if @ is strongly connected, then it is, by definition,
splittable: in this casesays that CERTAINTY(Q)
is in PTIME. In fact, the first step of our proof is to show
that every strongly connected query is in PTIME.

R(z,y) S(y, 2) T(z,)
(a1,b1) (b1,c1) (c1,a1)
(a1,b2) (b2, c1)

(az,b2) (b2, c2) (c2,a2)
(a3, bs) (b, c3) (c3,a3)
(as, ba) (ba, ca) (ca,as)
(aa, ba) (ba, c3) (c3,a4)

Figure 2: An inconsistent purified instance I for Cs.

Finally, we note that the property of being splittable or
unsplittable may change arbitrarily, as we add more edges to
the graph. For example, consider these three queries: Q1 =
R(§7 y)v Q2 = R(@» y)7 S(Zv y): Qs = R(Qv y)7 S(gv y)7 T(§7 y)7
where all three relations R, S, T are inconsistent. Then Q1, Q3
are splittable, while Q)2 is unsplittable, and therefore, their
complexities are PTIME, coNP-hard, PTIME. Indeed, in
Q2 we have coupledt (R) = coupled™’ (S) = {R, S}, therefore
R, S are coupled and in-equivalent R »# S, thus, Q2 is un-
splittable. On the other hand, in Q3 we haveEI coupledt (S) =
{S, T}, coupled™ (T) = {S,T}, and therefore R,S are no
longer coupled, nor are R,T: Q3 is splittable.

4. STRONGLY CONNECTED GRAPHS

If G[Q] is a strongly connected graph (SCG), then it is,
by definition, splittable. Our first step is to prove Part (1)

of [Theorem 3.6|in the special case when G[Q] is a strongly
connected, by showing that CERTAINTY(Q) is in PTIME.

We actually show an even stronger statement.

THEOREM 4.1. If G[Q] is strongly connected, Mq(I) is
representable and its compression Ag(I)can be computed in
polynomial time in the size of I.

As we discussed in[Section 2| CERTAINTY(Q) is false if and

only if Ag(I) = {}; hence, as a corollary we obtain:

COROLLARY 4.2. If G[Q] is a strongly connected graph,
CERTAINTY (Q) is in PTIME.

We start in by proving in the

special case when G[Q] is a directed cycle; we prove the

general case in [Subsection 4.2

4.1 A PTIME Algorithm for Cycles
For any k > 2, the cycle query C} is defined as:

Ck = Ri(z),22), R2(zy,23), . . ., Ri(z, 1)

Wijsen [15] describes a PTIME algorithm for computing
CERTAINTY(C2). We describe here a PTIME algorithm for
computing Ac, (I) (and thus for computing CERTAINTY(C})
for arbitrary k > 2 as well), called FRUGALC.

LEMMA 4.3. Let I be a purified instance relative to Cy.
Then, the instance graph Fc, (I) is a collection of disjoint
SCCs such that every edge has both endpoints in the same
SCC.

2The difference between Q2 and Qs is that in QQ2 we have

2% = {2}, while in Qs we have z7% = {z,y, z}.

Cy
T -0« S
s g & %/—>\£4
R
Rl A4 F R
S
e} o —>o—>
ay R by R as b3

Figure 3: The graph Fc, (I) for the instance in has
two SCC’s, F1 and F5.

PROOF. Let (u,v) be a directed edge in the graph. Since
I is purified, (u,v) must belong in a cycle and thus there
exists a directed path v — wu, implying that u,v are in the
same SCC. []

Algorithm. Fix k > 2. The algorithm FRUGALC takes
as input a purified instance I and returns the compression
Ac, (I) of Mg, (I), in four steps:

1. Compute the SCCs of Fg, (I): Fe,(I) = Firu...u
F,,, where each F; is an SCC, and there are no edges
between F;, F}; for ¢ # j.

2. Compute S = {i | F; has no cycle of length > k}.

3. For each i € S, define the or-set: A; = {(a1,...,ax) |
ai,...,ax cycle in F;).

4. Return: {A; | i€ S}.

Step [I] is clearly computable in PTIME. In Step [2| we
remove all SCC’s F; that contain a cycle of length > k:
to check that, enumerate over all simple paths of length
k+1in F; (there are at most O(n**')), and for each path
uo, U1, U2, - - ., U check whether there exists a path from wuy,
to up in F; — {u1,...,up—1}. After Step |2] if i € S, then
every cycle in F; has length k, and every edge is on a k-
cycle (because I is purified). Step I 3| constructs an or—set A;
consisting of all k-cycles of F; (there are at most O(n")).
The last step returns the set of all or-sets A;: this is a cor-
rect representation because no two or-sets
A;, Aj have any common constants (since they represent cy-
cles from different SCC’s). We will prove in the rest of the
section that Ac, (I) = {A; | i€ S}, and therefore the al-
gorithm correctly computes Ac, (I). Note that I = Cj iff
Ac,(I)={}if S= .

ExXAMPLE 4.4. We illustrate the algorithm on the query
Cs = R(z,y),S(y, 2), T(z,z). Consider the relations R, S,T
of the instance I in[Figure 4 and its graph Fc,(I) = F1 U Fs
shown in [Figure 3. The SCC Fi contains only cycles of
length 3: (a1,b1,c1), (a1,b2,c1) and (a2, bz, c2), whereas F»
contains a cycld’| of length 6: (as, bs, c3, a4, ba,ca). Therefore
the algorithm returns a set consisting of a single or-set:

Acy (I) = {{(a1,b1,c1), (a1, b2, c1), (az, b, c2))}

It remains to show that the algorithm is correct, and this
follows from two lemmas. Recall from [Subsection 2.2] that
Fc, (I) denotes the or-set of frugal repairs of I for Cj. As-
suming [is a purified instance, let I = I U lo U ... U Iy,
where each I; corresponds to some SCC of Fg, (I).

