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Abstract
Integrity constraints such as functional dependencies (FD), and multi-valued dependencies (MVD)
are fundamental in database schema design. Likewise, probabilistic conditional independences (CI)
are crucial for reasoning about multivariate probability distributions. The implication problem
studies whether a set of constraints (antecedents) implies another constraint (consequent), and
has been investigated in both the database and the AI literature, under the assumption that all
constraints hold exactly. However, many applications today consider constraints that hold only
approximately. In this paper we define an approximate implication as a linear inequality between
the degree of satisfaction of the antecedents and consequent, and we study the relaxation problem:
when does an exact implication relax to an approximate implication? We use information theory
to define the degree of satisfaction, and prove several results. First, we show that any implication
from a set of data dependencies (MVDs+FDs) can be relaxed to a simple linear inequality with
a factor at most quadratic in the number of variables; when the consequent is an FD, the factor
can be reduced to 1. Second, we prove that there exists an implication between CIs that does not
admit any relaxation; however, we prove that every implication between CIs relaxes “in the limit”.
Finally, we show that the implication problem for differential constraints in market basket analysis
also admits a relaxation with a factor equal to 1. Our results recover, and sometimes extend, several
previously known results about the implication problem: implication of MVDs can be checked by
considering only 2-tuple relations, and the implication of differential constraints for frequent item
sets can be checked by considering only databases containing a single transaction.
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1 Introduction

Applications of Big Data require the discovery, or mining, of integrity constraints in a
database instance [14, 34, 8, 4, 20]. For example, data cleaning can be done by first learning
conditional functional dependencies in some reference data, then using them to identify
inconsistencies in the test data [17, 8]. Causal reasoning [35, 28, 31] and learning sum-of-
product networks [29, 12, 26] repeatedly discover conditional independencies in the data.
Constraints also arise in many other domains, for example in the frequent itemset problem
(FIS) [22, 6], or as measure based constraints [32] in applications like Dempster-Shafer theory,
possibilistic theory, and game theory (see discussion in [32]). In all these applications, quite
often the constraints are learned from the data, and are not required to hold exactly, but it
suffices if they hold only to a certain degree.
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Cone
Relaxation Bounds

General MVDs+FDs MVDs+FDs Disjoint MVDs+FDs
⇒ FD ⇒ MVD ⇒ MVD/FD

Γn (2n)! (Thm. 21) 1 (Thm. 6) n2

4 (Thm. 6) 1 (Thm. 11)
Γ∗n ∞ (Thm. 16) 1 (Thm. 6) n2

4 (Thm. 6) 1 (Thm. 11)
Pn 1 (Thm. 23) 1 (Thm. 23) 1 (Thm. 23) 1 (Thm. 23)

Table 1 Summary of results: relaxation bounds for the implication Σ⇒ τ for the sub-cones of
Γn under various restrictions. (1) General; no restrictions to either Σ or τ (2) Σ is a set of saturated
CIs and conditional entropies (i.e., MVDs+FDs in databases), and τ is a conditional entropy. (3) Σ
is a set of saturated CIs and conditional entropies, τ is any CI (4) Disjoint integrity constraints.
The terms in Σ are both saturated and disjoint (see definition 10 in Sec. 4), and τ is saturated.

The implication problem asks whether a set of constraints, called the antecedents, logically
imply another constraint called the consequent. In this setting, both antecedents and
consequent are required to hold exactly, hence we refer to it as an exact implication (EI).
The database literature has extensively studied the EI problem for integrity constraints
and shown that the implication problem is decidable and axiomatizable for Functional
Dependencies (FDs) and Multivalued Dependencies (MVDs) [23, 19, 1, 3], and undecidable
for Embedded Multivalued Dependencies (EMVDs) [16]. The AI community has studied
extensively the EI problem for Conditional Independencies (CI), which are assertions of the
form X ⊥ Y | Z, stating that X is independent of Y conditioned on Z, and has shown that
the implication problem is decidable and axiomatizable for saturated CIs [13] (where XY Z =
all variables), but not finitely axiomatizable in general [36]. In the FIS problem, a constraint
like X → Y ∨ Z ∨ U means that every basket that contains X also contains at least one of
Y, Z, U , and the implication problem here is also decidable and axiomatizable [33].

The Relaxation Problem. In this paper we consider a new problem, called the
relaxation problem: if an exact implication holds, does an approximate implication hold too?
For example, suppose we prove that a given set of FDs implies another FD, but the input data
satisfies the antecedent FDs only to some degree: to what degree does the consequent FD
hold on the database? An approximate implication (AI) is an inequality that (numerically)
bounds the consequent by a linear combination of the antecedents. The relaxation problem
asks whether we can convert an EI into an AI. When relaxation holds with a small bound,
then any inference system for proving exact implication, e.g. using a set of axioms or some
algorithm, can be used to infer approximate implication.

In order to study the relaxation problem we need to measure the degree of satisfaction of
a constraint. In this paper we use Information Theory. This is the natural semantics for
modeling CIs of multivariate distributions, becauseX ⊥ Y | Z iff I(X;Y |Z) = 0 where I is the
conditional mutual information. FDs and MVDs are special cases of CIs [21, 9, 38] (reviewed
in Sec. 2.1), and thus they are naturally modeled using the information theoretic measure
I(X;Y |Z) or H(Y |X); in contrast, EMVDs do not appear to have a natural interpretation
using information theory, and we will not discuss them here. Several papers have argued
that information theory is a suitable tool to express integrity constraints [21, 9, 38, 24, 14].

An exact implication (EI) becomes an assertion of the form (σ1 = 0 ∧ σ2 = 0 ∧ . . .)⇒
(τ = 0), while an approximate implication (AI) is a linear inequality τ ≤ λ ·

(∑
σi
)
, where

λ ≥ 0, and τ, σ1, σ2, . . . are information theoretic measures. We say that a class of constraints
can be relaxed if EI implies AI; we also say that it λ-relaxes, when we want to specify the
factor λ in the AI. We notice an AI always implies EI.
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Results We make several contributions, summarized in Table 1. We start by showing in
Sec. 4 that MVDs+FDs admit an n2/4-relaxation, where n is the number of variables, and
when the consequent is an FD, the implication admits a 1-relaxation. Thus, whenever an
exact implication holds between MVD+FDs, a simple linear inequality also holds between
their associated information theoretic terms. In fact, we prove a stronger result that holds
for CIs in general, which imply the result for MVDs+FDs. In addition, under some mild
syntactic restrictions to the antecedents, we strengthen the result to 1-relaxation when the
consequent is an MVD (i.e., instead of n

2

4 ); we leave open the question whether 1-relaxation
exists in general.

So far, we have restricted ourselves to saturated+conditional CIs (which correspond to
MVDs+FDs). In Sec. 5 we remove any restrictions, and prove a negative result: there exists
an exact implication (Eq. (9), based on an example in [18]) that does not relax. Nevertheless,
we show that every EI can be relaxed to an AI plus an error term, which can be made
arbitrarily small (at the cost of increasing the factor λ). This result shows that every exact
implication can be proved from some inequality with an error term. In fact, the proof of the
exact implication in Eq. (9), based on an inequality by Matúš [25], is precisely a relaxation
plus an arbitrarily small error term; our result shows that every EI can be proven in this
style.

Next, we consider two restrictions, which are commonly used in model theory. First, in
Sec. 6 we restrict the class of implications to those provable using Shannon’s inequalities, i.e.
monotonicity and submodularity (reviewed in Sec. 2.2). In general, Shannon’s inequalities
are sound but incomplete for proving exact and approximate implications that hold for all
probability distributions [42, 43], but they are complete for deriving inequalities that hold
for all polymatroids [41], and in particular, they are complete for saturated+conditional
constraints (as we show in Sec 4), and for measure-based constraints [32]. We prove that every
exact implication that holds for all polymatroids relaxes to an approximate implication, and
prove an upper bound λ ≤ (2n)!, and a lower bound λ ≥ 3; the exact bound remains open.
Second, in Sec. 7 we restrict the class of models used to check an implication: we only check
the implication for uniform probability distributions with 2 tuples (each with probability
1/2); we justify this shortly. We prove that, under this restriction, the implication problem
has a 1-relaxation. Restricting the models leads to a complete but unsound method for
checking general implication, however this method is sound for saturated+conditional (as we
show in Sec 4) and is also sound for checking FIS constraints (as we show in Sec. 7).

Two Consequences While our paper is focused on relaxation, our results have two
consequences for the exact implication problem. The first, is a 2-tuple model property: an
exact implication, where the antecedents are saturated+conditional CIs, can be verified on
uniform probability distributions with 2 tuples. A similar result is known for MVD+FDs [30].
Geiger and Pearl [13], building on an earlier result by Fagin [11], prove that every set of CIs
has an Armstrong model: a discrete probability distribution that satisfies only the CIs and
their consequences, and no other CI. The Armstrong model is also called a global witness,
and, in general, can be arbitrarily large. Our result concerns a single witness: for any given
set of saturated+conditional antecedents, and any consequent, if the implication holds for all
2-tuple uniform distributions, then it holds in general.

The second consequence concerns the equivalence between the implication problem of
saturated+conditional CIs with that of MVD+FDs. It is easy to check that the former
implies the latter (Sec. 2). Wong et al. [38] prove the other direction, relying on the sound
and complete axiomatization of MVDs [3]. Our 2-tuple model property implies the other
direction immediately.

CVIT 2016
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2 Notation and Preliminaries

We denote by [n] = {1, 2, . . . , n}. If Ω = {X1, . . . , Xn} denotes a set of variables and
U, V ⊆ Ω, then we abbreviate the union U ∪ V with UV .

2.1 Integrity Constraints and Conditional Independence
A relation instance R over signature Ω = {X1, . . . , Xn} is a finite set of tuples with attributes
Ω. Let X,Y, Z ⊆ Ω. We say that the instance R satisfies the functional dependency (FD)
X → Y , and write R |= X → Y , if forall t1, t2 ∈ R, t1[X] = t2[X] implies t1[Y ] = t2[Y ].
We say that R satisfies the embedded multivalued dependency (EMVD) X � Y | Z, and
write R |= X � Y | Z, if for all t1, t2 ∈ R, t1[X] = t2[X] implies ∃t3 ∈ R such that
t1[XY ] = t3[XY ] and t2[XZ] = t3[XZ]. One can check that X � Y | Y iff X → Y . When
XY Z = Ω, then we call X � Y | Z a multivalued dependency, MVD; notice that X,Y, Z are
not necessarily disjoint [3].

