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ABSTRACT individual facts are influential an important and non-trivial task.

With these observations in mind, we advocate an alternative to
&omplete lineage calleabproximate lineagelnformally, the spirit
of approximate lineage is to compress the data by tracking only the
most influential facts in the derivation. This approach allows us to
(poth d@ficiently answer queries, since the data is much smaller, and
also to directly return the most important derivations. We motivate
our study of approximate lineage by discussing two application do-
mains: (1) large scientific databases and (2) similarity data. We
show that approximate lineage can compress the data by up to two
'Qrders of magnitudeg.g. 100s of MB to 1MB, while providing
high-quality explanations.

Application (1): Large Scientific databasedn large scientific
h databases, lineage is used to integrate data from several sources

is more aggressive and can provide higher compression ratios, an 12]. Tges_e Tources aLe combinedkby bﬁtm large conc'jscgtm, .
which is based on Fourier approximations of Boolean expressions. [14]: and single research groups. A key challenge faced by scien-

In this paper we define approximate lineage formally, describe al- tists is that facts from dlierent sources may not be trusted_ equally.
gorithms to compute approximate lineage and prove formally their FOr €xample, the Gene Ontology Database (GO) [14] is a large

error bounds, and validate our approach experimentally on a real (4GB) freely available database of genes and proteins that is in-
data set tegrated by a consortium of researchers. For scientists, the most

important data stored in GO is a set of associations between pro-

teins and their functions. These associations are integrated by GO
1. INTRODUCTION from many sources, such as PubMed articles [45], raw experimen-

In probabilistic databasebneageis fundamental to processing  tal data, data from SWISS-PROT [9], and automatically inferred

probabilistic queries and understanding the data. Many state-of- matchings. GO tracks the provenance of each association, using
the-art systems use@mplete approaghe.g. Trio [7] or Mystiq what we callatoms An atom is simply a tuple that contains a de-
[16, 46], in which the lineage for a tupleis a Boolean formula  scription of the source of a statement. An example atoiDiisX's
which represents all derivations &f In this paper, we observe  PubMed article PMID:12593804"Tracking provenance is crucial
that for many applications, it is often unnecessary for the system in GO because much of the data is of relatively low quality: ap-
to painstakingly track every derivation. A consequence of ignor- proximately 96% of the more than 19 million atoms stored in GO
ing some derivations is that our system may return an approximate are automatically inferred. To model these trust issues, our system
query probability such as. P01+ 0.002, instead of the true value ~ associates each atom with a probability whose value reflects our
of 0.7. An application may be able to tolerate thisfelience, es- trust in that particular annotation. Fig. 1 illustrates such a database.

pecially if the ap_proxmate answer can be obtaln(_ed significantly Example 1.1 A statement derivable from GO is, “Dr. X claimed
faster. A second issue is that although a complete lineage approach, p,pbMed PMID:12593804 that the gene Argonaute2 (AGO?2) is
explains all derivations of a tuple, it does not tell us which facts are ,oved in cell death’[26]. In our model, one way to view this
the most influential in that derivation. In large data sets, a deriva- i nat there is a factthe gene Argonauiez is involved in cell
tion may become extremely large because it aggregates together aath and there is an atonDr. X made the claim in PubMed
large number of individual facts. This makes determining which pniD:12593804 If we trust Dr. X, then we assign a high confi-
dence value to this atom. This is reflected in Fig. 1 since the atom,
X1, has a high probabilityg. More complicated annotations can
Permission to copy without fee all or part of this material is granted provided he derived e.g. via query processing. An example is the vigin
that the copies are not made or distributed for direct commercial advantage, Fig. 1, that asks for gene products that share a process with the gene
the VLDB copyright notice and the title of the publication and its date appear, A li, The tuple. AGO?2 that iV is derived f
and notice is given that copying is by permission of the Very Large Data acil. € tple, %), tha appegrs : 'S_ e"rlve rom"
Base Endowment. To copy otherwise, or to republish, to post on servers the facts that both AGO2 and Aac11 are involved in “cell death” (
or to redistribute to lists, requires a fee and/or special permission from the andt;) and “embryonic developmentty(andts); these tuples use
publisher, ACM. the atomsx; (twice), x, andxs shown in the Annotations table.

VLDB ‘08, August 24-30, 2008, Auckland, New Zealand . . . . .
Copyright 2008 VLDB Endowment, ACM 000-0-00000-000-0/00/00. A benefit of annotating the data with confidence scores is that

In probabilistic databasedineageis fundamental to both query
processing and understanding the data. Current systems s.a. Tri
or Mystiq use acomplete approacin which the lineage for a tu-
pletis a Boolean formula which represents all derivations dh
large databases lineage formulas can become huge: in one publi
database (the Gene Ontology) we often observed 10MB of lineage
(provenance) data for a single tuple. In this paper we propose to
useapproximate lineagewhich is a much smaller formula keep-
ing track of only the most important derivations, which the system
can use to process queries and provide explanations. We discuss i
detail two specific kinds of approximate lineage: (1) a conservative
approximation called dficient lineage that records the most impor-
tant derivations for each tuple, and (2) polynomial lineage, whic



ProcesskK) Annotations (Atoms)

Gene Product Process A Atom | Code Description P
(ta) AGO2 “Cell Death” X1 X1 TAS “Dr. X’s PubMed PMID:12593804" 2
(t2) AGO2 “Embryonic Development”|| x; X2 | NAS | “Dr. Y's RA Private Communication” || 1
(ta) AGO2 “Gland development” || x xs | IEA | “Inferred from Computational Similarity’ %
(ta) Aacll “Cell Death” Xo
(ts) Aacll “Embroynic Development’|| x3

Level | DB (Complete Lineage) Level Il Lineage (Approximate)
Type Lineage Formula
V(y) = P(x,y), P(Aacll’y), x # ‘Aacll’ Sufficient L= XxAx
Gene Product 4 Arithmetization A2 = x (1 - (1 - x)(1 - X3))
() [ AGOZ [ (xanx)V(xnXs) Polynomial ~ F = 2+ Z(6- 1)+ L(x- 1)

Figure 1: Process (P) relates each gene product to a procesg.g. AG02 is involved in “cell death”. Each tuple in Process has

an annotation from the set of atoms. An atom,x for i = 1,2, 3, is a piece of evidence that has an associated probabilitg,g. %

is the proposition that we trust “Dr. X’s PubMed article PMID:12593804; which we assign probability%. V is a view that asks for
“Gene Products that share a process with a product ‘Aac1BelowV'’s definition is its output in the original database with a complete
approach. At the right examples of approximate lineage functions we consider are listed. The compressed database is obtained by
replacing A with one of these functionse.g.;li. This database is inspired by the Gene Ontology (GO) database [14].The termisgvel

I) and (Level Il) are specific to our approach and defined in (Sec. 1.1).

the scientist can now obtain thieliability of each query answer.  high precision (80%- 100% of the top 10 influential atoms). In

To compute the reliability value in a complete approach, we may both cases, we can conduct these exploration tasks without directly

be forced to process all the lineage for a given tuple. This is chal- accessing the raw data.

lenging, because the lineage can be very large. This problem is not Application (2): Managing Similarity Scores Applications

unique to GO. For example, [13] reports that a 250MB biological that manage similarity scores can benefit from approximate lineage.

database has 6GB of lineage. In this work, we show how to use Such applications include managing data from object reconcilia-

approximate lineagéo effectively compress the lineage more than tion procedures [3, 34] or similarity scores between users, such as

two orders of magnitude, even for extremely low error rates. Im- iLike.com. IniLike, the system automatically assigns a music com-

portantly, our compression techniques allow us to process queriespatibility score between friends. The similarity score between two

directly on the compressed data. In our experiments, we show thatusers,e.g. Bob and Joe, has a lineage: It is a function of many

this can result in up to two orders of magnitude mafent pro- atomic facts,e.g. which songs they listen to and how frequently,

cessing than a complete approach. which artists they likeetc. All of these atomic facts are combined
An additional important activity for scientists is understanding into a single numeric score which is then converted guantita-

the data; the role of the database in this task is to provide interactivetive buckets,e.g. high, medium and low. Intuitively, to compute

results to hone the scientist's knowledge. As a result, we cannot such rough buckets, it is unnecessary to precisely maintain every

tolerate long delays. For example, the lineage of even a single tuplebit of lineage. However, this painstaking computation is required

in the gene ontology database may be 9MB. Consider a scientistby a complete approach. In this paper, we show how to use approx-

who finds the result o¥ in Fig 1 surprising: One of her goals may imate lineage to féectively compress object reconciliation data in

be to find out whyts is returned by the systemg. she wants a the IMDB database [35].

