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Abstract

Provenance is often used to validate data, by verifying its origin and explaining its derivation. When
searching for “causes” of tuples in the query results or in general observations, the analysis of lineage
becomes an essential tool for providing such justifications. However, lineage can quickly grow very large,
limiting its immediate use for providing intuitive explanations to the user. The formal notion of causality
is a more refined concept that identifies causes for observations based on user-defined criteria, and that
assigns to them gradual degrees of responsibility based on their respective contributions. In this paper, we
initiate a discussion on causality in databases, give some simple definitions, and motivate this formalism
through a number of example applications.

1 Introduction

The notion of causality and causation is a topic in philosophy, studied and argued over by philosophers over the
centuries. A formal, mathematical study of causation and responsibility has been initiated recently by the work
of Pearl [Pea00] and Halpern and Pearl [HP05], who have distilled the generally accepted aspects of causality
into a rigorous definition. This work has been influential in the Computer Science research community and has
already lead to applications in model checking and verification [BBDC+09, CHK08, CGY08].

The goal of this paper is to initiate a discussion on causality in databases. In Sec. 2, we give a minimalistic
definition of query causality that still captures the key concepts in the HP definition: (1) counterfactual v.s.
actual cause, (2) the notion of a contingency set, (3) Chockler and Halpern’s notion of responsibility [CH04].
We also show its relation to provenance, also refered to as lineage in this paper. Then in Sec. 3, we show that
our definition is general enough to be applied to a broad class of database-related applications.

2 Definitions

Causality in databases aims to answer the following question: given a query over a database instance and a
particular output of the query, which tuple(s) in the instance caused that output to the query? An important
contribution of Halpern and Pearl’s definition of causality is its reliance on structural equations, which express
the notion of intervention: what happens to the outcome if we change the state of the input. As a starting point,
we propose to define causality in databases by using a single structural equation: the lineage of that answer to
the query. We first define causality without referring to lineage, then relate the two notions.
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2.1 Causality

Following Halpern and Pearl (HP from now on), we partition the tuples in the database into exogenous and
endogenous tuples. The endogenous tuples are those that are considered candidates for causes. Exogenous
tuples are deemed not to be possible causes: they define the context determined by external factors. This
partition depends on the particular application and is defined either by the system or by the user. Let Dn ⊆ D
denote the endogenous tuples; the exogenous tuples are then Dx = D−Dn. For each relation name Ri, we write
Rn
i and Rx

i to denote the endogenous and exogenous tuples in Ri, respectively. Thus, Ri = Rn
i ∪Rx

i .
Our definition of causality simplifies the HP definition while still retaining its two key elements, counterfactual

causes and contingencies.

Definition 2.1 (DB Causality). Let t∈Dn be an endogenous tuple, and r a possible answer to query q.
• t is called a counterfactual cause for r in D if D |= q(r) and D − {t} 6|= q(r).
• t ∈ D is called an actual cause for r if there exists a set Γ ⊆ Dn, called a contingency for t, such that t is

a counterfactual cause for r in D − Γ.

A tuple t is a counterfactual cause if its removal from the database also removes r from the query result. The
tuple is an actual cause if one can find a contingency for which the tuple becomes a counterfactual cause: more
precisely, one has to find a set of tuples Γ such that, after removing Γ from the database we bring the database
to a state where removing/inserting t causes r to switch between an answer and a non-answer. The set Γ is
called a contingency for t. Obviously, every counterfactual cause is also an actual cause, by taking Γ = ∅.

Our simplified definition of causality is analogous to the definition for causality in Boolean circuits used in
[CHK08]. For monotone queries, it can be shown that this simplified definition agrees with the full HP definition.
For example, one requirement that we dropped is the following restriction on the contingency Γ: for any Γ′ ⊆ Γ,
it is required that D − Γ′ |= q(r). In other words, if we keep the candidate cause t in the database, then any
subset of the contingency should not change the output to the query. If the query is monotone then this condition
is automatically satisfied by our simple definition (as D − Γ |= q(r) implies D − Γ′ |= q(r)). However, for non-
monotone queries, our simple definition differs from the HP definition and may be inadequate. For example,
consider a non-monotone query over a database containing three tuples t1, t2, t. The query evaluates to true if
both t1 and t2 are in the database, or if t is in the database and neither of t1, t2 are; in other words, its lineage is
(Xt1 ∧Xt2)∨ (¬Xt1 ∧¬Xt2 ∧Xt) (see Sec. 2.2). In our simplified definition, t is an actual cause with contingency
Γ = {t1, t2} (as removing t1, t2 from the database makes t counterfactual). Under the full HP definition,
this contingency is not allowed because the query becomes false by just removing t1 from the database. For a
preliminary attempt towards a more general adaptation of the HP definition in a database context, see [MGMS09].