A set of constraints Σ implies a constraint τ , in notation Σ⇒ τ , if for every instance R, if
R |= Σ then R |= τ . The implication problem has been extensively studied in the literature;
Beeri et al. [3] gave a complete axiomatization of FDs and MVDs, while Herrman [16] showed
that the implication problem for EMVDs is undecidable.

Recall that two discrete random variables X,Y are called independent if p(X = x, Y =
y) = p(X = x) · p(Y = y) for all outcomes x, y. Fix Ω = {X1, . . . , Xn} a set of n jointly
distributed discrete random variables with finite domains D1, . . . ,Dn, respectively; let p be
the probability mass. For α ⊆ [n], denote by Xα the joint random variable (Xi : i ∈ α)
with domain Dα

def=
∏
i∈αDi. We write p |= Xβ ⊥ Xγ |Xα when Xβ , Xγ are conditionally

independent given Xα; in the special case β = γ, then p |= Xβ ⊥ Xβ |Xα iff Xα functionally
determines2 Xβ , and we write p |= Xα → Xβ .

An assertion Y ⊥ Z|X is called a Conditional Independence statement, or a CI; this
includes X → Y as a special case. When XY Z = Ω we call it saturated, and when Z = ∅
we call it marginal. A set of CIs Σ implies a CI τ , in notation Σ⇒ τ , if every probability
distribution that satisfies Σ also satisfies τ . This implication problem has also been extensively
studied: Pearl and Paz [27] gave a sound but incomplete set of graphoid axioms, Studeny [36]
proved that no finite axiomatization exists, while Geiger and Pearl [13] gave a complete
axiomatization for saturated, and marginal CIs.

Lee [21] observed the following connection between database constraints and CIs. The
empirical distribution of a relation R is the uniform distribution over its tuples, in other
words, ∀t ∈ R, p(t) = 1/|R|. Then:

I Lemma 1. ([21]) Forall X,Y, Z ⊂ Ω such that XY Z = Ω.

R |=X → Y ⇔ p |= X → Y and R |=X � Y |Z ⇔ p |= (Y ⊥ Z|X) (1)

The lemma no longer holds for EMVDs (Appendix A), and for that reason we no longer
consider EMVDs in this paper. The lemma immediately implies that if Σ, τ are saturated
and/or conditional CIs and the implication Σ ⇒ τ holds for all probability distributions,
then the corresponding implication holds in databases, where the CIs are interpreted as
MVDs or FDs respectively. Wong [38] gave a non-trivial proof for the other direction; we
will give a much shorter proof in Corollary 8.

2 This means: ∀u ∈ Dα, if p(Xα = u) 6= 0 then ∃v ∈ Dβ s.t. p(Xβ = v|Xα = u) = 1, and v is unique.
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2.2 Background on Information Theory
We adopt required notation from the literature on information theory [41, 7]. For n > 0, we
identify vectors in R2n with functions 2[n] → R.
Polymatroids. A function3 h ∈ R2n is called a polymatroid if h(∅) = 0 and satisfies the
following inequalities, called Shannon inequalities:
1. Monotonicity: h(A) ≤ h(B) for A ⊆ B
2. Submodularity: h(A ∪B) + h(A ∩B) ≤ h(A) + h(B) for all A,B ⊆ [n]
The set of polymatroids is denoted Γn ⊆ R2n , and forms a polyhedral cone (reviewed in
Subsec. 5). For any polymatroid h and subsets A,B,C ⊆ [n], we define4

h(B|A) def= h(AB)− h(A) (2)

Ih(B;C|A) def= h(AB) + h(AC)− h(ABC)− h(A) (3)

Then, ∀h ∈ Γn, Ih(B;C|A) ≥ 0 and h(B|A) ≥ 0. The chain rule is the identity:

Ih(B;CD|A) = Ih(B;C|A) + Ih(B;D|AC) (4)

We call Ih(B;C|A) saturated if ABC = [n], and elemental if |B| = |C| = 1; h(B|A) is a
special case of Ih, because h(B|A) = Ih(B;B|A).
Entropic Functions. If X is a random variable with a finite domain D and probability
mass p, then H(X) denotes its entropy

H(X) def=
∑
x∈D

p(x) log 1
p(x) (5)

For a set of jointly distributed random variables Ω = {X1, . . . , Xn} we define the function
h : 2[n] → R as h(α) def= H(Xα); h is called an entropic function, or, with some abuse, an
entropy. The set of entropic functions is denoted Γ∗n. The quantities h(B|A) and Ih(B;C|A)
are called the conditional entropy and conditional mutual information respectively. The
conditional independence p |= B ⊥ C | A holds iff Ih(B;C|A) = 0, and similarly p |= A→ B

iff h(B|A) = 0, thus, entropy provides us with an alternative characterization of CIs.
2-Tuple Relations and Step functions. 2-tuple relations play a key role for the implica-
tion problem of MVDs+FDs: if an implication fails, then there exists a witness consisting of
only two tuples [30]. We define a step function as the entropy of the empirical distribution
of a 2-tuple relation; R = {t1, t2} and p(t1) = p(t2) = 1/2. We denote the step function by
hU , where U ⊆ Ω is the set of attributes where t1, t2 agree. One can check:

hU (W ) =

0 if W ⊆ U
1 otherwise

(6)

We denote by Sn the set of step functions; this set is finite and has 2n elements. We will use
the following fact extensively in this paper: IhU

(Y ;Z|X) = 1 if X ⊆ U and Y, Z 6⊆ U , and
IhU

(Y ;Z|X) = 0 otherwise.

I Example 2. Consider the relational instance in Fig. 1 (a). It’s entropy is the step
function hU1U2(W ), which is 0 for W ⊆ U1U2 and 1 otherwise. R |= X1 → X2 because

3 Most authors consider rather the space R2n−1, by dropping h(∅) because it is always 0.
4 Recall that AB denotes A ∪B.

CVIT 2016
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X1 X2 U1 U2 Pr
0 0 0 0 1/2
1 1 0 0 1/2

(a)

X Y Z Pr
0 0 0 1/4
0 1 1 1/4
1 0 1 1/4
1 1 0 1/4

(b)

A B C D Pr
0 0 0 0 1/2− ε
0 1 0 1 1/2− ε
1 0 1 0 ε

1 1 0 0 ε
(c)

Figure 1 Two relations and their empirical distribution (a),(b); a distribution from [18] (c).

h(X2|X1) = h(X1X2) − h(X1) = 1 − 1 = 0, and R 6|= U1 → X1 because h(X1|U1) =
h(X1U1)− h(U1) = 1− 0 6= 0.

The relational instance R = {(x, y, z) | x+ y + z mod 2 = 0} in Fig. 1 (b) is called the
parity function. It’s entropy is h(X) = h(Y ) = h(Z) = 1, h(XY ) = h(XZ) = h(Y Z) =
h(XY Z) = 2. We have that R |= Y ⊥ Z because Ih(Y ;Z) = h(Y ) + h(Z) − h(Y Z) =
1 + 1− 2 = 0, but R 6|= Y ⊥ Z|X because Ih(Y ;Z|X) = 1.

2.3 Discussion
This paper studies exact and approximate implications, expressed as (in)equalities of entropic
functions h. For example, the augmentation axiom for MVDs [3] A� B|CD ⇒ AC � B|D
is expressed as Ih(B;CD|A) = 0 ⇒ Ih(B;D|AC) = 0, which holds by the chain rule (4).
Thus, our golden standard is to prove that (in)equalities hold forall entropic functions, Γ∗n;
for technical reasons we consider it’s topological closure, cl (Γ∗n), which satsfies the same set
of inequalities as Γ∗n, but not the same class of exact implications5. However, characterizing
these inequalities is a major open problem in mathematics, which we will not solve in this
paper. Therefore, we also consider two restrictions. The first is to restrict the implications to
those provable from Shannon inequalities (monotonicity and submodularity); this is a sound
but in general incomplete method, and, in fact, every implication derived this way holds not
just for cl (Γ∗n), but for all polymatroids, Γn. The second is to restrict the class of probability
distributions to uniform 2-tuple distributions; this leads to a complete but unsound method
for checking the implication problem and, in fact, every implication derived this way holds
only for the cone closure6 of the step functions Pn

def= conhull (Sn). To summarize, this
paper discusses three sets of polymatroids: Sn ( cl (Γ∗n) ( Γn.

3 Definition of the Relaxation Problem

We now formally define the relaxation problem. We fix a set of variables Ω = {X1, . . . , Xn},
and consider formulas of the form σ = (Y ;Z|X), where X,Y, Z ⊆ Ω, which we call a
conditional independence, CI; when Y = Z then we write it as X → Y and call it a
conditional. An implication is a formula Σ⇒ τ , where Σ is a set of CIs called antecedents
and τ is a CI called consequent. For a CI σ = (B;C|A), we define h(σ) def= Ih(B;C|A), for a
set of CIs Σ, we define h(Σ) def=

∑
σ∈Σ h(σ). Fix a set K s.t. Sn ⊆ K ⊆ Γn.

I Definition 3. The exact implication (EI) Σ⇒ τ holds in K, denoted K |=EI (Σ⇒ τ) if,
forall h ∈ K, h(Σ) = 0 implies h(τ) = 0. The λ-approximate implication (λ-AI) holds in K,

5 See Appendix D and [18]. Our main positive result in Sec. 5 holds only for cl
(
Γ∗
n

)
, not for Γ∗

n.
6 The cone closure of a set K ⊆ RN is the set of all vectors of the form

∑
i
cixi, where xi ∈ K and ci ≥ 0.
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in notation K |= λ · h(Σ) ≥ h(τ), if ∀h ∈ K, λ · h(Σ) ≥ h(τ). The approximate implication
holds, in notation K |=AI (Σ⇒ τ), if there exist a λ ≥ 0 such that the λ-AI holds.