suficient explanation as to why AGO2 was returned. The system

would return that thenost likely explanatioiis that we trust Dr.X .

that AGO2 is related to cell deatly) and Dr.Y's RA that Aacll 1.1 Overview of our Approach

is also related to cell deathy). An alternative explanation usés At a high level, both of our example applications, large scientific

and the automatic similarity computatior)( However, the first ~ data and managing similarity scores, manage data that is annotated

explanation is more likely, since the annotation associatedtwith ~ With probabilities. In both applications, we propose a two-level

(%) is more likely than the annotation tf (x3), herei = p(x) = architecture: Thé&evel Idatabase is a [arge, h!gh-quality database

p(Xs) = % that uses a complete approach and is queried mfrequently_. The
A scientist also needs to understand tifee of her trust policy Level Il database is much smaller, and uses an approximate lineage

on the reliability score ofs. Specifically, she needs to know which ~ System. A user conducts her query and exploration tasks on the

atom is the mosinfluentialto computing the reliability fots. In Level Il database, which is the focus of this paper.

this case, the scientist is relatively sure that AGO2 is associated The key technical idea of this work spproximate lineage

with cell death, since it is assigned a scoreof However, the WhICh is a strict generahzatlon of complete_ lineage. Abstractly,

key new clement leading to this surprising result is that Aac11 is lineage is a functiont that maps each tuplein a database to a

also associated “cell death”, which is supported by the atem Boolean formulay; over a fixed set of Boolean atoms. For example

the statement of Dr. Y’s RA. Concretely, is the most influential N Fig. 1, the lineage of the tuptg s A, = (X1 A X2) V (X1 A Xg). I

atom because changing’s value will change the reliability ofs this paper, we propose two instantiations of approximate lineage: a
more than changing any other atom. In our experiments, we show Conservative approximatiosificient lineage and a more aggres-
that we can find sflicient explanations with high precisioa.g. we sive approximationpolynomial lineage

can find the top 10 influential explanations with between 70% and  In sufficient lineage each lineage function is replaced with a

100% accuracy. Additionally, we can find influential atoms with Smaller formula that logically implies the original. For example, a
suficient lineage fotts is /ltse = X3 A X. The advantage of i+



cient lineage is that it can be much smaller than standard lineage, e In Sec. 5, we provide experimental evidence that both ap-

which allows query processing and exploration takes to proceed proaches work well in practice; in particular, we show that
much more #iciently. For example, in our experiments process- approximate lineage can compress real data by orders of
ing a query on an uncompressed data took 20 hours, while it com- magnitude even with very low error, (Sec. 5.2), provide
pleted in 30m on a database usindfisient lineage. Additionally, high quality explanations (Sec. 5.3) and provide large perfor-
understanding query reliability is easy withfBcient lineage: the mance improvements (Sec. 5.4). Our experiments use data
reliability computed for a query is always less than or equal to from the Gene Ontology database [14, 52] and a probabilistic
the reliability computed on the original Level | database. However, database of IMDB [35] linked with reviews from Amazon.
only monotone lineage functions can be represented byfigisat ) ) )

approach. We discuss related work in Sec. 6 and conclude in Sec. 7.

The second generalization olynomial lineage which is a

function that maps each tuplén a database toal-valued poly- 2. STATEMENT OF RESULTS

nomialon Boolean variables, denotefl. An example polynomial We first give some background on lineage and probabilistic

. . ~P . . .
lineage isd;, in '.:'g‘ .1' There are two advantages 9f using real- databases, and then formally state our problem with examples.
valued polynomials instead of Boolean-valued functions: (1) pow-

erful analytic techniques already exist for understanding and ap-2. 1 Preliminaries: Queries and Views
proximating real-valued polynomials,g. Taylor series or Fourier In this paper, we consider conjunctive queries and views written
Series, and (2anylineage function can be represented by polyno- . " . ) . .

in a datalog-style syntax. A queryis a conjunctive rule written

mial approximate lineage. Polynomial lineage functions can allow "~ where eacly is a subgoal, that is, a relational pred-
amore accurate semantic tharffisient lineage in the same amount =G0 T 9 N e P
icate. For exampleg; — R(X), S(x, Y, ‘a’) defines a query with a

of spacej.e. , the diference in value between computign the join betweerRandS, a variabley that is projected away, and a con-
Level | and Level Il database is small. In Sec. 5 we demonstrate aJ . . & proje Ys
stant ‘a’. For a relational databa¥¢, we writeW [ q to denote

view in GO such that polynomial lineage achieves a compression thatW entails
ratio of 171 : 1 and dflicient lineage achieves 27 : 1 compression a

ratio with error rate less than 1?)(Def 210) 22 Llneage and Probab”lsuc Databases
Although polynomial lineage can give better compression ratios . . . . . .
In this section, we adopt a viewpoint of lineage similact@ables

and can be applied to a broader class of functions, there are threeI29 36]; we think of lineage as a constraint that tells us which

advantages of shicient lineage over polynomial lineage: (1) suf- . O i . .
ficient lineage i ntactically identical t mplete lineage. and worlds are pos_S|bIe. This viewpoint results in the stangaskible
© ge is syntactically ide o compiete g9, worlds semanticfor probabilistic databases [16, 20, 29].

so can be processed by existing probabilistic relational databases
without modification,e.g. Trio and Mystiq. (2) The semantic of
suficient lineage is easy to understand since the value of a query
is a lower bound of the true value, while a query may have either
a higher or lower value using polynomial lineage. (3) Our exper-
iments show that dficient lineage is less sensitive to skew, and
can result in better compression ratios when the probability assign-
ments to atoms are very skewed.

In both lineage systems, there are three fundamental technical
challenges: creating it, processing it and understanding it. In this
paper, we study these three fundamental problems for both forms
of approximate lineage.

DeriniTion 2.1 (Lineace Function). An atom is a Boolean
proposition about the real world, e.g. Bob likes Herbie Hancock.
Fix a relational schemar and a set of atomsA. A lineage func-
tion, A, assigns to each tuple t conforming to some relatioorja
Boolean expression ovel, which is denoted;. Anassignmenis
a functionA — {0, 1}. Equivalently, it is a subset of, denoted A,
consisting of those atoms that are assigned true.

Fig. 1 illustrates tuples and their lineages. The atoms represent
propositions about data provenance. For example, the &tdm
Fig. 1 represents the proposition that we trust “Dr. X's PubMed
1.2 Contributions, Validation and Outline PMID:12593804". Of course, atoms can also represent more

. ly grained propositions, “A scientist claimed it was true” or
We show that we can (1)iciently construct both types of ap- coarsely ¢ p . o
proximate lineage, (2) process both types of linea@eiently and finely-grained facts “Dr. X claimed it in PubMed 18166081 on

3) use approximate lineage to explore and understand the data. Pa9¢ 10 In this_ paper, we assume that the. atoms are given; we
®) PP 9 P briefly discuss this at the end the current section..

e In Sec. 2, we define the semantics of approximate lin-  To define the standard semantics of lineage, we defprassible
eage, motivate the technical problems that any approxi- world W through a two-stage process: (1) select a subset of atoms,
mate lineage system must solve and state our main results. A i.e. an assignment, and (2) For each tuplié 1,(A) evaluates to
The technical problems are: creating approximate lineage true thert is included inwW. This process results in an unique world

(Prob. 1); explaining the datage. finding suficient expla- W for any choice of atom#.
nations (Prob. 2), finding influential variables (Prob. 3); and
query processing with approximate lineage (Prob. 4). Example 2.2 If we selectAy3 = {x, X3}, that is, we trust Dr. X

and Dr. Y’'s RA, but distrust the similarity computation, then
Wizse = {t1,12, 15,16} is the resulting possible world. The reason
is that for each; € Wisg, 4y, is satisfied by the assignment corre-
sponding toA;; and for eachtj ¢ Wyse, A is false. In contrast,
Wizs = {ta, tp, ts} is nota possible world because W, 5, we know
that AGO2 and Aacll are both associated with Cell Death, and so
¢ In Sec. 4, we define our proposal foslynomial approximate AGO2 should appear in the viewg)]. In symbols,A, (Wizs) = 1,

lineage our proposal brings together many previous results butts ¢ Ws.

in the literature to give algorithms to construct it (Sec. 4.2),

to understand it (Sec. 4.3) and to process it. We capture this example in the following definition:

e In Sec. 3, we define our implementation for one type of ap-
proximate lineagesuyficient lineage This requires that we
solve the three problems above: we give algorithms to con-
struct it (Sec. 3.2), to use it to understand the data (Sec. 3.3),
and to process further queries on the data (Sec. 3.4).