3Notice that every edge in F, is on some cycle of length 3
(since I is purified), yet F5 also contains a cycle of length 6.

LEMMA 4.5. For the frugal repairs of I, Fe, (I) = {r1 v
.U rm|7“1 € Fck (Il), ey m € fck (Im)>

In other words, the frugal repairs of I are obtained by
choosing, independently, a frugal repair r; for each SCC I,
then taking their union.

LEMMA 4.6. Let I be a purified instance relative to Cl,
such that Fe, (I) ts strongly connected. Then:

A}y if I has a cycle of length > k,
(a1, ... ak)} | a1,. ..,

Me, (1) = { ar cycle in Fg, (I)) else

The lemma says two things. On one hand, if I has a
cycle of length > k, then I ¥ C}. Consider the case when
all cycles in I have length k. In general, if r is a minimal
repair, then the full query C’,{ (r) may return any nonempty
set of k-cycles. The lemma states that if r is a frugal repair,
then C’,{ (r) returns ezactly one k-cycle, and, moreover, that
every k-cycle is returned on some frugal repair r.

We now apply the two lemmas to prove the correctness
of the algorithm. implies that, if I is strongly
connected and has no cycle of length > k, M¢, (I) is repre-
sented Ac, (I) = {{(a1,...,ar)|a1,...,ar cycle in Fe, (I))};
and if I has a cycle of length > k then Ac, (I) = {}.
implies that, if I has m SCC’s I = [U ... U Iy,
then Ac, (I) = Ac, (I1) U ... Ac, (Im). This completes the
correctness proof of the the algorithm.

We conclude with an observation on FO-expressibility.
Recall that [14] proves that the CERTAINTY(C?) is not first-
order (FO)-expressible. The following proposition completes
the complexity landscape for cycle queries.

PROPOSITION 4.7. For a cycle query Ci (where k > 1),
CERTAINTY (Cy) is FO-expressible if and only if Ci contains
at most one inconsistent edge.

4.2 A PTIME Algorithm for SCGs

We now present the general algorithm that computes the
compression Ag(I) for any strongly connected query Q. The
algorithm uses the following decomposition of the query
graph G[Q].

Let G = G[Q] be a query graph and Go € G be subgraph.
A chordal path for Gy is a simple, non—emptyﬂ path P :u~
v s.t. Go n P = {u,v}. If P consists of a single edge then
we call it a chord. With some abuse, we apply the same
terminology to queries: if the query @ can be written as
Qo, P, where Qo and P are sets of atoms s.t P is a simple
path’|from u to v, then we say that P is a chordal path for
Qo if they share only the variables u, v.

LEMMA 4.8 (CHORDAL PATH DECOMPOSITION). Let G

be strongly connected. Then there exists a sequence Gy <
- € Gp = G of subgraphs of G such that

1. Go is a simple cycle
2. For every i = 1,m, G; = Gi—1 v P;, where P; is a
chordal path of Gi—1.

4Recall that, when u = v, then a simple, non-empty path
from u to u is a cycle.

°Meaning that P = Ry (u, 1), R2(z1,22), ..., Rm(Tm—1,v),
all variables u,x1,...,xm—1 are distinct, and all variables
T1,...,Tm—1,v are distinct.

EXAMPLE 4.9. We will study the conjunctive query Ho =
R(z,y),S(y,2),T(2,2),U(y,1),V(t,2). The query admits
the following decomposition:

Go :G[QO] where QO = R(ga y)7 S(yv 2)7 T(&v iﬂ)
G1=Gou P where P = U(y,t),V(t, z)

Our algorithm for computing CERTAINTY(Q) for an SCC
@ uses a chordal path decomposition of () and applies the
following two procedures.

Procedure FrugalChord. Fix a query @Q of the form
Qo, R°(u,v), where R°(u,v) is a chord for Qo. The proce-
dure FRUGALCHORD takes as input an instance I and the
compact representation Ag,(I), and returns the compact
representation Ag(I). The procedure simply returns the
set:

Ag(I) ={A e Ag,(I) | Vte A : (t[u],t[v]) € R} (1)

In other words, the procedure computes a representation
of @ on I by having access to a representation to Qo on
I. Correctness follows from the following lemma, which is
proven in [9).

LEMMA 4.10. Let Q = Qo, R°(u,v) such that R°(u,v) is a
chord of Qo. If Mg, (I) is representable and its compression
is Aqy(I), then , Mg, (I) is also representable and its
compression is given by Eq..

Procedure FrugalChordPath. Fix a query Q of the
form Qo, P, where P is a chordal path from u to v for Qo.
The procedure FRUGALCHORDPATH takes as input an in-
stance I and the compact representation Ag,(I), and re-
turns the compact representation Ag(I), in six steps:

1. Assume Ag,(I) has m or-sets, each with ni,...,nm
elements:
Ago(I) = {A1,..., An}, Ai = (it tiz, .. ting) (2)

Denote n = . n;. Let a; for i = 1,m be m distinct
constants, and let b;; for i = 1,m, j = 1,n; be n
distinct constants. Denote tup(b;;) = t;; the tuple
encoded by b;;.

2. Create four new relations:

B' ={(ai,biy) | i = 1,m;5 = 1,ns}

BY ={(bij, mu(ti;)) |1 =1,m;j = 1,n;}
B ={(bij, mo(ti;)) | i =1,m;j = 1,n:}
By ={(mv(tij),ai) [i =1,m;j = 1,n:}

B' is of inconsistent type (hence the superscript “i”),
and BY, BS, Bj are of consistent type.