2.2 Relating Causality and Lineage

We can now relate causality and lineage. We define lineage as a Boolean expression, specifically based on the
Boolean c-tables representation [GT06, GKT07]. Associate a Boolean variable Xt to each tuple t in the database
instance D. The lineage of an answer r to a query q is defined as the unique (up to logical equivalence) Boolean
expression ϕq,r,D such that, for every truth assignment θ of Xt, ϕq,r,D[θ] = true iff the query q returns the answer
r when restricted to the subset D0 = {t | θ(Xt) = true} ⊆ D. For example, the lineage of the answer c to the
query q(x) :−R(x, y), S(y) might be (XR(c,b) ∧XS(b)) ∨ (XR(c,f) ∧XS(f)), which says that c will be an answer
to q on any subset of the database that contains the tuples R(c, b) and S(b), or the tuples R(c, f) and S(f).

The lineage expression gives us a simple tool for computing all causes for an answer r to a monotone query
q. Write the lineage ϕq,r,D in DNF, then substitute all Boolean variables corresponding to exogenous variables
with true; call the result ψ. A minterm of ψ is a minimal set of tuples T such that

∧
t∈T Xt ⇒ ψ. Then every

tuple that occurs in a minterm of ψ is a cause for the answer r.

Proposition 2.2 (Lineage Minterms). Let ϕq,r,D be the lineage expression for an answer r to a monotone
query q over a database instance D. Let ψq,r,D be obtained from ϕq,r,D by replacing all Boolean variables for
exogenous tuples with true. Then tuple t is an actual cause of the answer r to the query q on D iff there exists
a minterm in ψq,r,D that contains t.

For example, if ψ = (Xt1 ∧ Xt2 ∧ Xt3) ∨ (Xt1 ∧ Xt3 ∧ Xt4) ∨ (Xt1 ∧ Xt2 ∧ Xt3 ∧ Xt5), then there are two
minterms, {t1, t2, t3} and {t1, t3, t4}, and the actual causes are t1, t2, t3, t4; the tuple t5 is not a cause because the
third term in ψ is redundant. In the case where all tuples are endogenous, Prop. 2.2 eliminates terms that do not
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Query AnswersQuery
select distinct g.genre
from Director d, Movie Directors md,

Movie m, Genre g
where d.lastName like ‘Burton’

and g. mid=m.mid
and m. mid=md.mid
and md. did=d.did

order by g.genre

Database Schema
Director(did, firstName, lastName)
Actor(aid, firstName, lastName)
Movie(mid, name, year, rank)
Movie Directors(did, mid)
Genre(mid, genre)
Casts(aid, mid, role) ?	


genre
. . .
Fantasy
History
Horror
Music
Musical
Mystery
Romance
. . .

genre
. . .
Fantasy
History
Horror
Music
Musical
Mystery
Romance
. . .

genre
. . .
Fantasy
History
Horror
Music
Musical
Mystery
Romance
. . .

Figure 1: Example constructed with real data from the IMDB dataset. The user issues the query above to
identify the movie genres that Burton has directed, and is surprised to see the categories Music and Musical
listed. (Note that a movie may be classified under several genres.)

appear in the minimal witness basis of the answer [BKT01], and therefore the set of actual causes is equivalent
to the union of all sets in the minimal witness basis.

2.3 Degree of Responsibility

To measure the degree to which a tuple is considered a cause, Chockler and Halpern [CH04] introduced the notion
of degree of responsibility, or simply responsibility. We present the intuition with a simple example: Assume 11
voters who can vote for either candidate A or candidate B. In an 11-0 outcome, each voter is a cause for A’s
win, but each one’s responsibility is less than in a 6-5 outcome. The following definition, an adaptation from
Chockler and Halpern [CH04], captures this intuition.