Derinirion 2.3, Fix a schemar. A world is a subset of tuples
conforming too. Given a set of atoms A and a world W, we say
that W is apossible worldnduced by A if it contains exactly those
tuples consistent with the lineage function, that is, for all tuples
t, 4(A) < t e W. Moreover, we writel(A, W) to denote the
Boolean function that takes valdéf W is a possible world induced
by A. In symbols,

AAW) =

A A N\ @- )

titeW titgW

@

Eq. 1 is important, because it is the main equation that we general-
ize to get semantics for approximate lineage.

The formula simply replaces each tuptlineage,; with suf-
ficient lineageA® and then checks wheth® is a possible world
for A given the sficient lineage.This, in turn, defines a new prob-
ability distribution on worlds.S:

def

ES(W) =

[T@- p(a,-))]

j:aj ¢A

[ p(a)][

il eA

ZZIS(AW){

ACA

Given a queng, we defineu®(qg) exactly as in Eq. 2, witjx syn-
tactically replaced by, i.e. as a weighted sum over all worlds
W satisfyingg. Two facts are immediate: (1)°7is a probabil-

We complete the construction of a probabilistic database as a dis- |ty measure and (2) for any a conjunctive (monotone) qugry
tribution over possible worlds. We assume that there is a function Z2°(@) < u(0). Suficient lineage is syntactically the same as stan-

p that assigns each ataare A to a probability score denotgx{a).

In Fig. 1,%, has been assigned a scpfe;) = %, indicating that we
are very confident in Dr. X’s proclamations. An important special
case is whemp(a) = 1, which indicates absolute certainty.

DeriniTion 2.4. Fix a set of atomsA. A probabilistic assign-
ment p is a function from#A to [0, 1] that assigns a probability
score to each atom a A. A probabilistic databasely is a prob-
abilistic assignment p and a lineage functidrthat represents a
distributiony over worlds defined as:

[ p(a.—)][

ACA i;gjeA

uw) = A(A,W)(

[]a- p(a,-»}

j:ajeA

Given any Boolean query q oW, the marginal probability of g
denotedu(q) is defined as
D W)

qWEq

def

u(Q) = @)

i.e. the sum of the weights over all worlds that satisfy q.

Since for anyA, there is a uniqu&V such thati(A,W) = 1, u
is a probability measure. In all of our semantics, the semantic for
queries will be defined similarly to Eq. 2.

Example 2.5 Consider a simple query on our database:
a:() :— P(x, ‘Gland Development’)V(x)

This query asks if there exists a gene prodydhat is associated

with ‘Gland Development’, and also has a common function with

‘Aacll’, that is it also appears in the output 6f On the data

in Fig. 1, q, is satisfied on a worl®V if and only if (1) AGO2 is

associated with Gland developmenid (2)AGO2 and Aacll have

a common functignhere, either Embryonic Development or Cell

Death. The subgoal requires thabe present and the second that

ts be present. The formuli, A Ay, simplifies tox; A X,, i.e.we must

t3rust bogh Dr.X and Dr.Y’s RA to derive;, which has probability
1-232~0109.

4 4

dard lineage. Hence, it can be used to process queries with existing
relational probabilistic database systems, such as Mystiq and Trio.
If the lineage is a large DNF formula, then any single disjunct is a
suficient lineage. However, there is a trad@ lmetween choosing
suficient lineage that is small and lineage that is a good approxi-
mation. In some cases, it is possible to get both. For example, the
lineage of a tuple may be less than 1% of the original lineage, but
still be a very precise approximation.

Example 2.6 We evaluateq from Ex. 2.5. In Fig. 1, a -

cient lineage for tuplds is trusting Dr. X and Dr. Y’s RA, that

is /156 = X1 A X. Thus,q is satisfied exactly with this probabil-

ity which is ~ 0.19. In this example, the fiicient lineage com-
putes the exact answer, but this is not the general case. In con-
trast, if we had choseﬁfé = X1 A Xs, i.e. our explanation was
trusting Dr.X and the matching, we would have computed that

One can also consider the dual form offmient lineagenec-
essary lineagewhere each formula, is replaced with a Boolean
formulad), such thatt, = A is a tautology. Similar proper-
ties hold for necessary lineage: For exampléjs an upper bound
for u, which implies that using necessary andfisient lineage in
concert can provide the user with a more robust understanding of
query answers. For the sake of brevity, we shall focus dicgent
lineage for the remainder of the paper.

Polynomial Lineageln contrast to both standard andftient
lineages that map each tuple to a Boolean function, polynomial ap-
proximate lineage maps each tuple teeal-valued function This
generalization allows us to leverage approximation techniques for
real-valued functions, such as Taylor and Fourier series.

Given a Boolean formuld; on Boolean variableg,, ..., x, an
arithmetizationis a real-valued polynomial(xy, ..., X,) in real
variables such that (1) each variabjehas degree 1 in? and (2)
foranyxi, ..., %, € {0, 1}", we havel(xy, ..., %) = (X1, ..., %)

[42, p. 177]. For example, an arithmetizationgfv xzis x(1—(1-
y)(1-2) and an arithmetization ofyV xzV yzis Xy+ Xz+yz— 2xyz
Fig. 1 illustrates an arithmetization of the lineage formulatfor

We now generalize the standard (complete) semantics to give ap-which is denotecllA
proximate semantics; the approximate lineage semantics are used In general, the anthmenzatlon of a lineage formula may be ex-

to give semantics to the compressed Level |l database.

Sufficient Lineage Our first form of approximate lineage is
called syficient lineage The idea is simple: Eacly is replaced
by a Boolean formulal$ such thatl® = 4, is a tautology. In-
tuitively, we think of/lS as a good approximation tg if A° and
Ay agree on most assignments. We define the funcftﬁm,\/\/)
following Eq.1:

BAWE A @ A @-3m)

titeW titgW

(1s)

ponentially larger than the original lineage formula. As a result, we
do not use the arithmetization directly; instead, we approximate it.
For example, an approximate polynomial fyr is if; in Fig. 1.

To define our formal semantics, we defitéA, W) generalizing
Eq. 1 by allowingi® to assign a real-valued, as opposed to Boolean,
weight.

PAw E[]F® [ ]a-m)

titeWw titgW

(1p)



In addition to assigning real-valued weights to worlds, as op- special kind of Boolean formula, lemonotone DNFs (k-mDNF).
posed to Boolean weights, Eq. 1p maps an assignment of atomsA Boolean formula is &-mDNF if it is a disjunction of monomi-

A, to many worldsby polynomial lineage, instead of to only a sin-
gle world, as is done in the standard approach arfficgent ap-
proaches.

Example 2.7 In Fig. 1, Wiy is a possible world since
AAWpse) = 1 for A = {x,Xs}. In contrast,AP(A, Wyose) #
1. To see thisAP(A Wizse) simplifies to A7 (A, Wizsg), since all
other lineage functions hayé, 1} values. Evaluatin@t (A) gives

= 4 —(0 )+ 1- l) = ~ 0.58. Further, approximate

128 128

als each containing at moktliterals and no negations. The GO
database is caputred by an internal lineage function.