3. Assume the variables u,v are distinct, u # v: we dis-
cuss below the case u = v. Denote Cky3 and Q’:

Ck+3 =Bl(g7 b)7 Bf(b7 ’LL),
Ri(u, 1), ..., Re(zk—1,v), Bo(v, a)
Q' =C,5(a,bu 1, w1,0), B (b, v)
where Ri(u,z1),...,Ri(xk—1,v) is the chordal path
P, and a,b are new variables.

4. Use the algorithm FRUGALC to find the compact rep-
resentation Ac,_ , (1) for Crys.

5. Use the procedure FRUGALCHORD to find the compact
representation of Ag/ (1) for Q'
6. Return the following set of or-sets:

Aq(I) ={{(tup(ms (1)), Tvars(p)(t))|t € A) [A€ AQ’((?)I))}

We explain the algorithm next. In Step [I| we give fresh
names to each or-set A; in Ag,(I), and to each tuple ¢;; in
each or-set in A;: by the number of con-
stants needed is only polynomial in the size of the active do-
main of I. The crux of the algorithm is the table B*(a, b) cre-
ated in Step its repairs correspond precisely to a(Ag, (1)),
up to renaming of constants. To see this notice that each re-
pair of B" has the form {(a1,b14,), .-, (@m,bmj,,)} for arbi-
trary choices ji € [n1],...,Jm € [m]. Therefore, the set of
frugal repairs of B* is a(So), where So = {{(ai, bi;)|j = 1,1 |
i = 1,m}, which is precisely Eq. up to renaming of the
tuples by constants. The relation Bf decodes each constant
bi; by mapping it to the wu-projection of t;;; similarly for
B5. Clearly, both Bf, B5 are consistent, because every con-
stant b;; needs to be stored only once. The relation B§ is
a reverse mapping, which associates to each value of v the
name a; of the unique or-set A; that contains a tuple t;;
with that value in position v: the set A; is uniquely defined
because, by [Definition 2.6} for any distinct sets A;,, A, we
have I1,(A4;,) n I, (Asy) = &.

Step[3|transforms @ into a cycle Ck3 plus a chord B5 (b, v),
by simply replacing the entire subquery ¢ with the sin-
gle relation B'(a,b) (which is correct, since Ag,(I) is the
same as the set of repairs of BY) plus the decodings B{ (b, u),
B35(b,v): note that we only needed B (v, a) in order to close
the cycle Cr+3. The next two steps compute the encodings
Acy,, 5 (I) and Aq/(I) using the algorithm FRUGALC and
FRUGALCHORD respectively. Finally, the last step converts
back Ag/(I) into Ag(I) by expanding the constants b;; into
the tuples they encode, t;; = tup(b;;). The algorithm has
assumed u # v. If u = v are the same variable, the Ci3
is no longer a cycle: in that case, we split v into two vari-
ables u, v and add two consistent relations R°(u,v), S¢(v, u)
to the query, and replace the last relation Ry (xx—1,u) of P
with R (zr—1,v). The correctness of the algorithm follows
from:

LEMMA 4.11. Let Q be a query of the form Qo, P where
P is a chordal path from u to v for Qo, and let I be an
instance. Then, if Mq,(I) is representable and Aq,(I) is
its compact representation, then Mg (I) is also representable
and its compact representation is given by Eq.@.

Algorithm FrugalSCC. Let @ be a query that is strongly
connected. The algorithm FRUGALSCC takes as input an in-
stance I, and returns Ag (1), as follows. Let Qo, Q1,...,Qm
a chordal path decomposition for @ . Start
by computing Ag,(I) using algorithm FRUGALC. Next, for
each i = 1,m, use Ag, ,(I) and the procedure FRUGAL-
CHORDALPATH to compute Ag, (I). Return Ag,, (I).

ExaMPLE 4.12. Continuing we will show

how to compute Ap,(l2) where Iy is the instance shown

in [Figure J} We write Hy as Ho = Cs, P, where C3 =
R(z,9),5(y,2),T(z,x) and P = U(y,t),V(t,z). We start

by computing Cs on I2; one can checlﬁ that Acy(I2) =

6Every repair of I» contains exactly two cycles: (a1,b1,c1)
and one of (az, bz, c2) or (az,bs, c2).

R(z,y) S(y, 2) T(z,x) Ul(y, 1) Vit 2)
(a17bl) (bl,Cl) (Cl7a1) (b1>d) (d7 Cl)
(az,b2) (b2, c2) (c2,a2) (be, d) (d,c2)
(az,b3) (b3, c2) (b3, d)
Figure 4: An inconsistent purified instance I for Ha.
B(a, b) Bf(LL y) Bg(bv Z) BS(Q b)
(A1, [arbiea]) ([arbrca], br) ([arbica], er) (c1, A1)
(A2, [azbaca]) ([azbac2], b2) ([azbzez], c2) (c2, A2)
(A2, [az2bscz]) ([azbsca], bs) ([azbsca], c2)

Figure 5: The resulting instance I’ produced by the induc-
tive step for Ha.

{A1, Ao} where A1 = {(a1,b1,c1)), As = {(az, b2, c2), (az, bs, c2)).

Encode the two sets with the new constants Ai, A2, and
encode the three tuples with three new constants [al_blcl],
[a2bacz], [azbsca]. The new relations we constructed B*(a, b),

Bi(b,y), B5(b,2), B5(z,b) are shown in . Thus, we

have to compute the following queries:
Cs =B'(a,0), B (b,), Ur(y, 1), V (£, 2), B6 (2, 0)
Q' =C{(a,b,y,1,2), B5 (b, 2)
on the instance I' in . One can check that their

answers are:

Acs(I') = {{(A1, [arbic1], b1, d, c1), (A2, [azbacz], b2, d, c2),
(A2, [azbsca], b3, d, c2))}
AQ’<I/) = ACS (I’)

Mapping this to the original query Ha(x,y, z,t) by projecting
out the A; and merging the tuples, we obtain that

Ap, (I2) = {{(a1,b1, c1,d), (az, b2, c2,d), (a2, b3, c2, d))}

In particular, Io = Ha, because A, (I2) is nonempty.