Definition 2.3 (DB Responsibility). Let r be an answer to a query q, and let t be a cause. With Γ
ranging over all possible contingencies for t, the responsibility of t for the answer r is ρt = (1 + minΓ |Γ|)−1

Thus, the responsibility of t is a function of the minimal number of tuples that we need to remove from the
real database D before t becomes counterfactual. The tuple t is a counterfactual cause iff ρt = 1. If t is not
a cause then, by convention, we take ρt = 0. Intuitively, the larger the contingency, the less counterfactual a
variable is, and thus its responsibility is lower. In the case of the 6-5 vote, each vote for A is critical, so it has
degree of responsibility 1. On the other hand, in the case of the 11-0 vote, each vote has degree of responsibility
1/6; 5 votes have to be changed before one becomes critical. Some first results on the complexity of computing
causality and responsibility for the case of conjunctive queries can be found in [MGMS11].

Constraints. The definitions of causality and responsibility should be revisited in the presence of known
constraints over the data. Take for example q(x) :−R(x, y, z), S(x, y, u), with the constraint R(x, y) ⊆ S(x, y).
Under this constraint, q is equivalent to q′(x) :−R(x, y, z), and yet computing responsibility over q and q′ would
yield different results. Constraints are beyond the scope of this paper, but important to consider in future work.

3 Applications of Causality and Responsibility in Databases

3.1 Explaining Unexpected Answers

We start with the most basic application: explaining unexpected answers to a query. Consider the IMDB movie
database, available from www.imdb.org. It consists of the six tables illustrated in Fig. 1. Tim Burton is an Oscar-
nominated director well known for fantasy movies involving dark, Gothic themes. Examples of his work include
“Edward Scissorhands”, “Beetlejuice”, and the recent “Alice in Wonderland”. A user wishing to learn more
about Burton’s movies queries the IMDB dataset to find out about the genres of movies that he has directed; the
query issued, shown in Fig. 1, retrieves all genres of movies directed by Burton. The query’s answer, ran on the
actual database and shown in Fig. 1, includes some expected genres, such as Fantasy and Horror, and some genres
that seem more suspicious, such as Music and Musical. Are the latter errors in the data or the query, or are they
interesting discoveries? In other words, what are the causes of Musical and Music appearing in the query’s answer?

Tracing back the lineage of each answer to the query is a first step towards explaining them, but it is not suf-
ficient. In combination, the lineage of these two answers consists of a total of 137 base tuples, and this, we argue,
is overwhelming to a user. Representing this lineage as a list of minterms (44 in this case), still requires further
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1	  

6-‐30-‐2010	  

23456 David Burton

23468 Humphrey Burton

23488 Tim Burton

Director Movie

Musical

565577 The Melody Lingers On 1935

359516 Let’s Fall in Love 1933

389987 Manon Lescaut 1997

173629 Flight 1999

6539 Candide 1989

526338 Sweeney Todd: . . . 2007

Query answer

Fig_musicalsGraph	  

(a) Lineage from Directors and Movies of the Musical tuple

Answer tuple ρt

Movie(526338, “Sweeney Todd”, 2007) 0.33

Director(23456, David, Burton) 0.33

Director(23468, Humphrey, Burton) 0.33

Director(23488, Tim, Burton) 0.33

Movie(359516, “Let’s Fall in Love”, 1933) 0.25

Movie(565577, “The Melody Lingers On”, 1935) 0.25

Movie(6539, “Candide”, 1989) 0.20

Movie(173629, “Flight”, 1999) 0.20

Movie(389987, “Manon Lescaut”, 1997) 0.20

(b) Responsibility rankings for Musical

Figure 2: Ranking causes in the IMDB example. Displayed are the results for the Musical tuple, assuming that
all the tuples in the relations Directors and Movies are endogenous.

analysis by the user to determine the frequency of a tuple’s appearance in the lineage, as well as its participation in
minterms of possibly different sizes, to determine its actual significance to the result. It also turns out that all 137
tuples are actual causes (by Prop. 2.2), so causality does not provide us with any more information than lineage
in this case. However, ranking by responsibility gives us much more interesting information, as we now show.