Proposrrion 2.9. If t is a tuple in a view V such that, when un-
folded, references k (not necessarily distinct) base tables, then the
lineage function; is a k-mDNF.

One consequence of this is thds typically small. And so, as in
data complexity [1], we considdra small constant. For example,
an algorithm is consideredfeient if it is at most polynomial in the

I|neage functlons may assign non-zero mass even to worlds whichsize of the data, but possibly exponentiakin

are not possible. For exampw125 is not a possible world, but
/lP(Ae W13) =1- /IIS(A)(]- 128) # 0.

2.3.1 Creating Approximate Lineage
Informally, approximate lineage is good if (1) for each tutlee

The second step in the standard construction is to define a prob-function A is a close approximation of;, i.e. 4 and, are close
ability measureu (Def. 2.4); In approximate lineage, we define a on many assignments, and (2) the sizelpfs small for evenyt.
function;i” —which may not be a probability measure — that assigns Here, we writel, (without a superscript) when a statement applies

arbitrary real-valued weights to worlds. Hegg,=
is a probability assignment as in Def. 2.4:

() "efzi(AW)[["[ pi][ [1a- pj)] @3)

AcA i:geA j:ajeA

p(a) wherep

Our approach is to search faP that is a good approximation,
that is if for anyq, we haveu{q) ~ u(g), i.e. the value computed

to either type of approximate lineage.

Dernimion: 2.10. Fix a set of atomsA. Given a probabilistic
assignment p forA, we say thafl; is ane-approximation oft if

Ep[(;it -4 <e

whereE, denotes the expectation over assignments to atoms in-
duced by the probability function p.

using approximate lineage is close to the standard approach. Sim-Our goal is to ensure that the lineage function éverytuple in
ilar to suficient lineage, we get a query semantic by syntactically the database has arapproximation. Def. 2.10 is used in compu-

replacingu by /i in Eq. 2. However, the semantics for polynomial

tational learninge.g. [40, 50], because ap-approximation of a

lineage is more general than the two previous semantics, since arfunction disagrees only a few inputs:

assignment is allowed map toanyworlds.

Example 2.8 Continuing Ex. 2.7, in the original data(Wizse) =
128 Howeveru® assigndV,ss a different weight:

75 9
AP (Wiose) = /lP(less)( )( )(1— ‘) 128128

Recallq; from Ex. 2.5; its value ig«(q;) ~ 0.19. Using Eq. 3,
we can calculate that the value@fon the Level Il database using
polynomial linage in Fig. 1ig™(q,) ~ 0.17. In this case the error is

Example 2.11 Lety; andy, be atoms such that(y;) = 0.5 fori =
1,2. Consider the lineage function for sonnelt(yl,yz) Vi VY
and an approximate lineage functlﬂﬁ(yl,yz) = /lt (Y1, ¥2) = V1.
Here, A, and /IS (or /IP) differ on precisely one of the four as-
signments,i.e. yy = 0 andy, = 1. Since all assignments are
equally weightedj? is a 1/4-approximation for. In general, ifl;
and 1, are Boolean functions on atords= {yi,...,Yy,} such that
p(y;) = 0.5 fori = 1,...,n, then; is ane approximation ofi; if

A1 andA, differ on less than asfraction of assignments.

~ 0.02. If we had treated the tuples in the database independently, Our first problem is constructing lineage that has arbitrarily small

we would get the valué = 21 ~ 0.06 — an error of A3, which is an

order of magnitude larger error than an approach using polynomial

lineage. Further]® is smaller than the original Boolean formula.

2.3 Problem Statements and Results

In our approach, the original Level | database, that uses a com-

error approximation and occupies a small amount of space.

ProBLem 1 (ConsTruUCTING LINEAGE). Given a linage function
A and an input parameteg, can we giciently construct are-
approximation fora; that is small?

For internal lineage functions, we show how to construct ap-

plete lineage system, is lossily compressed to create a Level Il proximate lineage féciently that is provably small for both suf-
database, that uses an approximate lineage system; we then pefficient lineage (Sec. 3.2) and polynomial lineage (Sec. 4.2), under
form all querying and exploration on the Level Il database. To re- the technical assumption that the atoms have probabilities bounded
alize this goal, we need to solve three technical problems (1) createaway from 0 and 1e.g. we donot allow probabilities of the form

a “good” Level Il database, (2) provide algorithms to explore the n-! wheren is the size of the database.

Further, we experimen-

data given the approximate lineage and (3) process queries usingally verify that suficient lineage ffers compression ratios of up to

the approximate lineage.
Internal Lineage Functions Although our algorithms apply to

general lineage functions, many of our theoretical results will con-

sider an important special case of lineage functions catitsanal

lineage functiong7]. In internal linage functions, there are some

60 : 1 on real datasets and polynomial lineaffers upto 171 : 1
even with stringent error requiremengsg.e = 1075,

2.3.2 Understanding Lineage

Recall our scientist from the introduction, she is skeptical of an

tables (base tables) such that every tuple is annotated with a singleanswer the database produces. t in Fig. 1, and wants to un-
atom,e.g. P in Fig. 1. The database also contains derived tables derstand why the system believes thas an answer to her query.
(views),e.g. Vin Fig. 1. The lineage for derived tables is derived We informally discuss the primitive operations our system provides

using the definition oV and tuples in base tables. For our pur-

to help her understartg and then define the corresponding formal

poses, the significance of internal lineage is that all lineage is a problems.



Sufficient Explanations She may want to know the possitde-
planationsfor a tuple,i.e. a suficient reason for the system
to returnts. There are many explanations and our technical
goal is to find the top-kmost likelyexplanations from the
Level Il database.

Finding influential atoms Our scientist may want to know which
atoms contributed to returning the surprising tupde,In a
complicated query, the query will depend on many atoms, but
some atoms are moiefluentialthan others. Informally, an
atomx, is influential if it there are many assignments such
that it is the “deciding vote”j.e. changing the assignment
of x; changes whetheg is returned. Our technical goal is
to return the most influential atoms directly from the Level Il
database, without retrieving the much larger Level | database.

Intuitively, suficient lineage supports ficient explanations bet-
ter than polynomial lineage because the lineage forrsudaset of
good stfficient explanations. In contrast, our proposal for polyno-
mial lineage supports finding the influential tuples more naturally.
We now discuss these problems more formally:

Sufficient Explanations An explanation for a lineage function
At is aminimal conjunction of atoms such that for any assignment
ato the atoms, we havga) = Ai(a). The probability of an ex-
planation,r, is P[r]. Our goal is to retrieve theop-kexplanations,
ranked by probability, from the lossily-compressed data.

ProBLEM 2. Given a tuple t, calculate the top-k explanations,
ranked by their probability using only the Level Il database.

This problem is straightforward for fiicient lineage, but chal-
lenging for polynomial lineage. The first reason is that polynomials
seem to throw away information about monomials. For example,
Zfé in Fig. 1 does not mention the terms afy monomial. Fur-

ther complicating matters is that even computing the expectation of
Af, may be intractable, and so we have to settle for approximations

which introduce error. As a result, we must resort to statistical tech-
niques to guess if a formuta is a suficient explanation. In spite of

This problem is challenging because the Level Il database is a
lossily-compressed version of the database and so some informa-
tion needed to exactly answer Prob. 3 is not present. The key ob-
servation for polynomial lineage is that the @gents we retain
are the cofficients of influential variables; this allows us to com-
pute the influential variablediiiently in many cases. We show
that we can achieve an almost-perfect average precision for the top
10. For stficient lineage, we are able to give an approach with
bounded error to recover the influential 6beents.

2.3.3 Query Processing with Approximate Lineage

Our goal is to iciently answer queries directly on the Level Il
database, using sampling approaches:

ProsLEM 4. Given an approximate lineage functichand a
query q, giciently evaluatgi(q) with low-error.

Processing dficient lineage is straightforward using existing
complete techniques; However, we are able to prove that the er-
ror will be small. We verify experimentally that we can answer
queries with low-error 1&, 2 orders of magnitude more quickly
than a complete approach. For polynomial lineage, we are able to
directly adapt techniques form the literature, such as [8].