We will sometimes consider an equivalent definition for AI, as
∑
σ∈Σ λσh(σ) ≥ h(τ),

where λσ ≥ 0 are coefficients, one for each σ ∈ Σ; these two definitions are equivalent, by
taking λ = maxσ λσ. Notice that both EI and AI are preserved under subsets of K in the
sense that K1 ⊆ K2 and K2 |=x (Σ⇒ τ) implies K1 |=x (Σ⇒ τ), for x ∈ {EI,AI}.

AI always implies EI. Indeed, h(τ) ≤ λ · h(Σ) and h(Σ) = 0, implies h(τ) ≤ 0, which
further implies h(τ) = 0, because h(τ) ≥ 0 for every CI τ , and every polymatroid h. In this
paper we study the reverse.

I Definition 4. Let I be a syntactically-defined class of implication statements (Σ⇒ τ), and
let K ⊆ Γn. We say that I admits a relaxation in K if, every implication statement (Σ⇒ τ)
in I that holds exactly, also holds approximately: K |=EI Σ⇒ τ implies K |=AI Σ⇒ τ . We
say that I admits a λ-relaxation if every EI admits a λ-AI.

I Example 5. Let Σ={(A;B|∅), (A;C|B)} and τ=(A;C|∅). Since Ih(A;C|∅) ≤ Ih(A;B|∅)+
Ih(A;C|B) by the chain rule (4), then the exact implication Γn |=EI Σ⇒ τ admits a 1-AI.

4 Relaxation for FDs and MVDs: Always Possible

In this section we consider the implication problem where the antecedents are either saturated
CIs, or conditionals. This is a case of special interest in databases, because the constraints
correspond to MVDs, or FDs. Recall that a CI (B;C|A) is saturated if ABC = Ω (i.e., the
set of all attributes). Our main result in this section is:

I Theorem 6. Assume that each formula in Σ is either saturated, or a conditional, and let
τ be an arbitrary CI. Assume Sn |=EI Σ⇒ τ . Then:
1. Γn |= n2

4 h(Σ) ≥ h(τ).
2. If τ is a conditional, Z → X, then Γn |= h(Σ) ≥ h(τ).

Before we prove the theorem, we list two important consequences.

I Corollary 7. Let Σ consist of saturated CIs and/or conditionals, and let τ be any CI. Then
Sn |= Σ⇒EI τ implies Γn |= Σ⇒EI τ

Proof. If Sn |= Σ⇒EI τ then ∀h ∈ Γn, h(τ) ≤ n2

4 h(Σ), thus h(Σ) = 0 implies h(τ) = 0. J

The corollary has an immediate application to the inference problem in graphical mod-
els [13]. There, the problem is to check if every probability distribution that satisfies all
CIs in Σ also satisfies the CI τ ; we have seen that this is equivalent to Γ∗n |=EI Σ ⇒ τ .
The corollary states that it is enough that this implication holds on all of the uniform
2-tuple distributions, i.e. Sn |= Σ⇒EI τ , because this implies the (even stronger!) statement
Γn |= Σ⇒EI τ . Decidability was already known: Geiger and Pearl [13] proved that the set
of graphoid axioms is sound and complete for the case when both Σ and τ are saturated,
while Gyssens at al. [15] improve this by dropping any restrictions on τ .

The second consequence is the following:

I Corollary 8. Let Σ, τ consist of saturated CIs and/or conditionals. Then the following two
statements are equivalent:
1. The implication Σ⇒ τ holds, where we interpret Σ, τ as MVDs and/or FDs.
2. Γn |=EI Σ⇒ τ .

CVIT 2016
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Proof. We have shown right after Lemma 1 that (2) implies (1). For the opposite direction,
by Th. 6, we need only check Sn |=EI Σ ⇒ τ , which holds because on every uniform
probability distribution a saturated CI holds iff the corresponding MVD holds, and similarly
for conditionals and FDs. Since the 2-tuple relation satisfies the implication for MVDs+FDs,
it also satisfies the implication for CIs, proving the claim. J

Wong et al. [38] have proven that the implication for MVDs is equivalent to that of the
corresponding saturated CIs (called there BMVD); they did not consider FDs. For the proof
in the hard direction, they use the sound and complete axiomatization of MVDs in [3]. In
contrast, our proof is independent of any axiomatic system, and is also much shorter. Finally,
we notice that the corollary also implies that, in order to check an implication between
MVDs and/or FDs, it suffices to check it on all 2-tuple databases: indeed, this is equivalent
to checking Sn |=EI Σ ⇒ τ , because this implies Item (2), which in turn implies item (1).
This rather surprising fact was first proven by [30].

We now turn to the proof of Theorem 6. Before proceeding, we note that we can assume
w.l.o.g. that Σ consists only of saturated CIs. Indeed, if Σ contains a non-saturated term,
then by assumption it is a conditional, X → Y , and we will replace it with two saturated
terms: (Y ;Z|X) and XZ → Y , where Z = Ω \XY . Denoting Σ′ the new set of formulas,
we have h(Σ) = h(Σ′), because h(Y |X) = Ih(Y ;Z|X) + h(Y |XZ). Thus, we will assume
w.l.o.g. that all formulas in Σ are saturated.

Theorem 6 follows from the next result, which is also of independent interest. We say
that a CI (X;Y |Z) is elemental if |X| = |Y | = 1. We say that σ covers τ if all variables in τ
are contained in σ; for example σ = (abc; d|e) covers τ = (cd; be). Then:

I Theorem 9. Let τ be an elemental CI, and suppose each formula in Σ covers τ . Then
Sn |=EI (Σ⇒ τ) implies Γn |= h(τ) ≤ h(Σ).

Notice that this result immediately implies Item (1) of Theorem 6, because every τ =
(Y ;Z|X) can be written as a sum of |Y | · |Z| ≤ n2/4 elemental terms (by the chain rule). In
what follows we prove Theorem 9, then use it to prove item (2) of Theorem 6.

Finally, we consider whether (1) of Theorem 6 can be strengthened to a 1-relaxation; we
give in Th. 11 below a sufficient condition, whose proof uses the notion of I-measure [41] and
is included in Appendix, and leave open the question whether 1-relaxation holds in general
for implications where the antecedents are saturated CIs and conditionals.

I Definition 10. We say that two CIs (X;Y |Z) and (A;B|C) are disjoint if at least one of
the following four conditions holds: (1) X ⊆ C, (2) Y ⊆ C, (3) A ⊆ Z, or (4) B ⊆ Z.

If τ = (X;Y |Z) and σ = (A;B|C) are disjoint, then for any step function hW , it cannot be
the case that both hW (τ) 6= 0 and hW (σ) 6= 0. Indeed, if such W exists, then Z,C ⊆W and,
assuming (1) X ⊆ C (the other three cases are similar), we have ZX ⊆W thus hW (τ) = 0.

I Theorem 11. Let Σ be a set of saturated, pairwise disjoint CI terms (Def. 10), and τ be
a saturated mutual information. Then, Sn |=EI (Σ⇒ τ) implies Γn |= h(τ) ≤ h(Σ).

4.1 Proof of Theorem 9
The following holds by the chain rule (proof in the appendix), and will be used later on.

I Lemma 12. Let σ = (A;B|C) and τ = (X;Y |Z) be CIs such that X ⊆ A, Y ⊆ B, C ⊆ Z
and Z ⊆ ABC. Then, Γn |= h(τ) ≤ h(σ).
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We now prove theorem 9. We use lower case for single variables, thus τ = (x; y|Z) because
it is elemental. We may assume w.l.o.g. x, y 6∈ Z (otherwise Ih(x; y|Z) = 0 and the lemma
holds trivially). The deficit of an elemental CI τ = (x; y|Z) is the quantity |Ω−Z|. We prove
by induction on the deficit of τ that Sn |=EI Σ⇒ τ implies Γn |= h(τ) ≤ h(Σ).

Assume Sn |=EI Σ ⇒ τ , and consider the step function at Z. Since hZ(τ) = 1, there
exists σ ∈ Σ, σ = (A;B|C), such that hZ(σ) = 1; this means that C ⊆ Z, and A,B 6⊆ Z. In
particular x, y 6∈ C, therefore x, y ∈ AB, because σ covers τ . If x ∈ A and y ∈ B (or vice
versa), then Γn |= h(τ) ≤ h(σ) by Lemma 12, proving the theorem. Therefore we assume
w.l.o.g. that x, y ∈ A and none is in B. Furthermore, since B 6⊆ Z, there exists u ∈ B − Z.

Base case: τ is saturated. Then u 6∈ xyZ, contradicting the assumption that τ is
saturated; in other words, in the base case, it is the case that x ∈ A and y ∈ B.

Step: Let ZA = Z∩A, and ZB = Z∩B. Since C ⊆ Z, and σ = (A;B|C) covers τ , then
Z = ZAZBC. We also write A = xyA′ZA (since x, y ∈ A) and B = uB′ZB. So, we have
that σ = (A;B|C) = (xyA′ZA;uB′ZB |C), and we use the chain rule to define σ1, σ2:

h(σ) =Ih(xyA′ZA;uB′ZB |C) = Ih(xyA′ZA;uZB |C︸ ︷︷ ︸
def= σ1

) + Ih(xyA′ZA;B′|uCZB︸ ︷︷ ︸
def= σ2

)

We also partition Σ s.t. h(Σ) = h(σ1) + h(Σ2), where Σ2
def= (Σ \ {σ}) ∪ {σ2}.

Next, define τ ′ def= (x;uy|Z) and use the chain rule to define τ1, τ2:

h(x; y|Z︸ ︷︷ ︸
τ

) ≤ Ih(x;uy|Z︸ ︷︷ ︸
τ ′

) = Ih(x;u|Z︸ ︷︷ ︸
def= τ1

) + Ih(x; y|uZ︸ ︷︷ ︸
def= τ2

) (7)

By Lemma 12, Γn |= h(σ1) ≥ h(τ1). We will prove: Sn |=EI Σ2 ⇒ τ2. This implies the
theorem, because Σ2 is saturated, and by the induction hypothesis Γn |= h(Σ2) ≥ h(τ2)
(since the deficit of τ2 is one less than that of τ), and the theorem follows from h(Σ) =
h(σ1) + h(Σ2) ≥ h(τ1) + h(τ2) = h(τ ′) ≥ h(τ). It remains to prove Sn |=EI Σ2 ⇒ τ2, and we
start with a weaker claim:

B Claim 13. Sn |=EI Σ⇒ τ2.