Consider the case of the answer Musical, whose lineage is much smaller than Music and shown in Fig. 2a. 1

We can see immediately the causes of the suspicious answer. Although Tim Burton did direct one musical,
“Sweeney Todd” (surprise!), there are two other directors with last name Burton (oops!) who directed several
musicals. What we would like from a system is to list “Sweeney Todd”, David Burton, and Humphrey Burton as
top causes for Musical: the first is a surprising finding, the last two point to a bug in the query. We don’t want
a system to list a movie like “The Melody Lingers On” as a top explanation, because that doesn’t really explain
directly the surprising answer Musical. Ranking by responsibility achieves precisely this behavior, as shown in
Fig. 2b. The movie “Sweeney Todd” has a minimum contingency of size two, consisting of the directors David
and Humphrey Burton, because by removing these two directors from the database, “Sweeney Todd” becomes
counterfactual. In addition, each of the three directors with last name Burton also has a contingency of size two,
consisting of the other two directors. Thus, these four tuples (the movie and the three directors) have the same
responsibility, 1/3, and are listed as the top explanations for why Musical is returned by the query. On the other
hand, the smallest contingency for the movie “Manon Lescaut” has size four,2 hence its responsibility is 1/5. The
answer Music has a much larger lineage consisting of 118 tuples; ranking them by responsibility proves to be a key
technique in identifying interesting explanations. In this case Tim Burton and his movie “Corpse Bride” appear
highest in the ranking, along with three more directors who share the same last name: Al, Tom, and Humphrey.

Discussion. Our example illustrates a general phenomenon. Tuples with high responsibility tend to be
interesting explanations to query answers; tuples with low responsibility tend to be uninteresting. The reason
for why a tuple is interesting may vary: it may be a surprising fact in the data, it may point to a bug in the
query, or it may represent an error in the data. Our simple definition of causality does not distinguish between
these explanations, but only ranks them by the degree of interestingness to the user. A challenging research
direction would be to refine these notions in order to adapt them to specific purposes.

3.2 Diagnosing Network Failures

With the basic intuition in mind, we will illustrate now a quite different application of causality. Consider a
computer network consisting of a number of servers, with physical links between the servers stored in a table
Link(srv1,srv2). At any given time, a server may be active or down, and Active(Srv) is the table of servers
that are assumed to be active. A network administrator, call her Alice, is concerned in maintaining the network’s
connectivity, which can be expressed by the following Datalog program:

Connected(x,y) :- Link(x,y),Active(x),Active(y)
Connected(x,y) :- Connected(x,z),Link(z,y),Active(y)
Connected(x,y) :- Connected(y,x)

1The lineage has 21 tuples. Tuples from the Movie Directors and Genre relations are depicted in Fig. 2a as edges between the
Director and Movie tuples and the Movie and answer tuples, respectively. It is natural to consider the latter exogenous; if they
were endogenous, they would have the same responsibility as the movie they correspond to.

2{Movie(“Candide”), Movie(“Flight”), Director(David Burton), Director(Tim Burton)}.
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The last rule expresses the fact that the graph is undirected. If a server is down and Alice knows that, she will
take immediate corrective action, by rebooting the server or replacing the physical machine. Thus, under normal
operation, all servers are up and the network is connected.

At any given time, Active contains all servers that are believed by Alice to be active. Suppose that, at some
point, Alice observes that a server A is no longer connected to a server B. She can learn this from failed processes,
or by examining logs, or by receiving a system alert. Some servers in the network are down, and this caused
A and B to become disconnected. Alice’s challenge is to identify which servers are down. Thus, the content of
Active is no longer up to date: if we run the query Connected, it still returns the answer A,B, but this clearly
disagrees with the actual observation because Active is not up to date. Here we use causality and responsibility
to help diagnose the real system, instead of the database. Suppose that we declare all tuples in Link to be
exogenous; only tuples in Active are endogenous. In other words, we assume that links do not fail, only servers.
Then the lineage of the answer Connected(A,B) consists of all active servers on all simple paths connecting A to
B, and each server C on a simple path from A to B is an actual cause. Ranking these servers by responsibility will
help Alice diagnose the network. Indeed, a minimal contingency for a server C to be a cause is a set of servers Γ
such that Γ ∪ {C} is a minimal cut disconnecting A from B. Thus, servers with a high responsibility are a more
likely explanation for the observed disconnection in the network, while servers with low responsibility are less
likely explanations. By ranking servers in decreasing order of their responsibility the system assists the network
administrator with valuable information, allowing her to prioritize her diagnosis work.