2.4 Discussion

The acquisition of atoms and trust policies is an interesting fu-
ture research direction. Since our focus is on large databases, it is
impractical to require users to label each atom manual. One ap-
proach is to define a language for specifying trust policies. Such
a language could do double duty, by also specifying correlations
between atoms. We consider the design of a policy language to be
important future work. In this paper, we assume that the atoms are
given, the trust policies are explicilty specified, and all atoms are
independent.

3. SUFFICIENT LINEAGE

We define our proposal for fiicient lineage that replaces a com-
plicated lineage formula,, by a simpler (and smaller) formukg.

these problems, we are able to use polynomial lineage to retrieve We construcﬁts using several dticient explanations fat;.

suficient explanations with a precision of up to 70% foe 10
with error in the lineages = 1072

Finding Influential Atoms The technical question is: Given a
formula,e.qg. 4, which atom is most influential in computinig,’s
value? We define thiafluenceof x on 4;, denoted Inf (1), as:

(4)

where® denotes the symmetric fiierence. This definition, or a

Inf (1) E"PLA(A) # 4 (As ()]

3.1 Sufficient Lineage Proposal

Given an internal lineage function for a tuglethat is, a mono-
tone k-DNF formula A, our goal is to éiciently find a sificient
IineageitS that is small and is ag-approximation ofl; (Def. 2.10).
This differs fromL-minimality [6] that looks for a formula that is
equivalent, but smaller. In contrast, we look for a formula that
may only approximate the original formula. More formally, the
size of a sfficient lineagel? is the number of monomials it con-

closely related one, has appeared has appeared in wide variety of5ing and so is small if it contains few monomials. The definition

work, e.g. underling causality in the Al literature [31, 44], influ-
ential variables in the learning literature [40], and critical tuples in
the database literature [41, 47].

Example 2.12 What influence doe%, have on tuplds presence,
i.e.what is the value of Inf (1)? Informally,x, can only change
the value of1, if X, is true andxs is false. This happens with
probability2(1-1) = 2, which is not coincidentally the céicient

of X in Ay,.

The formal problem is to find the tdpmost influential variables,
i.e.the variables with th& highest influences:

ProeLEm 3. Given a tuple t, giciently calculate the k most in-
fluential variables in; using only the level Il database.

of e-approximation (Def. 2.10) simplifies for ficient lineage and
gives us intuition how to find good fiicient lineage.

ProposiTion 3.1. Fix a Boolean formulal, and let? be a suf-
ficient explanation fori, that is, for any assignment A, we have
its(A) = A(A). In this situation, the error function sim-
plifies to E[4] - E[15]; formally, the following equation holds
E[( - 7)) = E[4] - E[7]

Prop. 3.1 tells us that to getfiigient lineage with the low error, it
is enough to look for dicient formulad; with high probability.

Proor Skercn. The formula g — A5)? is non-zero only if1, #
A8, which means that, = 1 andi? = 0, sincel(A) = A(A)
for any A. Because botli, and P are Boolean, 4 — A8)? € {0, 1}
and simplifies tol; — its. We use linearity oE to conclude. [J



Scope of Analysidn this section, our theoretical analysis con-
siders only internal lineage functions with constant bounded prob-
ability distributions; a distribution isonstant boundeif there is a
constanp such that for any atora, p(a) > 0 implies thatp(a) > 3.

To justify this, recall that in GO, the probabilities are computed
based on the type of evidence: For example, a citation in PubMed is
assigned ®, while an automatically inferred matching is assigned
0.1. HereB = 0.1 and is independent of the size of the data. In the
following discussiong will always stand for this bound aridwill
always refer to the maximum number of literals in any monomial
of the lineage formula. Further, we shall only consideffisient
lineage which are subformulae @f. This choice guarantees that
the resulting formula is gficient lineage and is also simple enough
for us to analyze theoretically.

3.2 Constructing Sufficient Lineage

The main result of this section is an algorithm (Alg. 3.2.1) that
constructs good sficient lineage, solving Prob. 1. Given an error
term,e, and a formulal,, Alg. 3.2.1 dficiently produces an approx-
imate stficient lineage formula$ with error less tham. Further,
Thm. 3.2 shows that the size of the formula produced by Alg. 3.2.1
depends only om, k andg — not on the number of variables or
number of terms int;; implying that the formula is theoretically
small.

Algorithm 3.2.1 Suff(1, £) constructs sfiicient lineage
Input: A monotonek+1-DNF formulad; and an erroe > 0
Output: 71?, a small sfiicient lineages-approximation.
1: Find a matchingM, greedily. (*A subset of monomials*)
2: if P[A8] - P[M] < sthen (*If A is a 1-mDNF always true*)
o LetM=mVv---vms.ti< jimpliesP[m] > P[m]
return M, def my,...,Mm, rismins.t.P[A] - P[M/] < &.
. else
Select a small cove® = {xq, ..., X} C var(M)
Arbitrarily assign each monomial toxa € C that covers it
for each x; e C do
A — Sulf(Ai[x — 1],&/c). (*A[x — 1] is ak-DNF*)
return \/ip oA

3
4
5
6:
7.
8
9
10

Algorithm Description Alg. 3.2.1 is a recursive algorithm,
whose input is &-mDNF 2 and an erroe > 0, it returnsflts, a
suficiente-approximation. For simplicity, we assume that we can
compute the expectation of monotone formula exactly. In practice,
we estimate this quantity using samplirgg. using Luby-Karp
[38]. The algorithm has two cases: In case (I) on lines 2-4, there
is a large matching, that is, a set of monomiklssuch that dis-
tinct monomials inM do not contain common variables. For ex-
ample, in the formula)g A y1) V (X1 A ¥2) V (%2 A ¥2) @ match-
ing is (X1 A y1) V (X2 V ¥2). In Case (lIl) lines 6-10, there is a
small cover, that is a set of variabl€ = {xy,..., X.} such that
every monomial in; contains some element & For example,
in (x¢ Ay1) V(X1 AY2) V(X1 A ys), the singleton{x;} is a cover.
The relationship between the two cases is that if we find a maximal
matching smaller tham, then there is a cover of size smaller than
km (all variables inM form a cover).

Case I: (lines 2-4) The algorithm greedily selects a maximal
matchingM = {my,...,m}. If M is a good approximation,
i.e. P[23] = P[Vmen M < & then we trimM to be as small as
possible so that it is still a good approximation. Observe that
P[V mem M| can be computedf@ciently since the monomials
in M do not share variables, and so are independent. Fur-

ther, for any sizé the subset oM of sizel with the highest
probability is exactly thé highest monomials.

Case lI: (lines 6-10) Let var(M) be the set of all variables in the
maximal matching we found. Sindd is a maximal match-
ing, var(M) forms a coverx,,...,X. We then arbitrarily
assign each monomiah to one element that covems. For
eachyx;, let A; be the set of monomials associated to an ele-
ment of the covery. The algorithm recursively evaluates on
eachi;, with smaller errorg/c, and returns their disjunction.
We choose/c so that our result is anapproximate lineage.

Tueorem 3.2 (Sorution To ProB. 1). FOr anye > 0, Alg. 3.2.1
is a randomized algorithm that computes snzadiyficient lineage
with linear data complexity. Formally, the output of the algorithm,
A; satisfies two properties: (:I:)tS is an e-approximation oft; and
(2) the number of monomials if is less than lﬁ*(g) Iogk(i) +
O(Iogk’l(%)), which is independent of the sizeipf

Proor Skerca. The running time follows immediately, since no
monomial is replicated and the depth of the recursion at rkost
the running time iO(k|A;[). The algorithm is randomized because
we need to evaluatB[4]. Claim (1) follows from the preceding
algorithm description.

To prove claim (2), we inspect the algorithm. In Case I, the max-
imum size of a matching is upper bounded/b)'flog(g) since a
matching of sizenin ak-dnf has probability at least-4(1-8%)™; if
this value is greater than-k, we can trim terms; combining this in-
equality and that 2 x < e for x > 0, completes Case I. In Case Il,
the size of the cover satisfiess < k3 log(2). If we let S(k + 1, )
denote the size of our formula at defith 1 with parametes, then
it satisfies the recurren@k+1, £) = (k+1)8-%Ylog(2)-S(k, £/c),
which grows no faster than the claimed formuld]

CompletenesOur goal is to construct lineage that is small as pos-
sible; one may wonder if we canfieiently produce substantially
smaller lineage with a ffierent algorithm. We give evidence that no
such algorithm exists by showing that the key step in Alg. 3.2.1 is
intractable (V#-hard) even if we restrict to internal lineage func-
tions with 3 subgoals, that is = 3. This justifies our use of a
greedy heuristic above.