5. THE PTIME ALGORITHM

In this section, we prove:

THEOREM 5.1. If the graph G[Q] is splittable, there exists
a PTIME algorithm that solves CERTAINTY (Q).

The polynomial time algorithm we present here is based
on the fact that if G[Q] is splittable, it has a very specific
structure that allows us to break it into smaller pieces that
we can solve independently; in other words, the problem is
self-reducible. The graph object that allows this is called
a separator, and we show in that it always

exists in G[Q]. Throughout this section, we will use the

graph G[H] of as a running example.
5.1 Separators

In this section, we define the notion of a separator, which is
central to the construction of the polynomial time algorithm
for deciding certainty on splittable graphs. We first need to
set up some notation.

Recall that ~ denotes a binary relation between edges
R,S e E': R~ Sif R and S are source-equivalent. Con-
sider the equivalence relation defined by ~ on the set of in-
consistent edges E°, and denote Ei/~ the quotient set and

[R] € E*/~ the equivalence class for an edge R € E*. For our
example graph G[H], we have R, ~ R3 (because R1, R2, R3
form a cycle), thus [R1] = {R1, R3}. Also S $[R:1], S<T,
hence '/~ = {[Ri]. [S], [T]}.

For any C € E*/~, define

+ def +.R ® def ®
cT = ﬂ Up and C¥ = ﬂ UR.
ReC ReC

Similar to how we have defined coupled* (R), coupled®(R)
for any R € E’, we define coupled™ (C), coupled®(C) for
CeE'/~:

coupled™ (C) déf{C} u{C'€eE'/~|3ReC,SeC" :
HP:URHUS,PGC_" =}

coupled®(C) déf{C} u{C'€eE'/~|3ReC,SeC :
EIP:URHUS,PGC@:@}

The definitions ”lift” the notion of coupling from a single
inconsistent edge to a set of inconsistent edges that forms
an equivalence class. Continuing our example, we have:

coupled” ({R1, Rs}) = {{R1, R3},{S}}
coupledt ({S}) = {{S}}
coupled” ({T}) = {{R1, R3},{T}, {S}}

Moreover, for G[H], the sets coupled™, coupled® coincide for
every equivalence class.

For C1,Cy € E'/~, we define a binary relation <®: we
write O <® O if there exists S € Cs such that ug € Cl®.

PROPOSITION 5.2. <9 is antisymmetric and transitive.

We can now define C1 <® 5 to be such that C; <® C;
and C; # C2. Then, following from <% is
a strict partial order. We will be particularly interested in
the maximal elements of this order, which we call sinks.

DEFINITION 5.3 (SINK). C € E'/~ is a sink if it is a
mazimal element of <®.

EXAMPLE 5.4. Since (up, =)z € u®(= u®), we have
{5} <® {R1,R3}. Also, since v e u%l A u%, {R1,R3} <®
{T}. By the transitivity of <®, we also obtain that {S} <®
{T}. Hence, {T} is the only sink of the graph G[H].

DEFINITION 5.5 (SEPARATOR). A sink C € E'/~ is a
separator if for every C' # C such that C' € coupled®(C),
we have that C' <® C.

In the specific case where Ei/~ contains a single sink C,
since <@ is a strict partial order, for any C’ € E*/~,C" # C,
we have that C' <® C and thus the single sink C' is trivially
a separator. Thus, for our example graph G[H]|, {T} is the
only separator.

In order to prove the existence of a separator, it is not a
sufficient condition that the graph is splittable. For example,
consider the splittable query Q@ = R'(z,v), S*(z,), T" (2,),
which contains two sinks, {R, S} and {T'}. It is easy to see
that {T} ¢ coupled®({R,S}), and {R, S} ¢ coupled®({T});
thus, G[Q] has no separator. Instead, we show the existence
of a separator for a graph that is splittable and f-closed.

DEFINITION 5.6 (F-CLOSED GRAPH). G is f-closed if for
+,R

every R e BY(Q), v§ nufy™ < uf.

Indeed, G[Q] is not f-closed, since v§ = u,’R =
{y} and u§ = {z}. We will show in that,
given a splittable graph G and an instance I, we can always
construct in polynomial time a splittable and f-closed graph
G’ and an instance I’ such that I = G iff I' = G.

We show in that, if G is splittable and f-
closed, there exists a separator, and in fact the separator
has an explicit construction:

THEOREM 5.7. IfG is a splittable and f-closed graph, then
C*? = argming,;, cepi/~ |coupled®(C)| is a separator.

In other words, the sink C with the smallest coupled®(C)
is a separator (there can be many). In the next subsection,
we use the existence of a separator to design a recursive
polynomial time algorithm for splittable graphs.

5.2 The Recursive Algorithm

We present here an algorithm, RECURSIVESPLIT, that takes

as input an instance I and a splittable and f-closed graph G
and returns True if I = G, otherwise False. The algorithm
is recursive on the number of inconsistent relations, |E*(G)|
of G. For the base case E‘(G) = J (all relations are con-
sistent), it is straightforward that RECURSIVESPLIT(I, G) =
True if and only if G(I) is true.

We next show how to compute RECURSIVESPLIT(I,G)
when |E*(G)| > 0. Since G is a splittable and f-closed graph,
[Theorem 5.7|tells us that there exists a separator C. We par-
tition the edges of E* into a left (£) and right (R) set as
follows:

£° = {Re E' | [R] € coupled®(C)} , R =E"\L°

Let Sc denote the unique SCC that contains all the sources
for the edges in C. Recall from that one can
use the algorithm FRUGALSCC to compute the compression
Asy (I) of M (I)in polynomial time, since Sc¢ is a strongly
connected graph. Let A denote the set of all tuples that
appear in some or-set of As,. (), and B = Iloe (GY(I)). For
some a € A, we say that a is aligned with b € BB, denoted a| b,
if there exists a tuple ¢t € G¥ (I) such that [V (Sc)] = a and
t[C®] = b. Also, define algn(b) = {ae A | a|b}. Observe
that a can be aligned with at most one b, since there exists a
consistent directed path from every node of V(S¢) to every
node of C®. Notice also that when C® = ¢J, all the tuples
in A are vacuously aligned with the empty tuple ().