Proof. By Lemma 12 we have that h(σ) = Ih(xyA′ZA;uB′ZB |C) ≥ Ih(xy;u|Z) = Ih(y;u|Z)+
Ih(x;u|yZ). Therefore, Σ⇒ (x;u|yZ). Since Σ⇒ (x; y|Z), then by the chain rule we have
that Σ⇒ (x;uy|Z) = τ ′, and the claim follows from (7). J

Finally, we prove Sn |=EI Σ2 ⇒ τ2. Assume otherwise, and let hW be a step function
such that hW (τ2) = IhW

(x; y|uZ) = 1, and hW (Σ2) = 0. This means that uZ ⊆ W .
Therefore uZB ⊆ W , implying IhW

(xyA′ZA;uZB |C) = hW (σ1) = 0. Therefore, hW (Σ) =
hW (σ1) + hW (Σ2) = 0, contradicting the fact that Sn |=EI Σ⇒ τ2.

4.2 Proof of Theorem 6 Item 2
I Lemma 14. Suppose Sn |=EI Σ⇒ τ , where τ = (X;Y |Z). Let σ ∈ Σ such that τ, σ are
disjoint (Def. 10). Then: Sn |=EI

(
Σ\{σ}

)
⇒ τ.

Proof. Let Σ′ def= Σ \ {σ}. Assume by contradiction that there exists a step function hW
such that hW (Σ′) = 0 and hW (τ) = 1. Since σ, τ are disjoint, hW (σ) = 0. Then hW (Σ) = 0,
contradicting the assumption Sn |=EI Σ⇒ τ . J
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I Lemma 15. Let Σ be a set of saturated CIs s.t. Sn |=EI Σ⇒ τ . Suppose τ = (Z → uX)
(which, recall, is a shorthand for (uX;uX|Z)), and define τ1 = (Z → u), τ2 = (uZ → X);
thus, h(τ) = h(τ1)+h(τ2). Then there exists Σ1 and Σ2 such that: (1) h(Σ) = h(Σ1)+h(Σ2);
we say that Σ1,Σ2 form a parition of Σ. (2) Σ1 covers τ1 and Sn |=EI Σ1 ⇒ τ1. (3) Σ2 is
saturated and Sn |= Σ2 ⇒ τ2.

Proof. We partition Σ into Σ1 and Σ2 as follows. For every σ = (A;B|C) ∈ Σ, if u ∈ C then
we place σ in Σ2. Otherwise, assume w.l.o.g that u ∈ A, and we write A = uAZAXA

′ where
AZ = A ∩ Z, AX = A ∩X, and A′ = A\{uAZAX}. We use the chain rule to define σ1, σ2:

Ih(A;B|C) = Ih(uAZAXA′;B|C) = Ih(uAZ ;B|C︸ ︷︷ ︸
def= σ1

) + I(AXA′;B|uAZC︸ ︷︷ ︸
def= σ2

) (8)

We place σ1 in Σ1, and σ2 in Σ2. We observe that σ1 covers τ1 (because Z = AZBZCZ ⊆
AZBC) and σ2 is saturated. Furthermore, h(Σ1) + h(Σ2) = h(Σ). We prove Σ1 |=EI τ1.
By assumption, Σ |=EI τ1 = (Z → u). Let any σ2 = (A;B|C) ∈ Σ2; since u ∈ C, by
Lemma 14 we can remove it, obtaining Σ \ {σ2} |=EI τ1; repeating this process proves
Σ1 |=EI τ1. Finally, we prove Σ2 |=EI τ2. By assumption, Σ |=EI τ2 = (uZ → X). Let
any σ1 = (uAZ ;B|C) ∈ Σ1; since uAZ ⊆ uZ, by Lemma 14 we can remove it, obtaining
Σ \ {σ1} |=EI τ2; repeating this process proves Σ2 |=EI τ2. J

We now complete the proof of Theorem 6 item 2. Let τ = (Z → X), and Σ be saturated.
We show, by induction on |X|, that if Sn |=EI Σ⇒ τ then Γn |= h(τ) ≤ h(Σ). If |X| = 1,
then X = {x}, h(x|Z) = I(x;x|Z) is elemental, and the claim follows from Th. 9. Otherwise,
let u be any variable in X, write τ = (Z → uX ′), and apply Lemma 15 to τ1 = (Z → u),
τ2 = (Zu→ X ′), which gives us a partition of Σ into Σ1,Σ2. On one hand, Sn |=EI Σ1 ⇒ τ1,
and from Th. 9 we derive h(τ1) ≤ h(Σ1) (because τ1 is elemental, and covered by Σ1);
on the other hand Sn |=EI Σ2 ⇒ τ2 where Σ2 is saturated, which implies, by induction,
h(τ2) ≤ h(Σ2). The result follows from h(τ) = h(τ1) + h(τ2) ≤ h(Σ1) + h(Σ2) = h(Σ),
completing the proof.

5 Relaxation for General CIs: Sometimes Impossible

We consider the relaxation problem for arbitrary Conditional Independence statements.
Recall that our golden standard is to check (in)equalities forall entropic functions, h ∈ Γ∗n.
As we saw, for MVD+FDs, these (in)equalities coincide with those satisfied by Sn, and with
those satisfied by Γn. In general, however, they differ. We start with an impossibility result,
then prove that relaxation with an arbitrarily small error term always exists. Both results
are for the topological closure, cl (Γ∗n). This makes the negative result stronger, but the
positive result weaker; it is unlikely for the positive result to hold for Γ∗n, see [18, Sec.V.(A)]
and Appendix D.

I Theorem 16. There exists Σ, τ with four variables, such that cl (Γ∗4) |=EI (Σ⇒ τ) and
cl (Γ∗4) 6|=AI (Σ⇒ τ).

For the proof, we adapt an example by Kaced and Romashchenko [18, Inequality (I5′)
and Claim 5], built upon an earlier example by Matúš [25]. Let Σ and τ be the following:

Σ ={(C;D|A), (C;D|B), (A;B), (B;C|D)} τ =(C;D) (9)
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We first prove that, for any λ ≥ 0, there exists an entropic function h such that:

Ih(C;D) >λ · (Ih(C;D|A) + Ih(C;D|B) + Ih(A;B) + Ih(B;C|D)) (10)

Indeed, consider the distribution shown in Fig. 1 (c) (from [18]). By direct calculation,
Ih(C;D) = ε + O(ε2) = Ω(ε), while Ih(C;D|A) = Ih(C;D|B) = Ih(A;B) = 0 and
Ih(B;C|D) = O(ε2) and we obtain Eq.(10) by choosing ε small enough. Next, we prove
cl (Γ∗n) |=EI (Σ⇒ τ). Matúš [25] proved the following7 ∀h ∈ Γ∗n and ∀k ∈ N:

Ih(C;D) ≤Ih(C;D|A) + k+3
2 Ih(C;D|B) + Ih(A;B) + k−1

2 Ih(B;C|D) + 1
k
Ih(B;D|C) (11)

The inequality obviously holds for cl (Γ∗n) too. The EI follows by taking k →∞. Inequality
(11) is almost a relaxation of the implication (9): the only extra term is the last term, which
can be made arbitrarily small by increasing k. Our second result generalizes this:

I Theorem 17. Let Σ, τ be arbitrary CIs, and suppose cl (Γ∗n) |= Σ⇒ τ . Then, for every
ε > 0 there exists λ > 0 such that, forall h ∈ cl (Γ∗n):

h(τ) ≤λ · h(Σ) + ε · h(Ω) (12)

Intuitively, the theorem shows that every EI can be relaxed in cl (Γ∗n), if one allows for an
error term, which can be made arbitrarily small. We notice that the converse of the theorem
always holds: if h(Σ) = 0, then (12) implies h(τ) ≤ ε · h(Ω), ∀ε > 0, which implies h(τ) = 0.

Proof of Theorem 17. For the proof we need a brief review of cones [37, 5]. A set
C ⊆ RN is convex if, for any two points x1, x2 ∈ C and any θ ∈ [0, 1], θx1 + (1− θ)x2 ∈ C;
and it is called a cone, if for every x ∈ C and θ ≥ 0 we have that θx ∈ C. The conic hull
of C, conhull (C), is the set of vectors of the form θ1x1 + · · ·+ θkxk, where x1, . . . , xk ∈ C
and θi ≥ 0,∀i ∈ [k]. A cone K is finitely generated if K = conhull (L) for some finite set
L ⊂ RN , and is polyhedral if there exists u1, . . . , ur ∈ RN s.t. K = {x | ui·x ≥ 0, i ∈ [r]}; a
cone is finitely generated iff it is polyhedral. For any K ⊆ RN , the dual is the set K∗ ⊆ RN
defined as:

K∗
def= {y | ∀x ∈ K,x·y ≥ 0} (13)

K∗ represents the linear inequalities that hold for all x ∈ K, and is always a closed, convex
cone (it is the intersection of closed half-spaces). We warn that the ∗ in Γ∗n does not represent
the dual; the notation Γ∗n for entropic functions is by now well established, and we adopt it
here too, despite it’s clash with the standard notation for the dual cone. The following are
known properties of cones (reviewed and proved in the Appendix):
(A) For any set K, cl

(
conhull (K)

)
= K∗∗.

(B) If L is a finite set, then conhull (L) is closed.
(C) If K1 and K2 are closed, convex cones then: (K1 ∩K2)∗ =

(
cl
(
conhull (K∗1 ∪K∗2 )

))
.

Theorem 17 follows from a more general statement about cones:

I Theorem 18. Let K ⊆ RN be a closed, convex cone, and let y1, . . . , ym, y be m+ 1 vectors
in RN . The following are equivalent:
(a) For every x ∈ K, if x · y1 ≤ 0, . . . , x · ym ≤ 0 then x · y ≤ 0.

7 Matus [25] proved I(C;D) ≤ I(C;D|A) + I(C;D|B) + I(A;B) + I(C;E|B) + 1
k I(B;E|C) +

k−1
2 (I(B;C|D) + I(C;D|B)). Inequality (11) follows by setting E = D.
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(b) For every ε > 0 there exists θ1, . . . , θm ≥ 0 and an error vector e ∈ RN such that
||e||∞ < ε and, for every x ∈ K, x · y ≤ θ1x · y1 + · · ·+ θmx · ym + x · e.