Extensions. In a well-studied problem called network reliability [Col87], we are given a network where each
edge (or node) has a given probability of failing, and are asked to compute the probability that the network
remains connected. The network diagnosis example is clearly related to network reliability, and this connection
suggests the following extension of causality and responsibility. Suppose that for each tuple in the database we
are given a score (or weight): then it makes sense to define the responsibility of a tuple t as a function of the
minimum weight of a contingency Γ for t. Thus, we no longer consider only the cardinality of Γ, but take into
account the weights of the tuples in Γ. In the case of network reliability, the weight of a node s can be the
probability that s fails, that is, s is active with probability 1 − p(s), and the probability of a contingency Γ is∏
s∈Γ p(s)

∏
s 6∈Γ(1−p(s)). Define the responsibility of a tuple t to be the maximum probability of all contingencies.

Halpern [Hal08] has recently discussed a related refinement of causality, by combining it with default reason-
ing. In that setting, the weight of a world represents how normal that world is. K(D1) ≤ K(D2) means that D1 is
more “normal” than D2, where K, is a given ranking function; equivalently, D2 is more “exceptional” than D1).
The definition of causality is then modified by requiring the contingency Γ to lead to a more “normal” world,
that is, K(D− Γ) ≤ K(D). Notice that this is different from changing the definition of responsibility, because it
restricts the set of allowable contingencies rather than modifying their numerical value. The two extensions are
motivated by different applications. In the case of network reliability, every contingency containing at least one
failure is more exceptional than the normal state (with no failures), so restricting contingencies does not make
a difference here.

3.3 Handling Aggregate Queries

Causality poses additional challenges when the query contains aggregates. Consider a simple aggregate query:
select sum(A) from R. Here every tuple in R that has R.A6=0 is counterfactual, because its addition/removal
changes the sum, but obviously not all tuples in R are equal contributors to the sum. This highlights the lim-
itations of our simple definition of causality. It would be interesting to extend the definition of causality and
responsibility to quantify the contribution of each input tuple to the aggregate, which may be challenging when
the query combines aggregates with joins.

However, even our simple definition of causality captures some interesting aspect of aggregate queries. Con-
sider the question “why is the sum greater than 500?”. This can be phrased as a causality question for the
boolean query Q: select ‘true’ from R having sum(A) > 500, to which our notion of causality and respon-
sibility applies. Assume the following instance of R.A: {450, 150, 75, 25}. In this case, 450 is a counterfactual
tuple for Q (removing it makes Q false); 150 is an actual cause with contingency {75}, while 25 is not an actual
cause at all. The responsibilities are ρ450 = 1, ρ150 = ρ75 = 1/2, and ρ25 = 0 (for details see [MGMS09]).

Typical monitoring queries contain several joins and aggregates, and generate alerts based on whether an
aggregate reached a specified value, that is, having count(*) > N. Causality aims to answer the question “why
did the number of events (or errors, or failures) exceed N?”. We note here that, while causality and responsibility
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are captured by our definition, the computational challenges may be much higher in the case of queries with
aggregates, because the lineage may have a size that is exponential in N , and therefore it is not possible to
compute explicitly. New algorithms are likely to be needed in order to efficiently compute or approximate the
responsibility of tuples in queries with aggregates.

3.4 View-Conditioned Causality

In all previous examples we have assumed that there is a single query q, and a single answer r to that query, and
have defined causality for a fixed q and r. In practice one often has multiple queries and/or multiple answers. Fix
a query q and an answer r, and consider k additional queries, called views, v1, . . . , vk, with answers b1, . . . , bk. The
answers to the views are normal and expected, but the answer to the query is unexpected. We want to explain
the cause for the answer r to q, conditioned on the answers to the views: we call this View-Conditioned causality.

We define view-conditioned causality by making the following small change to Def. 2.1: we require a contin-
gency Γ to be such that D − Γ − {t} |= vi(bi), for all i = 1, k. This is related to the view side-effect problem
studied by Buneman et al. [BKT02], which asks for changes to the database that have minimal side-effects on
some given views. We illustrate the usefulness of this notion on the examples considered so far:
• Suppose that all answers in Fig. 1 are normal except Music and Musical. With the revised definition, we

consider as contingencies only those sets Γ of tuples whose removal does not affect the other answers to
the query.