For every b € B, choose a tuple t®™ e G¥(I) such that
t®P[C®] = b. For every tuple a € A, we now define a
subinstance I[a] C I such that:

{(t®[ur),t™[vr]) | b : a|b} if ReRY,
R = ${(t[ur), tlvr]) | te GF (1), [V (Sc)] = a} if Re L7,
R’ otherwise.

Notice that if some relation R belongs in S¢, then it must
contain exactly one tuple, while if ur belongs in V(Sc¢),
then R contains exactly one key-group. On the other
hand, the relations that do not belong in £€ contain only
one tuple that contributes to t®),

The first key idea behind the construction of subinstances
is captured by the following lemma, which shows that certain
subinstances are independent in the relations of £°.

LEMMA 5.8. Let a1,a2 € A. The instances I[a1], I[az]
share no key-groups in any relation R € L if either of the
following two conditions hold:

1. aj,a belong in different or-sets of As, (I).
2. ai Hb17aQHb2, and b1 # ba.

The second key idea is that computing whether I[a] = G
can be reduced to a computation where GG contains strictly
less inconsistent relations. Indeed, recall that in I[a], ev-
ery relation R; € C, i = 1,...,m, contains exactly one
key-group, R;i(alur;],—) (and if it both vertices of R are
in Sc, it contains exactly one tuple). We can now apply
a "brute force” approach and try all the possible combina-
tions of choices for these key-groups, since they are poly-
nomially many: each such combination will create a new
instance where the relations in C will be consistent, and
thus certainty for G can be computed in polynomial time
by induction. It holds that I[a] &= G iff every new instance
is certain for G. The procedure SIMPLIFY(I[a], G) describes
the algorithm we just sketched.

Algorithm 1: SiMpLIFY(I[a], G)

K ={(c1,...,em) | Vi: Ri(alur,],c)}

G’ < G where all edges of C are of consistent type
Vece K:

I[a]® « (I[a)\UZ, Ri(a[ur,]. -) Ui, Ri(alur,],c:)
return (Yc e K: RECURSIVESPLIT(I[a]®, G') = True)

Algorithm 2: RECURSIVESPLIT(I, G)
if £*(G) = & then return G(I)
Find a separator C' of G
B —Iee(G' (1))
Asy (I) « FRUGALSCC(I, Sc)
for be B do
if 3 or-set Ae As, (1) s.t.
Va € A nalgn(b) = SIMPLIFY(I[a], G) = True then

r[b] < any repair of (UaeaZgn(b> I[a])
else

| r[b] =&

end

R' A (Upesrlb]) if Re L€,
Rf otherwise.

VRe E(G): R = {

G’ — G where all edges in £E are of consistent type
return RECURSIVESPLIT(I", G")

We can now analyze the algorithm RECURSIVESPLIT, and
show that runs in polynomial time and is correct. For its
running time, observe first that for the final recursive call
on I,G’, the graph G’ has at most |E*(G)| — |£°| < |[EY(Q)|
inconsistent edges, so by the induction argument it can be
computed in polynomial time. Second, the algorithm calls
SIMPLIFY(I[a],G) at most |.A| times, and we have shown
that each such call can be computed in polynomial time.

We next argue that RECURSIVESPLIT correctly computes
whether I = G or not. We prove in [9]:

LEMMA 5.9. Uacaign(w) (2] E G iff there exists an or-set
A€ As, (I) such that for every a€ A nalgn(b), I[a] = G.

Given a repair 7 of I and a repair 7’ of {,cq9n) I[2], we

define mergec(r, r’) as a new repair r,,, of I such that for

any key-group R(a,—), if R ¢ £ or r’ does not contain the
key-group, 7y, includes the choice of r; otherwise, it includes
the choice of /. In other words, to construct r,, we let r’
overwrite r only in the relations of £°.

LEMMA 5.10. For any frugal repair v of I:

1 If Uncatgn(v) 112l # G then b ¢ [1oe G (r).
2. If Uacaignewy I[a] = G then for any repair r' of the
I[a], G(r) = G(mergeC (r,1")).

instance Jacaign (b

To see why [Lemma 5.9| and [Lemma 5.10] imply the cor-
rectness of the algorithm, consider first the case where for
some b € B, for any or-set A € Ag,(I), there exists some
a € A that is aligned with b such that I[a] ¥ G. Then,
Lemma 5.9| tells us that Uaealgn(b) I[a] ¥ G and thus, by
Lemma 5.10{(1), for every frugal repair r of I, b ¢ e G7 (7).
Hence, all the key-groups of the relations in L€ that appear
in I[a], for any a aligned with b, can be safely removed from
the instance: this is exactly what setting r[b] = (J achieves.
On the other hand, assume that for some b € B, there ex-
ists an or-set A € Ag, (I), where for every a € A n algn(b),
I[a] & G. Then, tells us that (J,c,ignm) (2] F
G, and by [Lemma 5.10(2), whether the instance is certain
or not is independent of the choice for the key-groups of £¢
that are contained in Uaealgn(b) I[a].

5.3 f-closed Graphs

In this subsection, we show that we can always reduce in
polynomial time G with instance I to an f-closed graph G’
with instance I’ such that Mg(I) = Mg/ (I'). For this, we
exploit the following technical lemma.