Proof. Let L def= {−y1,−y2, . . . ,−ym}. Statement (a) is equivalent to −y ∈ (K ∩ L∗)∗;
Statement (b) is equivalent8 to −y ∈ cl

(
conhull (K∗ ∪ L)

)
. We prove their equivalence:

(K ∩ L∗)∗ =cl
(
conhull (K∗ ∪ L∗∗)

)
Item (C)

=cl
(

conhull
(
K∗ ∪ cl

(
conhull (L)

)))
Item (A)

=cl
(

conhull
(
K∗ ∪ conhull (L)

))
Item (B)

=cl
(
conhull (K∗ ∪ L)

)
Def. of conhull (−)

J

We now prove Theorem 17, using the fact that K def= cl (Γ∗n) is a closed cone [41]. Let
Σ = {σ1, . . . , σm}. Associate to each term σi = (Bi;Ci|Ai) the vector yi ∈ R2n such that,
forall h ∈ R2n , h · yi = Ih(Bi;Ci|Ai) = h(AiBi) + h(AiCi)− h(AiBiCi)− h(Xi) (i.e. yi has
two dimensions equal to +1, and two equal to −1), for i = 1,m. Denote by y the similar
vector associated to τ . Then, cl (Γ∗n) |= Σ ⇒ τ becomes condition (a) of Th. 18, and it
implies condition (b). Define λ = maxi θi, and ε

def= 2n · ||e||∞. Then the error term in (b) is:

x · e =
∑
W⊆[n]

eWh(W ) ≤
∑
W⊆[n]

|eW |h(W ) ≤ 2n · ||e||∞ · h(Ω)

6 Restricted Axioms

The characterization of the entropic cone cl (Γ∗n) is currently an open problem [41]. In
other words, there is no known decision procedure capable of deciding whether an exact
or approximate implication holds for all entropic functions. In this section, we consider
implications that can be inferred using only the Shannon inequalities (e.g., (2), and (3)), and
thus hold for all polymatroids h ∈ Γn. Several tools exists (e.g. ITIP or XITIP [40]) for
checking such inequalities.

This study is important for several reasons. First, by restricting to Shannon inequalities
we obtain a sound, but in general incomplete method for deciding implications. All axioms
for reasoning about MVD, FD, or semi-graphoid axioms9 [3, 27, 13] are, in fact, based on
Shannon inequalities. Second, under some syntactic restrictions, they are also complete; as we
saw, they are complete for MVD and/or FDs, for saturated constraints and/or conditionals,
and also for marginal constraints [13]. Third, Shannon inequalities are complete for reasoning
for a different class of constraints, called measure-based constraints, which were introduced by
Sayrafi et al. [32] (where Γn is denoted byMSI) and shown to have a variety of applications.

We start by showing that every exact implication of CIs can be relaxed over Γn. This
result was known, e.g. [18]; we re-state and prove it here for completeness.

8 To see this, notice that ∀x ∈ K,x · y ≤ x · (
∑

θiyi + e) iff −y +
∑

θiyi + e ∈ K∗; the latter holds for
some θ1, . . . , θm ≥ 0 iff −y + e ∈ conhull

(
K∗ ∪ L

)
; and finally the latter holds for arbitrarily small e

iff −y ∈ cl
(

conhull
(
K∗ ∪ L

))
.

9 Semi-graphoid axioms restricted to “strictly positive” distributions, which fail Γ∗
n.
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I Theorem 19. Let Σ, τ be arbitrary CIs. If Γn |=EI Σ ⇒ τ , then there exist λ ≥ 0, s.t.
Γn |= h(τ) ≤ λ · h(Σ). In other words, CIs admit relaxation over Γn.

Proof. (Sketch) We set K = Γn in Th. 18. Then K is polyhedral, hence K∗ is finitely
generated. Therefore, in the proof of Th. 18, the set K∗ ∪ L is finitely generated, hence
conhull (K∗ ∪ L) is closed, therefore there is no need for an error vector e in Statement (b)
of Th. 18, and, hence, no need for ε in AI (12) J

It follows that Shannon inequalities are incomplete for proving the implication Σ⇒ τ ,
where Σ, τ are given by Eq. (9). This is a “non-Shannon” exact implication, i.e. it holds only
in cl (Γ∗n), but fails in Γn, otherwise it would admit a relaxation. The explanation is that
Matus’ inequality (11) is a non-Shannon inequality. (The first example of a non-Shannon
inequality is due to Yeung and Zhang [43].) Next, we turn our attention to the size of the
factor λ. We prove a lower bound of 3:

I Theorem 20 ([10]). The following inequality holds for all polymatroids h ∈ Γn:

h(Z) ≤ Ih(A;B|C) + Ih(A;B|D) + Ih(C;D|E) + Ih(A;E) + 3h(Z|A) + 2h(Z|B) (14)

but the inequality fails if any of the coefficients 3, 2 are replaced by smaller values. In particular,
denoting τ,Σ the terms on the two sides of Eq.(26), the exact implication Γn |=EI Σ ⇒ τ

holds, and does not have a 1-relaxation.

We have checked the two claims in the theorem using the ITIP10 tool. For the positive
result, we also provide direct (manual) proof in the Appendix. Since some EIs relax only
with λ ≥ 3, the next question is, how large does λ need to be? We give here an upper bound:

I Theorem 21. If Γn |= Σ⇒ τ then Γn |= τ ≤ (2n)! ·h(Σ). In other words, every implication
of CIs admits a (2n)!-relaxation over Γn.

7 Restricted Models

In this section we restrict ourselves to models of uniform 2-tuple distributions, which
are equivalent to the step functions Sn. We prove that, under this restriction, all exact
implications admit a 1-relaxation and, in fact, this result holds on the conic closure, Pn =
conhull (Sn). This study also has two motivations. First, it leads to a complete, but unsound
procedure for implication; in other words, it can be used to disprove implications. A simple
example where it is unsound is the inequality Ih(X;Y |Z) ≤ Ih(X;Y ), which holds for every
step function, but fails for the “parity function” in Fig. 1 (b). Second, this restriction leads
to a sound and complete procedure for checking differential constraints in market basket
analysis [33]. These are more general than the CIs we discussed so far, yet we prove that
they, too, admit a 1-relaxation in Pn. Thus, our relaxation result has immediate application
to market basket constraints.

Consider a set of items Ω = {X1, . . . , Xn}, and a set of baskets B = {b1, . . . , bN} where
every basket is a subset bi ⊆ Ω. The support function f : 2Ω → N assigns to every subset
W ⊆ B the number of baskets in B that contain all items inW : f(W ) = |{b |W ⊆ b ∈ B}|. A
constraint f(W ) = f(WX) asserts that every basket that containsW also containsX. Sayrafi
and Van Gucht [33] define the density as df (W ) =

∑
Z:W⊆Z(−1)|Z−W |f(Z) (which we show

10 http://user-www.ie.cuhk.edu.hk/ ITIP/
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below equals the number of baskets b ∈ B s.t. W = b), then study the implication problem
of differential constraints, which are certain sums of densities. For example, f(W ) = f(WX)
is a differential constraint, because f(W )− f(WX) =

∑
Z:W⊆Z,X 6⊆Z df (Z).

We now explain the connection to step functions Sn. Fix a single basket b ∈ B and define
fb to be the support function for the singleton set {b}, that is fb(W ) = 1 if W ⊆ b and 0
otherwise. It follows that hb(W ) def= 1− fb(W ) is precisely the step function at b. Then, we
can write the support function as f =

∑
b∈B fb = N − h, where h =

∑
b∈B hb ∈ Pn, and

N = |B|. Note that the densities are also related, by11 df (W ) = −dh(W ). Conversely, any
positive combination of step functions h =

∑
U⊆Ω cUhU ∈ Pn with integer coefficients cU is

the negation of the support function for the set B that contains exactly cU copies of U , forall
U ⊆ Ω. It follows that an implications of differential constraints (i.e. sum of densities) holds
for all h ∈ Pn iff it holds for all support functions f . We now formalize.

I Lemma 22. Any function h : 2Ω → R s.t. h(∅) = 0 can be uniquely written as a linear com-
bination of step functions h =

∑
Z⊆Ω δh(Z) · hZ , where δh(W ) def= −

∑
Z:W⊆Z(−1)|Z−W |h(Z)

for W 6= Ω and12 δh(Ω) = 0. Notice that δh is equals the density of the associated support
function, δh = df .

Proof. The following two identities are equivalent, representing Möbius’ inversion formula:

∀W : h(Ω|W ) =
∑

Z:W⊆Z
δh(Z) ⇐⇒ ∀W : δh(W ) =

∑
Z:W⊆Z

(−1)|Z−W |h(Ω|Z) (15)

We first derive an expression for h(W ) from the left part of Eq.(15):

h(W ) =h(Ω|∅)− h(Ω|W ) =
∑
Z

δh(Z)−
∑

Z:W⊆Z
δh(Z) =

∑
Z:W 6⊆Z

δh(W ) =
∑
Z

δh(Z) · hZ(W )

Second, we derive an expression for δh from the right part of Eq.(15):

δh(W ) =h(Ω)(
∑

Z:W⊆Z
(−1)|Z−W |)−

∑
Z:W⊆Z

(−1)|Z−W |h(Z)

and the claim follows from
∑
Z:W⊆Z(−1)|Z−W | = 0 whenever W 6= Ω. J

The lemma says that the step functions (hW )W⊂Ω form a basis for the vector space R2n

(where |Ω| = n), and the coordinates of h are differentials of the support function, δh(W ) =
df (W ). If h = hb (the step function at b), then it belongs to the basis, hence δh(W ) = 1 iff
W = b otherwise it is 0; this explains why df (W ) is the number of baskets b s.t. b = W . In in-
formation theory the quantity Ih(y1; y2; · · · ; ym|W ) def= −

∑
Z:W⊆Z⊆{y1,...,ym}(−1)|Z−W |h(Z)

is called the conditional multivariate mutual information, thus, δh(W ) is a saturated con-
ditional multivariate mutual information. We also show in the Appendix that δh(W ) is
precisely the I-measure of an atom in I-measure theory [41].