• Consider a monitoring query that is run periodically on a data stream: for example the query may count
the number of dropped IP packets per minute in a computer network. The query returns a stream of
answers, a1, a2, . . . , at−1, at. Suppose that the last answer at is abnormal: there is a spike in the number of
dropped packets. The natural question to ask is: what is the cause for the spike at given that the previous
answers a1, a2, . . . , at−1 were normal? This is captured by view-conditioned causality, where a1, . . . , at−1

are the views and at is the query.
• Consider a distributed query execution environment, such as Pig over Hadoop [GNC+09, ORS+08]. Com-

plex Pig (or Map-reduce) jobs take hours to run, and their performance depends on a large number of
parameters, such as the number of servers, the size of the data, number of reduce tasks, size of the data
chunks, etc. Suppose that the same job is run repeatedly, with slightly different parameter settings, and re-
sults in running times a1, a2, . . . , an. Suddenly, the last running time an is abnormally high. The interesting
question is: what caused an to be abnormally high, given that a1, a2, . . . , an−1 were normal?

• Assume the network administrator (Alice) has more information about the actual state of the network:
she knows that C and D are still connected, and so are E and F, but that A,B are disconnected and so is
the pair M,N. View-conditioned causality allows her to ask the question: why are certain pairs of servers
disconnected while others remain connected?

Discussion. Conditioning on views seems to be a key ingredient to causality in databases. We can think of
exogenous tuples as those we want to take as given; view-conditioning allows us to to extend this intuition by
treating tuples in the view as given.

3.5 Preemption

A major effort in the original HP definition of causality consisted in capturing correctly the notion of preemption,
which had been discussed in philosophy and turned out to be difficult to capture in a mathematical formalism.
Preemption occurs when one possible cause is known to rule out another possible cause. The standard example
of preemption given in [HP05] and elsewhere is when Alice and Bob both throw a rock at a bottle: both aim
accurately, but Alice throws first, and therefore her throw hits the bottle and is the cause the bottle breaking,
not Bob’s. Here preemption is due to temporal ordering, where events that happened earlier preempt events that
happened later. For another example, suppose one wants to trace the source of an infection with a computer virus:
servers that were infected earlier preempt (as potential causes) servers that were infected later. Non-temporal
criteria may also be reasons for preemption. For example, suppose that a burst in stock purchases caused a certain
stock to jump 5 points in a few minutes: when searching for the causes of the sudden increase, transactions with
high volume should preempt transactions of low volume, as their contribution to the change is higher.
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Author Title Price Publisher
Epic of Gilgamesh $150 Hesperus

Euripides Medea $16 Free Press
Homer Iliad $18 Penguin
Homer Odyssey $49 Vintage
Hrotsvit Basilius $20 Harper
Longfellow Wreck of the Hesperus $89 Penguin
Shakespeare Coriolanus $70 Penguin
Sophocles Antigone $48 Free Press
Virgil Aeneid $92 Vintage

(a)

Ye Olde 
Books 

Select Books 
<=$20 

Apply Season 
Criteria 

Window 
Books 

Workflow input Workflow output 
MANIPULATION 1 MANIPULATION 2 

(b)

Y1 =(¬M1)∨M2M2

M1

Y =M1∧Y1

(c)

Figure 3: Example book store database from [CJ09] (a), representation of the workflow (b), and the corresponding
causal network (c).

The HP definition approach deals with preemption by choosing the appropriate structural equations. If both
Alice and Bob throw a rock at a bottle and we take the equation for bottle breaks (BB) to be BB = A ∨ B
(where A is “Alice throws” and B is “Bob throws”), then both A and B are actual causes, because the set {B}
is a contingency for A and vice versa. This equation treats A and B symmetrically; it does not capture the fact
that Alice’s throw hit the bottle before Bob’s did. It is beyond the scope of this paper to review Halpern and
Pearl’s full definition of causality and responsibility and explain how it addresses preemption. The HP treatment
of preemption seems to require the more complicated full HP definition. A major challenge is that of finding a
definition more in the spirit of the one used in this paper which handles preemption well.