LEMMA 5.11. Let R € E' and v € uE’R N v%. Let P :
UR,ER, VR, ...,V be the directed path from ur to v with er
as its first edge. If there exist (a,b1), (a,b2) € Iy, o (PY(I))
such that b1 # ba, then no frugal repair of G contains a.

Now, consider some instance I of G such that G is not f-
closed. We present a polynomial time algorithm, F-CLOSURE,
that reduces the graph to an f-closed graph, while keeping
the representation M the same. Notice that the algorithm
has no specific requirements on the structure of G.

Algorithm 3: F-CLOSURE(], G)

Ic < I, G¢ <« G

while 3R e E'(Gc), ve V(Ge) such that

ve (up™ no8)\uf do
P =ugr,er,vR,...,v
T =y o(P7(1))
Ic < Ic u{(a,b) e T | #(a,b') € T where b’ # b}
Ge «— (V(Ge), E(Ge) v {(ur,v)})

end

return Ic,Gce

PROPOSITION 5.12. Let I be an instance of graph G. F-
CLOSURE returns an instance Ic of an f-closed graph Gc in
polynomial time such that Ma(I) = Mea,(Ic).

5.4 Proof Sketch of Separator Existence
We sketch here the proof for which states

that C°P = arg ming, cepi/~ [coupled®(C)] is a separator.

Recall that we want to show that for any C' € E*/~, where
C # C*°P either C' <® C* or C ¢ coupled®(C*P). We
will show next that it suffices to consider only the sinks
C € E'/~, and show that for any sink C # C*P C ¢
coupled®(C*°?). Indeed, we show in [9] that for a sink C,
the set coupled®(C) is upward closed: if Cy € coupled®(C)
and Cy <® (1, then also C € coupled®(C). Note that
coupled®(C) is not necessarily upward closed for any C' that
is not a sink.

LEMMA 5.13. IfC is a sink, coupled®(C) is upward closed.

Now, suppose that we have shown that for any sink C #
C*P, C ¢ coupled®(C*°?), and consider any C' € E'/~,
C' # C that is not a sink. Then ¢’ <® C” for some C” €
E'/~ that is a sink; hence, C” ¢ coupled®(C*?). However,
since C*°°? is a sink, we can apply to conclude
that C’ ¢ coupled®(C*°P).

The bulk of the proof consists of two technical results,
which we prove in detail in the full version of this paper [9].
The first result tells us that for a sink C, the two types of
coupling coincide: coupled™ (C) = coupled®(C).

PROPOSITION 5.14. Let G be a splittable and f-closed graph.
For any sink C € E'/~, Ct = C®,

The second result tells us that for two distinct equivalence
classes C1,Co where C1 € coupledt (Ca), coupledt(Ch) is
strictly contained in coupled™ (C2).

PROPOSITION 5.15. Let G a splittable graph and C1,C2 €
E*/~ such that Cy # C>. Then,

1. Either C1 ¢ coupled™ (C2) or Ca ¢ coupled™ (C1).
2. If C1 € coupled™ (Cs), coupled™ (C1) < coupled™ (C>).

Now, consider a sink C' # C*?. If C € coupled™ (C*°),
then by [Proposition 5.15(2) and [Proposition 5.14|it must be
that coupled®(C*?) = coupled™ (C*P) > coupledt(C) =
coupled®(C). However, this contradicts the minimality of
coupled®(C*°P), and proves our theorem.

6. THE CONP-COMPLETE CASE
In this section, we prove part (2) of [Theorem 3.6} if G[Q]

is unsplittable, then CERTAINTY(Q) is coNP-complete. We
reduce CERTAINTY(Q) from MONOTONE-3SAT, which is a
special case of 3SAT where each clause contains only posi-
tive or only negative literals. We say that a clause is posi-
tive (negative) if it contains only positive (negative) literals.
MONOTONE-3SAT is known to be NP-complete [7].

Given an instance M of MONOTONE-3SAT, let us denote
by ® the set of all clauses, X the set of all variables, X*
the set of all literals and B = {T', F'} (true, false). Moreover,
let us define T = ® x B = {(¢,2%) | 2* € ¢,¢ € ®} and
1 = {()}. We order the set £ = {L,B,X,®, X* T} as
shown in 1 and T are the minimal and maximal
elements, and B < ®, X < X* and B < X*. The reader
may check that £ is a lattice. For example, ® A X* = B
and Bv X = X*.

DEFINITION 6.1 (VALID LABELING). Let R,S € E*. A
labeling L : V(G) — L is (R, S)-valid if the following condi-
tions hold:

T

N

X* literal

]

assignment B X variable
i

Figure 6: The lattice of the set of labels L.

clause

L(ug) = ® and L(vg) € {T, X, X*}.

L(us) = X and L(vs) € {B, X*}.

For every T € E'\{R, S}, L(ur) = L(vr).
3Pgr : vr < us such that Yv € Pgr,L(v) = X.
3Ps : vs <> ur such that Vv € Ps,L(v) = B

PROPOSITION 6.2. If R,S € E* are coupled and S £ R,
then G admits a (R, S)-valid labeling.

SARSENCIR N

If the query @ has an unsplittable graph G = G[Q)], then
there exists two coupled edges R, S s.t. R # S. This im-
plies that we cannot have both R < S and § < R, and
the proposition tells us that G has an (R, S)-valid labeling.
We will show later how to use this labeling to reduce M to
CERTAINTY(Q). First, we prove the proposition.