Once we have motivated the critical role of the negated differentials δh(W ), we define
an I-measure constraint to be an arbitrary sum σ =

∑
i δh(Wi); the exact constraint is

the assertion σ = 0, while an approximate constraint asserts some bound, σ ≤ c. The
differential constraints [33] are special cases of I-measure constraints. Any CI constraint
is also a special case of an I-measure, for example h(Y |X) =

∑
W :X⊆W,Y 6⊆W δh(W ), and

11This holds forall W 6= Ω. For W = Ω, dh(Ω) = 0, while df (Ω) = number of baskets equal to Ω.
12Recall that the step function hΩ is identically 0; hence it suffices to define δh(Ω) = 0.
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Ih(Y ;Z|X) =
∑
W :X⊆W,X 6⊆W,Y 6⊆W δh(W ). If h ∈ Pn then all coordinates are positive,

δh(W ) ≥ 0 (this is precisely the definition of Pn), and this implies that all I-measure
constraints are ≥ 0. We prove:

I Theorem 23. Exact implications of I-measure constraints admit a 1-relaxation in Pn.

Proof. Consider an implication Σ⇒ τ where all constraints in Σ, τ are I-measure constraints.
Let τ =

∑
i δh(Wi). Then, for every i, there exists some constraint σ =

∑
j δh(Wj) ∈ Σ such

that Wi = Wj for some j, proving the theorem. If not, then for the step function h def= hWi

we have h(σ) = 0 forall σ ∈ Σ, yet h(τ) = 1, contradicting the assumption Pn |= Σ⇒ σ. J

I Example 24. Consider Example 4.3 in [33]: d1 = f(A) +f(ABCD)−f(ABC)−f(ACD),
d2 = f(C)− f(CD), and d = f(AB)− f(ABD). Sayrafi and Van Gucht prove d1 = d2 = 0
implies d = 0 for all support functions f . The quantity d1 represents the number of baskets
that contain A, but do not contain BC nor CD, while d2 is the number of baskets that
contain C but not D. Our theorem converts the exact implication into an inequality as follows.
Denote by σ1

def= Ih(BC;CD|A), σ2
def= h(D|C), τ def= h(D|AB), Pn |= (σ1 = σ2 = 0⇒ τ = 0)

relaxes to Pn |= σ1 + σ2 ≥ τ , which translates into d1 + d2 ≤ d forall support functions f .

8 Discussion and Future Work

Number of Repairs A natural way to measure the degree of a constraint in a relation
instance R is by the number of repairs needed to enforce the constraint on R. In the case of
a key constraint, X → Y , where XY = Ω, our information-theoretic measure is naturally
related to the number of repairs, as follows. If h(Y |X) = c, where h is the entropy of the
empirical distribution on R, then one can check |R|/|ΠX(R)| ≤ 2c. Thus, the number of
repairs |R| − |ΠX(R)| is at most (2c − 1)|ΠX(R)|. We leave for future work an exploration
of the connections between number of repairs and information theoretic measures.

Small Model Property. We have proven in Sec. 4 that several classes of implications
(including saturated CIs, FDs, and MVDs) have a “small model” property: if the implication
holds for all uniform, 2-tuple distributions, then it holds in general. In other words, it suffices
to check the implication on the step functions Sn. One question is whether this small model
property continues to hold for other tractable classes of implications in the literature. For
example, Geiger and Pearl [13] give an axiomatization (and, hence, a decision procedure) for
marginal CIs. However, marginal CIs do not have the same small model property. Indeed,
the implication (X ⊥ Y )&(X ⊥ Z)⇒ (X ⊥ Y Z) holds for all uniform 2-tuple distributions
(because Ih(X;Y Z) ≤ Ih(X;Y ) + Ih(X;Z) holds for all step functions), however it fails for
the “parity distribution” in Fig.1(b). We leave for future work an investigation of the small
model property for other classes of constraints.

Proof Techniques. Since we had to integrate concepts from both database theory and
information theory, we had to make a choice of which proof techniques to favor. In particular,
Pn, the cone closure of the step functions, is better known in information theory as the
set of entropic functions with a non-negative I-measure. After trying both alternatives, we
have chosen to favor the step functions in most of the proofs, because of their connection to
2-tuple relations. We explain in the Appendix the connection to the I-measure, and include
the proof of Th. 11, which is easier to express in that language.

Bounds on the factor λ. In the early stages of this work we conjectured that all CIs
in Γn admit 1-relaxation, until we discovered the counterexample in Th. 20, where λ = 3.
On the other hand, the only general upper bound is (2n)!. None of them is likely to be tight.
We leave for future work the task of finding tighter bounds for λ.
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APPENDIX

A EMVDs and CIs

Equation (1) holds only for MVDs and not for EMVDs, as illustrated in Table 2. To the
best of our knowledge, EMVD’s have not been characterized using information theory; we
do not discuss them further in the paper.

X1 X2 X3

a c e

b c e

a d e

b d e

b d f

Table 2 The relation R[X1, X2, X3] satisfies the EMVD ∅ � X1|X2, yet for the empirical
distribution, Ih(X1;X2) 6= 0 because X1, X2 are dependent: p(X1 = a) = 2/5 6= p(X1 = a|X2 =
c) = 1/2.

B The I-measure

The I-measure [39, 41] is a theory which establishes a one-to-one correspondence between
Shannon’s information measures and set theory. We use the I-measure in order to prove
Theorems 11, and 23. In Section H we characterize Pn, the conic hull of step functions, using
this notion.

Let h ∈ Γn denote a polymatroid defined over the variable set {X1, . . . , Xn}. Every
variable Xi is associated with a set m(Xi), and it’s complement mc(Xi). The universal set is
Λ def=

⋃n
i=1 m(Xi), and we consider only atoms in which at least one set appear in positive

form (i.e., the atom
⋂n
i=1 mc(Xi)

def= ∅ is defined to be empty). Let I ⊆ [n]. We denote by
XI

def= {Xj | j ∈ I}, and m(XI) def=
⋃
i∈I m(Xi).

I Definition 25. The field Fn generated by sets m(X1), . . . ,m(Xn) is the collection of
sets which can be obtained by any sequence of usual set operations (union, intersection,
complement, and difference) on m(X1), . . . ,m(Xn).

The atoms of Fn are sets of the form
⋂n
i=1 Yi, where Yi is either m(Xi) or mc(Xi). We

denote by A the atoms of Fn. There are 2n − 1 non-empty atoms and 22n−1 sets in Fn
expressed as the union of its atoms. A function µ : Fn → R is set additive if for every pair of
disjoint sets A and B it holds that µ(A∪B) = µ(A)+µ(B). A real function µ defined on Fn
is called a signed measure if it is set additive, and µ(∅) = 0.

The I-measure µ∗ on Fn is defined by µ∗(m(XI)) = h(XI) for all nonempty subsets
I ⊆ {1, . . . , n}. Table 3 summarizes the extension of this definition to the rest of the Shannon
measures. Theorem 26 [39, 41] establishes the one-to-one correspondence between Shannon’s
information measures and µ∗.

I Theorem 26. ([39, 41]) µ∗ is the unique signed measure on Fn which is consistent
with all Shannon’s information measures (i.e., entropies, conditional entropies, and mutual
information).
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Information
µ∗Measures

h(X) µ∗(m(X))
h(XY ) µ∗

(
m(X) ∪m(Y )

)
h(X|Y ) µ∗

(
m(X) ∩mc(Y )

)
Ih(X;Y ) µ∗

(
m(X) ∩m(Y )

)
Ih(X;Y |Z) µ∗

(
m(X) ∩m(Y ) ∩mc(Z)

)
Table 3 Information measures and associated I-measure

In particular, µ∗ can be negative. If µ∗(a) ≥ 0 for all atoms a ∈ A then it is called a positive
measure. A polymatroid is said to be positive if its I-measure is positive, and Pn is the cone
of positive polymatroids. Theorem 27, that will be used later on, states that any i-measure
assigning a non-negative value to its atoms is a polymatroid.

I Theorem 27. ([41]) If there is no constraint on X1, . . . , Xn, then µ∗ can take any set of
nonnegative values on the nonempty atoms of Fn.

Let σ = I(X;Y |Z). We denote by m(σ) = m(X)∩m(Y )∩mc(Z) the set associated with
σ (see also Table 3). For a set of mutual information and entropy terms Σ, we let:

m(Σ) def=
⋃
σ∈Σ

m(σ).

Theorem 28, that will be used later on, shows that a necessary condition for the implication
Γn |=EI Σ⇒ τ is that m(τ) ⊆ m(Σ).

I Theorem 28. Let Σ denote a set of mutual information terms. If Γn |=EI Σ⇒ τ then
m(τ) ⊆ m(Σ).

Proof. Assume, by contradiction, that m(τ) 6⊆ m(Σ), and let b ∈ m(τ)\m(Σ). By Theorem 27
the I-measure µ∗ can take the following non-negative values:

µ∗(a) =

1 if a = b

0 otherwise

It is evident that µ∗(Σ) = 0 while µ∗(τ) ≥ 1, which contradicts the implication. J

C Proofs from Section 4

Lemma 12. Let σ = (A;B|C) and τ = (X;Y |Z) be CIs such that X ⊆ A, Y ⊆ B, C ⊆ Z
and Z ⊆ ABC. Then, Γn |= h(τ) ≤ h(σ).

Proof. Since Z ⊆ ABC, we denote by ZA = A∩Z, ZB = B∩Z, and ZC = C∩Z. Also, denote
by A′ = A\(ZA∪X), B′ = B\(ZB∪Y ). So, we have that: I(A;B|C) = I(ZAA′X;ZBB′Y |C).
By the chain rule, we have that:

I(ZAA′X;ZBB′Y |C) = I(ZA;ZB |C) + I(A′X;ZB |CZA) + I(ZA;B′Y |ZBC)
+ I(X;Y |CZAZB) + I(X;B′|CZAZBY ) + I(A′;B′Y |CZAZBX)

Noting that Z = CZAZB , we get that I(X;Y |Z) ≤ I(A;B|C) as required. J
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Theorem 11. Let Σ be a set of saturated, pairwise disjoint CI terms (Def. 10), and τ
be a saturated mutual information. Then, Sn |=EI (Σ⇒ τ) implies Γn |= h(τ) ≤ h(Σ).