Proposrrion 3.3. Given a k-mDNF ~formulaﬁt, finding a sub-
formulaA® with d monomials such thal® has largest probability
among all subformula of; is NP-Hard, even if k= 3.

The reduction is from of finding a matching inkauniform k-
regular hypergraph. The greedy algorithm is essentially an optimal
approximation for this hypergraph matching [33]. Since our prob-
lem appears to be morefficult, this suggests — but does not prove
— that our greedy algorithm may be close to optimal.

3.3 Understanding Sufficient Lineage

Both Prob. 2, finding dficient explanations, and Prob. 3, finding
influential variables deal with understanding the lineage functions:
Our proposal for sficient lineage makes Prob. 2 straightforward:
Since A7 is a list of suficient explanations, we simply return the
highest ranked explanations containedin As a result, we focus
on computing the influence of a variable given onlyfisient lin-
eage. The main result is that we can compute influence with only a
small error using dfticient lineage. We do not discuss finding the
top-k dficiently; for which we can use prior am,g. [46]. We re-
state the definition of influence in a computationally friendly form
(Prop. 3.4) and then prove bounds on the error of our approach.



ProposiTion 3.4. Let % be an atom with probability ¢x) and 4. POLYNOMIAL LINEAGE

o2 = p(x)(1 - p(x)). If A is a monotone lineage formula: In this section, we propose an instantiation of polynomial lin-
Inf (1) = o 2E[(% — p(x))] eage based on sparse low-total-degree polynomial series. We focus
on the problems of constructing lineage and understanding lineage,
since there are existing approacheg.[8], that solve the prob-
The use of Prop. 3.4 is that to show that we can compute influ- lem of sampling from lineage, which isSigient to solve the query
ence from sfficient lineage with small error: evaluation problem (Prob. 4).

ProposiTion 3.5. Let 1S be a syficient s-approximation ofi;, 4.1 Sparse Fourier Series
tk;gn for al_ny xe A st fx) € (0,1), we have the following pair Our goal is to write a Boolean function as a sum of smaller terms;
ofinequalities this decomposition is similar to Taylor and Fourier series decom-
. e . £ o . . ) - :
Inf. (35) = £ 0(x) < Inf. (1) < Infy (15) + = (1 - p(x positions in basic calculus. We recall the basics of Fourier Series
% () = —5 P(x) x (1) x (A7) + — (1 - p(x)) on the Boolean Hypercube
This proposition basically says that we can calculate the influ-  In our discussion, we fix a set of independent random variables
ence foruncertainatoms. With nave random sampling, we can es- X1 ..., X, €.9. the atoms, wherg, = E[x] (the expectation) and
timate the influence of sficient lineage to essentially any desired o2 = pi(1— pi) (the variance). LeB be the vector space of real-
precision. The number of relevant variables irffigient lineage valued Boolean functions amvariables; a vector in this space is a
is small, so simply evaluating the influence of each variable and functiona : {0, 1}" — R. Rather than the standard basis fyrwe

sorting is an #icient solution to solve Prob. 3. define the Fourier basis for functions. To do so we ediwith

an inner product that is defined via expectation, thatig,1,) def

.. . 2 d_ef
Existing systems such as Mystiq or Trio can directly process suf- E[4; - &;]. This inner product induces a norm|l” = (X, 4.
- . . o . - : This norm captures our error function (see Def. 2.10) sk¢e; —
ficient lineage since it is syntactically identical to standard (com- - x w2 . .
plete) lineage. However, usingfigient lineage in place of com-  4t)1 = |12 = 27" We can now define an orthonormal basis for
plete lineage introduces errors during query processing. In this sec-the vector space using the setoiaracters
tion, we show that the error introduced by query processing is at

3.4 Query Processing

most a constant factor worse than the error in a singfécgent Dermvmion 4.1. For eachz < {0,1)", the characterassociated

lineage formula. with zis a function from{0, 1}" — R denotedpz and defined as:
Processing a query on a database with lineage boils down to def 1

building a lineage expression fgrby combining the lineage func- ¢z = H(N ~ P

tions of individual tuplesi.e. intensional evaluatiof22, 46]. For iz=1

example, a join producing a tuplérom t; andt, produces lineage
fort, A = A, A A,. We first prove that the error in processing a
queryq is upper bounded by the number of lineage functions com-
bined byq (Prop. 3.6). Névely applied, this observation would
show that the error grows with the size of the data. However, we
observe that the lineage function for a conjunctive query depends  Depnimion 4.2. The Fourier transform of a functionJ, is de-
on at most constantly many variables; from these two observations noteds;, and is a function fronf0, 1) — R defined as:

it follows that the query processing error is only a constant factor

worse. F1(2) = (. ¢2) = E[402]

Prorosirion 3.6. If A5 and 15 are sificient e approximations
for 4, and A, then, bothA$ A A5 and A3 v A5 are 2¢ syficient
approximations. The Fourier series captures, that is, for any assignmerg,
f(A) = X z0a0 Fa(Doz(A). An important coéficient is 7,,(0),
which is the probability (expectation) @f. We give an example of
to illustrate the computation of Fourier series:

Since the set of all characters is an orthonormal basis, we can
write any function in8 as a sum of the characters. The oéent
of a character is given by projection on to that character, as we
define below.

TheFourier seriesof f is defined ag’ 710 F1,(2¢z(A).

This proposition is essentially an application of a union bound
[42]. From this proposition and the fact that a querthat pro-
duces tuples and hak subgoals haknlogical operations, we can
conclude that if all lineage functions ase approximations, then
u(g) — 15(g) < eskn. This bound depends on the size of the data. . ; : S .
We want to avoid this, because it implies that to answer queries asmdependenh random van_ables. The arithmetization faf is
the data grows, we would need to continually refine the lineage. We L ~ ITi=1..a(1 = X). Applying Def. 4.2,7,,(0) = E[4] = 1 -
can do much better using essentially the same idea as in Sec. 3.2; [li=..n(1 = P(x)) and forz # 0:

Lemva 3.7. Given a database with gficient approximate lin- Fu(2) = E[¢z(1- [Tic..a(1 - %))]
eage such that; is a e-approximation ofi; for every tuple t and
a query g with k subgoals, the error of g is only a constant factor E [¢Z - (ni:a=1 ¢a(l- X‘)) (niiZFO(l - Xi))]
(ni:azl O—i) (nj:zj=0(1 - p(xj)))

worse thare. Formally, for anys > O we have:
- i5(q) < kef(k,6) +6 , ,
H@ -2 (k.0) + where fori = 1,...,n, 02 = p(%)(1 - p(x)) (the variance ok;).
where f(k, 5) £ ki~ log“(1)+0 (log“*(%)) andg is the constant
of the bounded distribution. ' Our goal is to get a small, but good approximation; we make this

goal precise using sparse Fourier series:

Example 4.3 Let &y = X V --- V X, that is, the logical or of

This shows that dticient lineage can beffectively utilized for
query processing, solving Prob. 4. 1For more details, see [40, 43]




DeriniTion 4.4, An ssparse serie$s a Fourier series with at
most s hon-zero cgiients. We say has an(s, €) approximation if

there exists an s-sparse approximatitfhsuch thaf|, — Af ||2 <e
A bests-sparse series for a functiohis the s-sparse series that
minimizes.

Our approach for polynomial lineage is to approximate the lin-
eage for a tuplé, A, by a sparse Fourier seriél%, ideally an §, ¢)-
sparse approximation for smalande. Additionally, we Wanti{D to
have low total degree (constant) so we can describe iticieats
succinctly (in constant space).

Selecting an approximationThe standard approach to approxi-
mation using series is to keep only the largestiécients, which is
optimal in this case:

Proposition 4.5. For any Boolean function; and any s> 0,
a best s-spare approximation fdy is the s largest cggcients in
absolute value, ties broken arbitrarily.