3.6 Why-not Causality for non-answers

Explanation of query answers naturally extends to the absence of expected results. Recent work has focused on
the why-not question, that is, why a certain tuple is not in the result set. The problem has been addressed from
both the perspectives of data [HCDN08], which is our focus, and query revisions [CJ09, TC10]. Causality unifies
explanations for answers and non-answers under a common framework. We demonstrate how causality, with the
notion of preemption discussed in Sec. 3.5, can model an example presented by Chapman and Jagadish in [CJ09].

Example 1 (Book Shopper (Ex. 1) [CJ09]). A shopper knows that all “window display books” at Ye
Olde Booke Shoppe are around $20, and wishes to make a cheap purchase. She issues the query: Show me all
window display books. Suppose the result from this query is (Euripides, Medea). Why is (Hrotsvit, Basilius) not
in the result set? Is it not a book in the store? Does it cost more than $20? Is there a bug in the query-database
interface such that the query was not correctly translated?

Chapman and Jagadish consider a discrete component of a workflow, called manipulation, as an explanation
of a why-not query. The workflow describing the query of the example is shown in Fig. 3b. Roughly, a manipu-
lation is considered picky for a non-result if it prunes the tuple. For example, manipulation 1 of Fig. 3b is picky
for “Odyssey”, as it costs more than $20. Equivalently, a manipulation is frontier picky for a set of non-results
if it is the last in the workflow to reject tuples from the set. In this framework, the cause of a non-answer will
be a frontier picky manipulation.

In Example 1, tuple t =(Hrotsvit, Basilius) passes the price test, but is rejected by manipulation 2 as it
does not satisfy the seasonal criteria. The causal network representing this example is presented in Fig. 3c.
Input nodes model the events and describe the pickiness of manipulations: M1 holds if manipulation 1 is not
potentially picky with respect to t, and M2 holds if manipulation 2 is not potentially picky with respect to t. At
the end, the tuple appears only if neither manipulation is picky: M1 ∧M2. Node Y1 encodes the precedence of
the manipulations in the workflow. A tuple will be stopped at point Y1 of the workflow if M2 is picky but M1

was not, that is, if M1 ∧ ¬M2 holds. Thus, it will pass this point if Y1 = ¬(M1 ∧ ¬M2) = ¬M1 ∨M2 holds. A
tuple is reported if Y = M1 ∧ Y1 holds.

Applying the HP framework in the context of the example where M2 is picky but M1 is not (M1 ∧ ¬M2),
correctly yields that M2 is the only cause (counterfactual): Γ = ∅. If both manipulations were potentially picky
(¬M1 ∧¬M2), the HP definition again correctly picks M1 as the only cause with contingency Γ = {M2}. Hence,
even though M2 is potentially picky, it is preempted by M1. This is in agreement with the why-not framework
that selects as explanation the last manipulation in the workflow that finally rejected the tuple.

This example demonstrates not only that causality can model why-not questions, but also that it can handle
as causes any element that may be considered contributory to an event (in this case workflow manipulations).
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However, when focusing on tuples, we can again use a simple definition along the lines of the one presented in
Sec. 2, this time tweaked to specify causes and contingencies for missing tuples. This requires some minor changes
to Def. 2.1. Now the real database consists entirely of exogenous tuples Dx. In addition, we are given a set of po-
tentially missing tuples, whose absence from the database caused r to be a non-answer: these form the endogenous
tuples Dn, and we denote D = Dx∪Dn. We do not discuss here how to compute the set Dn; we assume that Dn is
given (one possibility is to compute it using techniques from [HCDN08]). Definition 2.1 is then modified as follows:

Definition 3.1 (Why-not Causality). Let t∈Dn be an endogenous tuple, and r a missing answer for q.
• t is called a counterfactual cause for the non-answer r in Dx if Dx 6|= q(r) and Dx ∪ {t} |= q(r)
• t ∈ D is called an actual cause for the non-answer r if there exists a set Γ ⊆ Dn such that t is a

counterfactual cause for the non-answer of r in Dx ∪ Γ.

4 Conclusions and Future Work

This paper initiates a discussion of causality in databases. It gives a simple definition of causality in database
queries, and illustrates it with several applications, including explanations, validation, data correction, and system
debugging. Currently, such tasks can be performed by manually exploring provenance information. Causality
allows to refine the analysis of provenance by including user and application specific constraints, and provides
meaningful ranking metrics. Future work needs to specialize this definition to more concrete applications, and
to study the computational challenges associated with computing cause and responsibility.
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