The proof of Theorem 11 relies on the i-measure presented in Section B, and in particular,
on theorem 28.

Proof. From Theorem 7 we have that Γn |= Σ⇒ τ . Let τ = I(A;B|C) be the saturated im-
plied CI, and let σ = I(X;Y |Z) ∈ Σ be a saturated CI. Noting that m(τ) = mc(C)m(A)m(B)
we get that:

mc(τ) = m(C) ∪mc(C)mc(A) ∪mc(C)m(A)mc(B) (16)

Furthermore, since σ = I(X;Y |Z) is saturated, we get that C = CXCY CZ where CX = C∩X,
CY = C ∩ Y , and CZ = C ∩ Z. From this, we get that:

m(C) = m(CX) ∪mc(CX)m(CY ) ∪mc(CX)mc(CY )m(CZ) (17)

Then, from (16), and the set-additivity of µ∗, we get that:

µ∗
(
m(σ) ∩mc(τ)

)
= µ∗(m(σ) ∩m(C)) + µ∗(m(σ) ∩mc(C)mc(A)) + µ∗(m(σ) ∩mc(C)m(A)mc(B)) (18)

We consider each one of the terms in (18) separately. By (17), we have that:

µ∗(m(σ) ∩m(C))
= µ∗(m(σ)m(CX)) + µ∗(m(σ)mc(CX)m(CY )) + µ∗(m(σ)mc(CX)mc(CY )m(CZ))
= µ∗(m(CX)m(Y )mc(Z)) + µ∗(m(X\CX)m(CY )mc(ZCX))+
µ∗(m(X\CX)m(Y \CY )m(CZ)mc(ZCXCY ))
= µ∗(m(CX)m(Y )mc(Z)) + µ∗(m(X\CX)m(CY )mc(ZCX)) (19)
= Ih(CX ;Y |Z) + Ih(X\CX ;CY |ZCX) (20)

where transition (19) is because CZ ⊆ Z and thus m(CZ)mc(ZCXCY ) = ∅, and µ∗(∅) = 0.
We now consider the second term of (18).

µ∗(m(σ) ∩mc(C)mc(A)) = µ∗(m(X)m(Y )mc(Z)mc(C)mc(A))
= µ∗(m(X)m(Y )mc(ZCA)
= Ih(X;Y |ZCA) (21)

Finally, we consider the third term of (18). Since I(X;Y |Z) is saturated, we get that
A = AXAYAZ where AX = A ∩X, AY = A ∩ Y , and AZ = A ∩ Z. Therefore:

m(A) = m(AX) ∪mc(AX)m(AY ) ∪mc(AX)mc(AY )m(AZ) (22)

From (22), and the set-additivity of µ∗, we get that:

µ∗(m(σ) ∩mc(C)m(A)mc(B))
= µ∗(m(X)m(Y )mc(Z)mc(C)m(A)mc(B))
= µ∗(m(X)m(Y )m(A)mc(ZCB))
= µ∗(m(AX)m(Y )mc(ZCB)) + µ∗(m(X\AX)m(AY )mc(ZCBAX))
+ µ∗(m(X\AX)m(Y \AY )m(AZ)mc(ZCBAXAY ))
= µ∗(m(AX)m(Y )mc(ZCB)) + µ∗(m(X\AX)m(AY )mc(ZCBAX)) (23)
= Ih(AX ;Y |ZCB) + Ih(X\AX ;AY |ZCBAX) (24)
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where transition (23) is because AZ ⊆ Z, and thus m(Az)∩mc(ZCBAX) = ∅, and µ∗(∅) = 0.
By (20), (21), and (24) we get that:

µ∗(m(σ) ∩mc(τ)) = Ih(CX ;Y |Z) + Ih(X\CX ;CY |ZCX)
+ Ih(X;Y |ZCA) + Ih(AX ;Y |ZCB) + Ih(X\AX ;AY |ZCBAX) (25)

Therefore, by (25), we get that: µ∗
(
m(σ) ∩mc(τ)

)
≥ 0 for every σ ∈ Σ. By theorem 28 we

have that m(τ) ⊆ m(Σ). And since Σ is disjoint then µ∗(m(τ)) =
∑
σ∈Σ µ

∗(m(τ) ∩m(σ)).
The result then follows from noting that due to the set-additivity of µ∗ then:

h(Σ) =
∑
σ∈Σ

µ∗(m(σ)) =
∑
σ∈Σ

µ∗(m(σ) ∩m(τ)) +
∑
σ∈Σ

µ∗(m(σ) ∩mc(τ)).

J

D Example for Section 5

[18] gave an example of a conditional inequality that holds in Γ∗n but fails in cl (Γ∗n). They
also gave several examples of conditional inequalities that are “essentially conditional”, i.e.
are not derived from other inequalities: our example of an EI that is not and AI (Theorem 16)
is based on one of their essentially conditional inequalities. To give a better intuition and
geometric interpretation of these phenomena, we give here a much simpler example, albeit
unrelated to information theory.

Let K denote the cone of semi-positively defined 2×2 matrices with non-negative elements.
We extend it with one other matrix −Y and take the convex hull:

K
def=


(
a b

b c

)
| a, b, c ∈ R+, ac ≥ b2


Y

def=
(

1 0
0 0

)
K ′

def=conhull
(
K ∪ {−Y }

)
Equivalently:

K ′
def=


(
a− d b

b c

)
| a, b, c, d ∈ R+, ac ≥ b2


This example illustrates several things:

Even though K is a closed and convex cone, K ′ (= conhull
(
K ∪ {−y}

)
) is not closed;

this justifies the condition used in Theorem 18. To see why it is not closed, consider the
following sequence of matrices is in K ′:

An =
(

0 1
1 1/n

)
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We have An ∈ K ′ because we can set a = d = n, b = 1, c = 1/n. The limit of this
sequence is:

lim
n
An =

(
0 1
1 0

)

This matrix is not in K ′, thus proving that K ′ is not closed.
K satisfies the following EI: a = 0 ⇒ b = 0. However, there is no corresponding AI:
for no λ > 0 does it hold that K |= (b ≤ λ · a). However, by Theorem 18, there exists
an AI with an error term. Indeed, K |= (b ≤ (k · a + 1/k · c)/2) forall k ≥ 1, because
b ≤
√
ac ≤ (k · a+ 1/k · c)/2.

There exists an EI that holds in the cone K ′ but not in the topological closure cl
(
K ′
)
.

Indeed, K ′ |=EI (c = 0⇒ b = 0), however this EI does not hold in cl (K) because it fails
for the matrix limn→∞An, which has c = 0 but b = 1; in other words, cl (K) 6|=EI (c =
0⇒ b = 0).

E Proof of Cone Properties and Identities from Section 5

The required identities are proved in Theorem 30. We require the following simple Lemma.

I Lemma 29. Let A ⊂ Rn be a finite set and K = conhull (A) a finitely generated cone.
Then K∗ = A∗.

Proof. Let A = {a1, . . . , an}. Then
A∗ = {y ∈ Rn, | a · y ≥ 0 ∀a ∈ A}. We show that A∗ = K∗ by mutual inclusion. Let v ∈ K
then v is a conic combination of vectors in A. That is v =

∑
ai∈A αiai where αi ≥ 0. For any

y ∈ A∗ we have that y · v =
∑
ai∈A αi(y · ai) ≥ 0. Therefore, y ∈ K∗ proving that A∗ ⊆ K∗.

Now let y ∈ K∗. That is y · x ≥ 0 for any conic combination x of vectors in A. Since every
ai ∈ A is, trivially, a conic combination of vectors in A, then y ∈ A∗. Therefore, K∗ ⊆ A∗,
and we get that K∗ = A∗. J

I Theorem 30. Let K,K1,K2 ⊆ Rn. The following holds.
1. K1 ⊆ K2 ⇒ K∗2 ⊆ K∗1
2. If K 6= ∅ then cl

(
conhull (K)

)
= K∗∗.

3. K1 ⊆ K∗2 iff13 K∗1 ⊇ K2.
4. K∗ =

(
cl
(
conhull (K)

))∗
.

5. If L is a finite set, then conhull (L) is closed.
6. If K1 and K2 are closed, convex cones then: (K1 ∩K2)∗ =

(
cl
(
conhull (K∗1 ∪K∗2 )

))
.

7. A cone K is finitely generated iff K∗ is finitely generated.

Proof. Proof of (1)
Let x ∈ K∗2 , and let y ∈ K1. Since x · z ≥ 0 for every vector z ∈ K2, and since K2 ⊇ K1
then x · y ≥ 0 as well. Therefore, x ∈ K∗1 .

Proof of (6)
By definition of union we have that:
K∗i ⊆ cl

(
conhull (K∗1 ∪K∗2 )

)
for i ∈ {1, 2}. By item (1) we have thatK∗∗i ⊇

(
cl
(
conhull (K∗1 ∪K∗2 )

))∗
for i ∈ {1, 2}. Since K1 and K2 are closed convex cones then by item (2) it holds that K∗∗1 =

13Both statements assert ∀x ∈ K1,∀y ∈ K2, x·y ≥ 0.
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K1 and K∗∗2 = K2. Therefore, for i ∈ {1, 2} we have that Ki ⊇
(

cl
(
conhull (K∗1 ∪K∗2 )

))∗
.

From the above we get that K1 ∩K2 ⊇
(

cl
(
conhull (K∗1 ∪K∗2 )

))∗
. By property (1) we get

that:
(K1 ∩K2)∗ ⊆

(
cl
(
conhull (K∗1 ∪K∗2 )

))∗∗
. By property (2) we have that(

cl
(
conhull (K∗1 ∪K∗2 )

))∗∗
= cl

(
conhull (K∗1 ∪K∗2 )

)
.

Overall, we get that (K1 ∩K2)∗ ⊆ cl
(
conhull (K∗1 ∪K∗2 )

)
.