4.2 Constructing Lineage

We construct polynomial lineage by searching for the largest
codficients using the KM algorithm [39]. The KM algorithm is
complete in the sense that if there is anej sparse approxima-
tion it finds an only slightly worseg( e + £2/s) approximation. The
key technical insight, is th&DNFs do have sparse (and low-total-

degree) Fourier series, [40, 50]. This implies we only need to keep

around a relatively few cdBcients to get a good approximation.
More precisely,

Tueorem 4.6 ([39, 40, 50]).Given a set of atomsA
{X1,...,%} and a probabilistic assignment p, leB
mini-1. n{pP(%), 1 — p(x)} and A; be a (not necessarily monotone)
k-DNF function overA, then there exists a(s, £)-approximation
AP where s< ko™ 109(2) and the total degree of any term A is
bounded by gﬁ‘lklog(i) where @ is a constant. Further, we can
constructflf’ in randomized polynomial time.

The KM algorithm is an elegant recursive search algorithm.

However, oftent, is complicated, which forces us to use sampling
to approximate the cdicients ofa”. Sampling introduces noise in
the codficients. To tolerate noise, we relax our test:

Derinition 4.7. Lett > 0, the tolerance, and > 0, the confi-
dence, then we say that a monomial m i&&) syfficient expla-
nation for Af if:

PAIE[Y -m] —E[m]|<7]>1-6
SR
Q]
whereN denotes the distribution of the sampling noise.

(6)

The intuition is that we want thaI[:lth] and E[m] to be close
with high probability. For independent random sampling, thés
a set of normally distributed random variables, one for each coef-
ficient. Substituting Eq. 5 into Eq. 6 shows tha} {s a sum of 2
normal variables, which is again normal; we use this fact to esti-
mate the probability thatf] is less tharr.

Our heuristic is straightforward, given a tolerancand a confi-
dences: For each monomiah, compute the probability in Eq. 6, if
it is within § then declaren a suficient explanation. Finally, rank
each sdicient explanation by the probability of that monomial.

Influential tuples The key observation is that the influencexpf
is determined by its cdicient in the expansion [40, 50]:

Proposirion 4.8. Let A, be an internal lineage function,; an
atom ando? = p(x)(1 - p(x)) then

Infy (&) = o7 Fa (&)

This gives us a simple algorithm for finding influential tuples
using polynomial lineage, simply scale ea€h(e), sort them and
return them. Further, the term corresponding;tm the transform
is Fa(8)ge = Infy (A)(% — p(x)), as was shown in Fig. 1.

5. EXPERIMENTS

In this section, we answer three main questions about our ap-
proach: (1) In Sec. 5.2, do our lineage approaches compress the
data? (2) In Sec. 5.3, to what extent can we recover explana-

However, a key practical detail is at each step it requires that we tions from the compressed data? (3) In Sec. 5.4, does the com-

use a two-level estimator, that is, the algorithm requires that at
each step, we estimate a quantitywia sampling; to compute each
sample ofy;, we must, in turn, estimate a second quanyityia
sampling. This can be very slow in practice. This motivates us to
purpose a cheaper heuristic: For each monomialve estimate
the codficient corresponding to each subset of variables.oFor
example, ifm = x; A X, then we estimat®, e, e, ande;,. This
heuristic takes time*gy,|, but can be orders of magnitude more ef-
ficient in practice, as we show in our evaluation section (Sec. 5.2).
This is linear with respect to data complexity.

4.3 Understanding Approximate Lineage

Our goal in this section is to find ficient explanations and in-
fluential variables, solving Prob. 2 and Prob. 3, respectively.

Sufficient Explanations Let A; be a lineage formula such that
E[A] € (0,1) and;lf’ be a polynomial approximation of. Given
a monomialm, our goal is to test imis a suficient explanation for
A.. The key idea is thamn is a sdficient explanation if and only if
P[A; Am] = P[m], since this implies the implication holds for every
assignment.

If ;lf is exactly the Fourier series fag, then we can compute
each value in tim&©(2"), since

2

Zz=1= iem

E[ATm] = ﬂ(z)[

1]

iemZ=1

[ uj] ©)

jemZ;=0

pressed data provide a performance improvement while returning
high quality answers? To answer these questions, we experimented
with the Gene Ontology database [14] (GO) and similarity scores
from a movie matching database [35, 46].

5.1 Experimental Details

Primary Dataset The primary dataset is GO, that we described
in the introduction. We assigned probability scores to evidence tu-
ples based on the type of evidence. For example, we assigned a high
reliability score (09) to a statement in a PubMed article, while we
assigned a low score () to an automated similarity match. Al-
though many atoms are assigned the same score, they are treated
as independent events. Additionally, to test the performance of our
algorithms, we generated several probability values that were ob-
tained from more highly skewed distributions, that are discussed in
the relevant sections.

Primary Views We present four views which are taken from the
examples and view definitions that accompany the GO database
[14]. The first viewV1 asks for all evidence associated with a fixed
pair of gene productd/2 looks for all terms associated with a fixed
gene product.V3 is a view of all annotations associated with the
Drosophila fly (via FlyBase [21])V4 is a large view of all gene
products and associated terms. Fig. 2 summarizes the relevant pa-
rameters for each view: (1) the number of tables in the view defini-
tion (2) the number of sources evidence, that is, how many times it



[ Query [[ Tables| # Evidence[ # Tuples | Avg. Lin. Size [ Size | 250

V1 8 2 1 234 12k 2 0 Sut Poly
V2 6 2 1119 1211 T4IM s Q PT PT
V3 6 1 295K 336 104M g 10
V4 7 1 28M 768 31G 7 100 V1l || 0.23s | 0.50s
£ a—— v2 || 3.5h | 3.5h
) : oy — V3 || 10.3m| 24.3m
Figure 2: Query statistics for the GO DB [14]. o o1 ez 03 04 08 v4 || 50.3h | 67.4h
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Figure 4: (a) The compression ratio versus the mean of the dis-
tribution for V1. Sufficient is more stable, though the polyno-
mial lineage can provide better approximation ratios. (b) The
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joins with the evidence table (3) the number of tuples returned (4)
the average of the lineage sizes for each tuple, and (5) the storage ) . (originall o
size of the result. Figure 5: (a) Compression Ratio (=rEc) (b) The distribu-

Secondary Dataseflo verify that our results apply more gener-  tion of lineage size in IMDB view, by rank.
ally than the GO database, we examined a database that (fuzzily)
integrated movie reviews from Amazon [2] that have been inte-
grated with IMDB (the Internet Movie Database) [35]. This data some very large sources in the real data; the largest one contains
has two sources of imprecision: matches of titles between IMDB approximately 823k monomials. Since large DNFs have proba-
and Amazon, ratings assigned to each movie by automatic senti-pjlities very close to one, polynomial lineage can achievesan
ment analysis, that is, a classifier. approximation can use the constant 1. In contragiicsent lineage
Experimental SetupAll experiments were run on a Fedora core  cannot do this.
Linux machine (2.6.23-14 SMP) with Dual Quad Core 2.66GHz  Effect of SkewWe investigate the féect of skew, by altering
16Gb of RAM. Our prototype implementation of the compression  the probabilistic assignment, that is, the probability we assigned to
algorithms was written in approximately 2000 lines of Caml. Query each atom. Specifically, we assigned an atom a score drawn from
performance was done using a modified-«caml version of the 3 skewed probability distribution. We then compresgeeith the
Mystiq engine[10] backed by databases running SQL Server 2005. skewed probabilitiesi1 contains only a single tuple with moderate

The implementation was not heavily optimized. sized lineage (234 monomials). Fig. 4(a) shows the compression
. ratio as we vary the skew from small mean$)2) to larger means,
5.2 CompreSS|0n 0.5. More formally, the probability we assign to an atom is drawn

We verify that our compression algorithms produce small ap- from a Beta distribution witl8 = 1 anda taking the value on the
proximate lineage, even for stringent error requirements. We mea- x axis. Suficient lineage provides lower compression ratios for
sured the compression ratios and compression times achieved byextreme means, that is close t®@® and 05, but is more consistent
our approaches for both datasets at varying errors. in the less extreme cases.