PROOF. Since S € coupled™ (R), there exists a path Pg :
VR < us s.t. Pr N u+ R = @, similarly, there exists a path

Ps : vg <> ugr s.t. Ps mus = (. Notice that, in particular,
Pr contains the source and destination nodes vgr,us, and,
similarly, Ps contains the nodes vs, ur, which implies:

Vs §éu+s UR §éu+s (4)

We define the label L as follows. Let W = {ugr,vr, us, vs}
and set the initial labels for the four nodes in W:

Lo(ur) =®, Lo(vr) =X, Lo(vs) =X"

+,R +,R

VR ¢ up us ¢ ug

=T, Lo(us)

For every v € V(G), let W'(v) = {w|we W,vew
where w9 is the set of nodes reachable from w by a
directed path that does not go through either R or S. In
other words, W™ (v) is the subset of the four distinguished
nodes that can reach v without using R or S. Trivially,
w € W (w), for every w € W. Define the labeling L as
follows:

Yo e V(Q) = A{L(w)

We will show that this labeling is (R, S)-valid. We start by
checking properties (1)) and (. Consider each of the four
distinguished nodes in W

+,R,S}
)

) lwe W™ (v)}

ur: The set W' (ug) is either {ugr} or {ugr,vr}; indeed
vs ¢ W' (ur) because S £ R, and us ¢ W' (ur) by
Eq.(@). By definition, either L(ug) = ® or L(ugr) =
® A T = ®; in both cases L(ur) = ®.

us: We have {us} € W '(us) € {us,vr,vs}, because
Eq. implies ug ¢ uE’R‘S. This implies X = Lo(us) =
L(’u,s) = Lo(’l,Ls)/\Lo(UR)/\Lo(vs) = XATAX* = X,
hence L(us) = X.

vr: We have {vr} < Wﬁl(vR) c {us,vr,vs}, because Eq.
implies vg ¢ u;’R’S. Therefore, T = L(vr) = X AT A
X* = X, implying L(’UR) e{X,X* T}

vg: We have {vg} S W_ (vs) € {ur, vr, vs}, because Eq.
implies vs ¢ ug’ TS Therefore, X* > L(vs) = @ A
T A X* =B, implying L(us) € {B, X*}.

To show property . conmder an edge er = (ur,vr),
T # R,S. Then W™ (ur) € W™ (vr) which implies L(ur) =
L(UT)

For , let Pr be the undirected path defined earlier s.t.
Pr muR’R = ¥; we also have Pgr mu;’R’S = . Letve Pgr
be any node on this path. Then ug ¢ W™ (v), which implies
that W™ (v) € {vr,us, vs}, and therefore L(v) = T A X A
X*=X.

Finally, for , let Ps be the undirected path defined
earlier, s.t. Ps N ug - = (. For any node v € Ps we have
W_l(v) c {ur,vR,vs}, thus L(v) 2@ A T A X*=B.

Next, we show how to use a valid labeling to reduce the
MONOTONE-3SAT ¢ to CERTAINTY(Q).

The Functions f1,1,. For any pair of sets Li, L2 € £
such that L1 > Lo, we define a function fr,r, : L1 — L2, as
follows. First, for the seven pairs L1, L2 where L1 coversﬂ
Lo, we define fL1L2 directly:

(2,) foB(¢) = T if ¢ is a positive clause, else F'
(X*,X) « fxx x(@") = fxx x(a7) =2

(X B) : fxxp(e") =T and fxsp(z”) =F

(T,) fre((¢,z¥) =¢

(T, X*) + frxx((¢,2%)) = a*

(ij-)v(L) fen(B) = fxu(@) = ()

Next, we define frr = idy (the identity on L) and fr, 1, =
frors © fLin, for all Ly = Lo > Ls. Readers familiar with
category theory will notice that we have transformed the
lattice £ into a category.

Instance Construction. We define the instance I, by
defining a binary relation T for every relation name T. Let
L, = L(ur), Ly = L(vr). We distinguish two cases, de-
pending on whether T is R, S or not.

If T # R, T # S, then we know that L1 > Ls. Define
T' = {(a,b) | a€ L1,b = fr,1,(a) € L2}. Notice that the
first attribute of 77 is a key (because fr,1, is a function),
and therefore T always satisfies the key constraint.

IfT = RorT =S, then L1y * Lo. In this case we
construct RT and S7 to be a certain set of pairs (a,b), a €
L1,b € Lo, where b is obtained from a by either going “back”
(b) in the lattice, or going “back and forth” (b-f), depending
on the combination of L1, Ly given by

(®,T) : I:{(ab)lefT_q»()} (b)

(@, X*) : R" = {(a,b) | 3ce fTg(a) : fr xx(c) = b} (b-f)
(@, X) : RI ={(a,b) | 3c€ f7 5(a) : fr.x(c) = b} (b)

(X, X*) : 8T ={(a,0) | be fxi x(a)} (D)

(X,B) : " ={(a,b) | 3c€ fxi x(a) : fxxn(c) = b} (b-f)
Notice that in all cases, R’ and ST are inconsistent. For

example, in the first case, a repair of RT chooses for each
clause ¢ € @ a value (¢, b) with b e B.

Tn a lattice, L1 covers Lo if L1 > Lo and there is no Ls s.t.
L1 > L3 > L2.

N

<
~

R
t: 1 Q O:2:B

T

y: X

n

Figure 7: A query graph with a (R, S)-valid labeling.

EXAMPLE 6.3. Consider the formula Y = ¢1 A ¢2, where
¢ = (zTvyTvzet) and ¢2 = (27 vw ™ vt"). If the inconsis-
tent relation R is labeled with (®, X), it will be populated by
the tuples (¢1,),(¢1,9), (¢1,2) and (92, 2), (¢2,w), (#2,1).
On the other hand, a consistent relation T # R, S that is
labeled with (D,B) will contain the tuples (¢1,T), (P2, F).

Thus, given a valid labeling we can create a database in-
stance using the above construction. We prove in [9):

PROPOSITION 6.4. Let I be the instance that corresponds
to a (R,S)-valid labeling according to an instance M of
MONOTONE-3SAT. Then, I ¥ Q if and only if M has a
satisfying assignment.