Proof of (7).
Let K = conhull(A) where A is finite. By Lemma 29 it holds that K∗ = A∗, making K∗ a
polyhedral cone. By the Minkowski-Weyl Theorem, K∗ is also finitely generated. J

F Proofs from Section 6

Theorem 20. The following inequality holds for all polymatroids h ∈ Γn:

h(Z) ≤ Ih(A;B|C) + Ih(A;B|D) + Ih(C;D|E) + Ih(A;E) + 3h(Z|A) + 2h(Z|B) (26)

but the inequality fails if any of the coefficients 3, 2 are replaced by smaller values. In particular,
denoting τ,Σ the terms on the two sides of Eq.(26), the exact implication Γn |=EI Σ ⇒ τ

holds, and does not have a 1-relaxation.

Proof. We show that (26) does not admit UAI by proving that the following inequality holds
for all polymatroids:

H(Z) ≤ I(A;B|C) + I(A;B|D) + I(C;D|E) + I(A;E) + 3H(Z|A) + 2H(Z|B)

This inequality can be verified using known tools for testing whether an inequality holds
for all polymatroids (e.g., ITIP14, and XITIP15). We can apply these same tools to verify
that the coefficients 3 and 2 (for H(Z|A) and H(Z|B), respectively), cannot be reduced. In
particular, they cannot be reduced to 1. For completeness, we provide the analytical proof
as well.

We make use the following inequality that was proved in Lemma 1 in [10].

H(Z|R) + I(R;S|T ) ≥ I(Z;S|T ) (27)

We apply (27) three times:
1. H(Z|A) + I(A;B|C) ≥ I(Z;B|C)
2. H(Z|A) + I(A;B|D) ≥ I(Z;B|D)
3. H(Z|A) + I(A;E) ≥ I(Z;E)
Plugging back into the formula we get that:

I(A;B|C) + I(A;B|D) + I(C;D|E) + I(A;E) + 3H(Z|A) + 2H(Z|B)
≥ I(Z;B|C) + I(Z;B|D) + I(Z;E) + I(C;D|E) + 2H(Z;B) (28)

We now apply this identity twice more:

14 http://user-www.ie.cuhk.edu.hk/ ITIP/
15 http://xitip.epfl.ch/
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1. H(Z|B) + I(Z;B|C) ≥ I(Z;Z|C) = H(Z;C)
2. H(Z|B) + I(Z;B|D) ≥ I(Z;Z|D) = H(Z|D)
Plugging back into (28) we get that:

I(Z;B|C) + I(Z;B|D) + I(Z;E) + I(C;D|E) + 2H(Z|B)
≥ H(Z|C) +H(Z|D) + I(Z;E) + I(C;D|E)
= H(ZC)−H(C) +H(ZD)−H(D) +H(Z) +H(E)−H(ZE) +H(CE) +H(DE)−H(E)−H(CDE)
= I(Z;E|C) +H(ZEC) + I(Z;E|D) +H(ZED) +H(Z)−H(ZE)−H(CDE)
= I(Z;E|C) + I(Z;E|D) + I(C;D|ZE) +H(CDZE)−H(CDE) +H(Z)
= I(Z;E|C) + I(Z;E|D) + I(C; d|ZE) +H(CDE) +H(Z)
≥ H(Z)

J

Theorem 21. If Γn |= Σ ⇒ τ then Γn |= τ ≤ (2n)! · h(Σ). In other words, every
implication of CIs admits a (2n)!-relaxation over Γn.

Proof. Since Γ |= Σ⇒ τ we have, by Theorem 21, that for every polymatroid h ∈ Γ: 0 ≤
−τ+λ1σ1+· · ·+λmσm for some finite, positive λi. We may assume, without loss of generality,
that all CIs in Σ appear in elemental form, and that τ = τ1 + · · ·+τk where τi are elemental as
well. It is easy to see that the number of elemental constraints for an n-variable polymatroid is
M = n+

(
n
2
)
2n−2. Let us denote by b the M -dimensional vector of coefficients corresponding

to τ1, . . . , τk, σ1, . . . , σm. That is bT = [0, . . . , 0, λ1, . . . , λm,−1, . . . ,−1, 0, . . . , 0] where the
λi are the positive coefficients of the elemental forms in Σ, and the −1 correspond to the
elemental forms in τ .

Let h ∈ Γn, and let he be an M -dimensional vector whose ith entry corresponds to
the value of the ith elemental form of h (e.g., he[(a; b)] = h(a) + h(b) − h(ab)). Note the
one-to-one correspondence between h and he. By our assumption, we have that the inequality
bT ·he ≥ 0 holds for all h ∈ Γn. This, in turn, means that b is a positive linear combination of
the elemental forms [41]. Let G denote the (2n− 1)×M matrix whose columns represent the
elemental forms, and let Gi represent the ith column. Since b is a positive linear combination
of the elemental forms then: b =

∑M
i=1 xiG

i where xi ≥ 0. In other words, for every
polymatroid h ∈ Γn, it holds that: bT · he − xT · he = 0 for some positive M -dimensional
vector x.

Since the coefficients for the CIs in Σ are unknown, we can always assume that the vector
x contains 0 in the entries corresponding to τ1, . . . , τk, σ1, . . . , σm. Indeed, if the coefficient
xσ of the elemental σ ∈ Σ is greater than 0, then we may assume that xα cancels out with
λα.

So let cT = (bT − xT ). By the previous discussion we can assume that cT is an M -
dimensional vector that takes the following form. For every elemental σi ∈ Σ it holds that
cT [σi] = ci ≥ 0, for every τi, it holds that cT [τi] = −1, and there is some set of l elemental
forms α1, . . . , αl such that cT [αj ] = −dj where dj ≥ 0.

The identity cT · he = 0 holds for every h ∈ Γn if and only if Gc = 0 where G is the
(2n − 1)×M matrix where each column corresponds to an elemental positivity constraint.
Clearly, all entries in G are either 0, 1, or −1.

Since, by our assumption, the equation Gc = 0 has a solution, then it has a non-zero
determinant. Specifically, there must exist 2n − 1 columns in G, denoted i1, . . . , i2n−1 such
that the minor Mi1,...,i2n−1 is nonzero. (The entry aj,k in Mi1,...,i2n−1 is the determinant
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of the (2n − 2)× (2n − 2) square matrix whose columns are i1, . . . ik−1, ik+1, . . . , i2n−1, and
rows are 1, . . . , j − 1, j + 1, . . . , 2n − 1). We denote by G′ the augmented matrix whose last
(i.e., 2nth) column is the 2n − 1-dimensional ~0. We apply the generalized Cramer’s rule from
linear algebra [2] to get that:

cj =
Mi1,...,ij−1,2n,ij+1,...,i2n−1

Mi1 , . . . , i2n−1
≤Mi1,...,ij−1,2n,ij+1,...,i2n−1 ≤ (2n)!

The final inequality results from the fact that all entries in G are 0, 1, or −1, and that
the 2nth column is comprised of 0s, giving us the required result. J

G I-measure proof for unit relaxation in Pn

Theorem 23. Exact implications of I-measure constraints admit a 1-relaxation in Pn.

Proof. By Theorem 28 we have that m(τ) ⊆ m(Σ). This means that m(τ) = ∪σ∈Σ
(
m(τ) ∩m(σ)

)
.

By the assumption that the I-measure µ∗ is nonnegative, we get that:

µ∗(m(τ)) = µ∗
(
∪σ∈Σ

(
m(τ) ∩m(σ)

))
≤
∑
σ∈Σ

µ∗((m(τ) ∩m(σ)) (29)

By the set-additivity of µ∗ we get that:

∑
σ∈Σ

µ∗(m(σ)) =
∑
σ∈Σ

µ∗(m(σ) ∩m(τ)) +
∑
σ∈Σ

µ∗(m(σ) ∩mc(τ)) (30)

From (30), (29), and non-negativity of µ∗ we get that:

µ∗(m(τ)) ≤
∑
σ∈Σ

µ∗(m(σ))−
∑
σ∈Σ

µ∗(m(σ) ∩mc(τ))

≤
∑
σ∈Σ

µ∗(m(σ)).

J

H Pn coincides with the cone of step functions

We describe the structure of the I-measure of a step function, and prove that the conic hull
of step functions and positive polymatroids coincide. That is, ∆n = Pn. We let U ⊆ [n], and
let sU denote the step function at U . In the rest of this section we prove Theorem 31.

I Theorem 31. It holds that ∆n = Pn.

I Lemma 32. Let sU be the step function at U ⊆ [n], and R = [n]\U . The unique i-measure
for any step function sU is:

µ∗(a) =

1 if a =
(
∩X∈Rm(X)

)
∩
(
∩X∈Umc(X)

)
0 otherwise

(31)
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Proof. We define the atom a∗ by:

a∗
def=
(
∩X∈Rm(X)

)
∩
(
∩X∈Umc(X)

)
Let S ⊆ U . We show that h(S) = µ∗(m(S)) = 0. By definition, m(S) = ∪Y ∈Sm(Y ).
Therefore, every atom a ∈ m(S) has at least one set m(Y ), where Y ∈ S, that appears in
positive form. In particular, a∗ /∈ m(S). Therefore, by (31), we have that h(S) = µ∗(m(S)) =
0 as required.

Now, let T 6⊆U , and let X∈T\U . Since m(X) appears in positive form in a∗, and since
m(X)⊆m(T ), then we have that h(T )=1. Therefore, µ∗ as defined in (31) is the i-measure
for sU . By Theorem 26, the i-measure µ∗ is unique, and is therefore the only i-measure for
sU . J

By Lemma 32, every step function has a nonnegative i-measure. As a consequence, any
conic combination of step functions has a positive i-measure, proving that ∆n ⊆ Pn.

Now, let µ∗ denote any nonnegative i-measure. For every atom a, we let neg(a) denote the
set of variables whose sets appear in negated form (e.g., if a =

(
∩X∈Rm(X)

)
∩
(
∩X∈Umc(X)

)
,

then neg(a) = U). Let A denote the atoms of Fn. We define the mapping f : A 7→ ∆n as
follows.

f(a) = µ∗(a) · sneg(a)

where sneg(a) is the step function at neg(a). Since the i-measure of sneg(a) is 1 at atom a

and 0 everywhere else we get that:

µ∗ =
∑
a∈A

f(a) =
∑
a∈A

µ∗(a) · sneg(a)

proving that µ∗ ∈ ∆n, and that Pn ⊆ ∆n.
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