Compression RatiosFig. 3(a) shows the compression ratio ver- Compression TimeFig. 4(b) shows the processing time for each
sus error trade{fdachieved by polynomial and ficient lineage for view we consider. For viewg2, V3 andV4, we used 4 dual-core
V2. Specifically, for a fixed error on theaxis they axis shows the CPUs and 8 processes simultaneously. The actual end-to-end run-
compression ratio of the lineage (in log scale). As the graph illus- ning times are about a factor of 8 fasteig, V2 took less than 30m
trates, in the best cas&, the compression ratio for the polynomial  to compress. It is interesting to to note that the processor time for
lineage is very large. Specifically,even for extremely small error V2 is much larger than the comparably siZ&] the reason is that
rates, 10°, the compressed ratio 171 : 1 for polynomial lineage the complexity of our algorithm grows non-linearly with the largest
versus 27 : 1 times smaller forf§igient lineage. In contrasi3 is DNF size. Specifically, the increase is due to the cost of sampling.
our worst case. The absolute maximum our methods can achieve The compression times for polynomial lineage anfiisient lin-
is a ratio of 336 : 1, which is the ratio we would get by keeping a eage are close; this is only true because we are using the heuristic

single monomial for each tuple. At an error= 0.01, polynomial of Sec. 4.2. The generic algorithm is orders of magnitude slower: It
lineage achieves a&.: 1 ratio, while stficient lineage betters this  could not compresgl in an hour, compared to only®s using the
witha 21 : 1 ratio. heuristic approach. Our implementation of the generic search algo-

The abundance of large lineage formul&hcontain redundant rithm could be improved, but it would require orders of magnitude
information, which allows our algorithms to compress thefii+ e improvement to compete with théheiency the simple heuristic.
ciently. Fig. 3(b) shows the distribution of the size of the original IMDB and Amazon dataset Using the IMDB movie data, we
lineage formulae and below it the size after compression. There arecompressed a view of highly rated movies. Fig. 5(a) shows the



compression ratio for versus error rate. Even for stringent error

requirements, our approach is able to obtain good compression ra-

tios for both instantiations of approximate lineage. Fig. 5(b) shows
the distribution of the lineage size, sorted by rank, and if§csent

compression size. Compared to Fig. 3, there are relatively few large
lineage formulae, which means there is less much opportunity for

compression. On a single CPU, the time taken to compress the data

was always between 180 and 210s. This confirms that our results
our more general than a single dataset.

5.3 Explanations
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Figure 7: Query performance on (a)v2. (b) IMDB data.

in log scale, it takes just under 20 hours to run this query on the
uncompressed data. On data compressed wittcgnt lineage at

e = 0.001, we get an order of magnitude improvement; the query
takes approximately 35m to execute. Using the data compressed
with polynomial lineage, we get an additional order of magnitude;
the query now runs in.km.

Fig. 7(b) shows theféect of compression on query performance
for the IMDB movie dataset where the compression was not as dra-
matic. Again our query was to compute the lineage for each tuple
in the view. The time taking is to perform Monte Carlo sampling
on the now much smaller query. As expected, the data with higher
error, and so smaller, allows up to a five time performance gain. In
this example both running times scale approximately with the size
of compression.

We assess how well approximate lineage can solve the explana-6- RELATED WORK

tion tasks in practice, that is findingfSigient explanations (Prob. 2)
and finding influential variables (Prob. 3). Specifically, we answer
two questions: (1) How well can fiicient lineage compute influ-
ential variables? (2) How well can polynomial lineage generate
suficient explanations?

To answer question (1), we created 10 randomly generated prob-

abilistic assignment for the atomsVn; we ensured that the result-
ing lineage formula had non-trivial reliabilitye., in (0.1, 0.9). We

then tested precision: Out of the top 10 influential variables, how
many were returned in the top 10 usingfitient lineage (Sec. 3.3)?
Fig. 6(b) shows that for high error rates= 0.1, we still are able

to recover 6 of the top 10 influential variables and for lower error
rates,e = 0.01, we do even better: the average number of recov-
ered top 10 values is.®. The precision trails4 for very small
error rates due to small swaps in rankings near the bottom of the
top 10,e.g, all top 5 are within the top 10.

Lineage systems and provenance are important topics in data
management, [12, 13, 17, 28]. Compressing lineage is cited as an
important techinque to scaling these systems [13]. Of these, only
[30] considers probabilistic data, but not approximate semantics.

There is long, successful line of work that compresses (deter-
ministic) data to speed up query processing [18, 23, 25, 51, 53].
In wavelet approaches, probabilistic techniques are used to achieve
a higher quality synopses, [18]. In contrast, lineage in our setting
contains probabilities, which must be captured. The fact that the
lineage is probabilistic raises the complexity of compression. For
example, the approach of Garofalakisal. [23] assumes that the
entire wavelet transform can be computdiceently. In our work,
the transform size is exponential in the size of the data. Proba-
bilistic query evaluation can be reduced to calculating a single co-
efficient of the transform, which implies exact computation of the
transform is intractable [16, 27]. Aredt al. [19] advocate an ap-

To answer question (2), we used the same randomly generatedoroach to operate directly on compressed data to optimze queries

probabilistic assignments for the atomsVih as in the answer to
question (1). Fig. 6(a) shows the average number of terms in the
top k explanations returned by the method of Sec. 4.3 that are ac-
tual suficient explanations versus the number of terms retained
by the formula. We have an average recall of approximatély O
(with low standard deviation), while keeping only a few fioe
cients. Here, we are using the heuristic construction of polynomial
lineage. Thus, this experiment should be viewed as a lower bound
on the quality of using polynomial lineage for providing explana-
tions.

These two experiments confirm that bothimient and polyno-
mial lineage are able to provide high quality explanations of the
data directly on the compressed data.

5.4 Query Performance

Fig. 7 shows the féect of compression on execution timew;
The query asks to compute each tuple in the view. Hagis is

on Biological sequences. However, this approach is not lineage
aware and so cannot extract explanations from the compressed data.

In probabilistic databases, lineage is used for query processing in
Mystiq [16, 46] and Trio [54]. However, neither considers approxi-
mate lineage. Ret al. [46] consider approximately computing the
probability of a query answer, but do not consider the problem of
storing the lineage of a query answer. These techniques are orthog-
onal: We can use the techniques of [46] to compute the top-k query
probabilities from the Level Il database usingfstient lineage.
Approximate lineage is used to materialize views of probabilistic
data; this problem has been previously considered [47], but only
with an exact semantics.

Senet al. [49] consider approximate processing of relational
queries using graphical models, but not approximate lineage. In
the graphical model literature [15, 37] approximate representation
is considered, where the goal is to compress the model forimproved
performance. However, the data and query models of the our ap-



proaches is dierent. Specifically, our approach leverages the fact [19]
that lineage is database is ofteternal.

Our approach to computing polynomial lineage is based on com- [20]
putational learning techniques, such as the seminal paper by Linial 1
et al. [40], and others, [8, 11, 43]. A key ingredient underlying [22]
these results awitching lemmatg[5, 32, 48].

So far, learning techniques have only been applied to compress-
ing the data, but have not compressed the lineage [4, 24]. A dif-
ference between our approach and this prior art is that we do not 24
discard any tuples, but may discard lineage.

[23]

Explanation is a well-studied topic in the Artificial Intelligence  [2°]
community, see [31, 44]. The definition of explanation of a fact is (26]
a formula that is a minimal and ficient to explain a fact — which
is similar to our definition — but they additionally require that the
formula beunknownto the user. We do not model the knowledge
of users, but such a semantic would be very useful for scientists. [27]

[28]

7. CONCLUSION

In this paper, we have proposed two instantiations of approxi- [29]
mate lineage, a conservative approximation calléficgent lineage
and a more aggressive approximation called polynomial lineage.
The intuition behind both approaches is to keep track of only the |3
most important explanations or correlations. We provided funda-
mental algorithms to create, explore and understand, and proces$32]
approximate lineage. Our approach acheives high compression ra-

[30]

. A . . [33]
tios, high-quality explanations and good query performance.
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