EXAMPLE 6.5. Consider the query of [Figure 7 Notice
that R < S. Also, ur = z, vp = us = y and vs = z.
Since LT (x) = {Lo(ugr)} = {®}, L(z) = ®. Also, L*(y) =
{Lo(vr), Lo(us)} = {T,X}, hence L(y) = T A X = X.
For wvariable z, LT (2) = {Lo(vs), Lo(ur)} = {®, X*} and
L(Z) =d A X* = B. L+(t) = {Lo(uR),Lo(UR),Lo(uS)} =
{®,T,X} and hence L(t) =P A T A X = L.

7. RELATED WORK

The consistent query answering framework was first pro-
posed by Arenas et al. in [2]. Fuxman and Miller (6] fo-
cused on primary key constraints, with the goal of specify-
ing conjunctive queries where CERTAINTY(Q) is first-order
expressible, i.e. can be represented as a boolean first-order
query over the inconsistent database. They presented a class
of acyclic conjunctive queries w/o self-joins, called Cforest,
that allows such first-order rewriting. Further, Fuxman et
al. [5] designed and built a system that supported the query
rewriting functionality for consistent query answering.

In a series of papers [12| |14], Wijsen improved on the
results for first-order expressibility. The author presented
a necessary and sufficient syntactic condition for the first-
order expressibility for acyclic conjunctive queries without
self-joins. In a later paper, Wijsen [13| gave a polynomial
time algorithm for the query Q2 = R(z,y),S(y,z), which
is known to be not first-order expressible. Qs is the first
query that was proven to be tractable even though it does
not admit a first-order rewriting. Kolaitis and Pema [3]
proved a dichotomy for the complexity of CERTAINTY(Q)
when the query has only two atoms and no self-joins into
polynomial time and coNP-complete. Finally, Wijsen [15]
recently classified several acyclic queries into PTIME and
coNP-complete, without however showing the complete di-
chotomy for acyclic queries without self-joins.

A relevant problem to consistent query answering is the
counting version of the problem: given a query and an incon-
sistent database, count the number of repairs that satisfy the

query. Maslowski and Wijsen [11] showed that this problem
admits a dichotomy in P and #P-complete for conjunctive
queries without self-joins.

Finally, we should mention that the problem of consistent
query answering is closely related to probabilistic databases,
in particular disjoint-independent probabilistic databases |4].
Wijsen in [15] discusses the precise connection between the
complexity of evaluating a query @ on probabilistic databases
and CERTAINTY(Q).

8. CONCLUSION

In this paper, we make significant progress towards prov-
ing a dichotomy on the complexity of CERTAINTY(Q), study-
ing the case where @ is a Conjunctive Query without self-
joins consisting of atoms with simple keys or keys contain-
ing all attributes. It remains a fascinating open question
whether a dichotomy exists for general conjunctive queries,
even in the case where there are no self-joins.

Acknowledgments. This work is supported in part by
the NSF through NSF grant I11S-0915054 and IIS-1115188.

9f1] &Eggglgﬁicﬁgl, and V. Vianu. Foundations of

Databases. Addison-Wesley, 1995.

[2] M. Arenas, L. E. Bertossi, and J. Chomicki.
Consistent query answers in inconsistent databases. In
PODS, pages 68-79. ACM Press, 1999.

[3] J. Chomicki and J. Marcinkowski. Minimal-change
integrity maintenance using tuple deletions. Inf.
Comput., 197(1-2):90-121, 2005.

[4] N. N. Dalvi and D. Suciu. Management of
probabilistic data: foundations and challenges. In
PODS, pages 1-12. ACM, 2007.

[5] A. Fuxman, D. Fuxman, and R. J. Miller. Conquer: A
system for efficient querying over inconsistent
databases. In VLDB, pages 1354-1357. ACM, 2005.

[6] A. Fuxman and R. J. Miller. First-order query
rewriting for inconsistent databases. J. Comput. Syst.
Sci., 73(4):610-635, 2007.

[7] M. R. Garey and D. S. Johnson. Computers and
Intractability: A Guide to the Theory of
NP-Completeness. W. H. Freeman & Co., New York,
NY, USA, 1979.

[8] P. G. Kolaitis and E. Pema. A dichotomy in the
complexity of consistent query answering for queries
with two atoms. Inf. Process. Lett., 112(3):77-85,
2012.

[9] P. Koutris and D. Suciu. A dichotomy on the
complexity of consistent query answering for atoms
with simple keys. CoRR, abs/1212.6636, 2012.

[10] L. Libkin and L. Wong. Semantic representations and
query languages for or-sets. In PODS, pages 37-48.
ACM Press, 1993.

[11] D. Maslowski and J. Wijsen. On counting database
repairs. In LID. ACM, 2011.

[12] J. Wijsen. Consistent query answering under primary
keys: a characterization of tractable queries. In ICDT,
volume 361 of ACM International Conference
Proceeding Series. ACM, 2009.

[13] J. Wijsen. On the first-order expressibility of
computing certain answers to conjunctive queries over
uncertain databases. In PODS. ACM, 2010.

[14] J. Wijsen. A remark on the complexity of consistent
conjunctive query answering under primary key
violations. Inf. Process. Lett., 110(21), 2010.

[15] J. Wijsen. Charting the tractability frontier of certain
conjunctive query answering. In PODS. ACM, 2013.

	Introduction
	Preliminaries
	Frugal Repairs
	Representability
	Purified Instances
	The Query Graph
	The Instance Graph

	The Dichotomy Theorem
	Strongly Connected Graphs
	A PTIME Algorithm for Cycles
	A PTIME Algorithm for SCGs

	The PTIME algorithm
	Separators
	The Recursive Algorithm
	f-closed Graphs
	Proof Sketch of Separator Existence

	The coNP-complete Case
	Related Work
	Conclusion
	References

