
Query Evaluation on a Database Given by a
Random Graph

Nilesh Dalvi ?

University of Washington, Seattle.

Abstract. We consider random graphs, and their extensions to random
structures, with edge probabilities of the form βn−α, where n is the num-
ber of vertices, α, β are fixed and α > 1 (α > arity − 1 for structures
of higher arity). We consider conjunctive properties over these random
graphs, and investigate the problem of computing their asymptotic con-
ditional probabilities. This provides us a novel approach to dealing with
uncertainty in databases, with applications to data privacy and other
database problems.

1 Introduction

Let R = {R1, R2, . . . , Rm} be a vocabulary of relation symbols, and A(Ri)
denote the arity of relation Ri. We fix two functions α, β : R → R+ that map
relations to positive real numbers, where α satisfies α(Ri) > A(Ri)−1 for all Ri ∈
R. For any n > 0, denote µn the probability distribution over the structures with
domain [n] given by the following experiment: for each Ri ∈ R and t ∈ [n]A(Ri),
choose t to be in Ri with probability β(Ri)n−α(Ri). Let CQ(c, 6=) denote the class
of boolean conjunctive properties (queries) with constants (c) and inequalities
(6=), i.e. formulas of the form: ∃x1∃x2...(A1 ∧A2 ∧ · · · ∧Ak) where each Ai is a
predicate of the form Ri(y1, · · · , yj), or y1 6= y2, where y1, . . . , yj denote variables
or constants. CQ(c), CQ(6=), and CQ denote the classes of conjunctive queries
without 6=, without constants, and without either 6= or constants respectively.

In this paper, we study the probabilities of conjunctive properties over the
class µn of random structures. Lynch [17] has shown that if we consider the
set of first order properties, of which conjunctive properties are a subset, then
for each property q, µn(q) is either cn−d + o(n−d) for some c > 0, d ≥ 0, or
is e−Ω(nk) for some k > 0. Thus, the probability of every first order property
is either asymptotically equal to a polynomial in 1/n or is exponentially small.
Further, the problem of determining which of the two cases hold for a given
query is undecidable.

Here we show that when q is a conjunctive query, then we always have µn(q) =
cn−d + o(n−d). A consequence is that for any two conjunctive queries q, v, the
quantity µ(q | v) = limn→∞ µn(q | v) = limn µn(q ∧ v)/µn(v) exists and is a real

? Acknowledgments This work was partially supported by the grants NSF SEIII
0513877, NSF 61-2252, and NSF IIS-0428168.

Problem Combined Complexity Data Complexity
(inputs: q, v, v′) (inputs: v, v′; fixed: q)

Compute µ(q | v) #coNP-complete #coNP-complete

Decide if µ(q | v) = 0 Θp
2 -complete Θp

2 -complete
Decide if µ(q | v) ∈ (0, 1) Σp

2 -complete Θp
2 -complete

Decide if µ(q | v) = 1 Πp
2 -complete Θp

2 -complete

Decide if µ(q | v) < p for p ∈ (0, 1) P.coNP-complete P.coNP-complete

Decide µ(q | v) < µ(q | v′) P.coNP-complete P.coNP-complete
Decide µ(q | v) < µ(q | vv′) P.coNP-complete. P.coNP-complete

Fig. 1. Summary of Main Results.

number in [0, 1]. In this paper we investigate the complexity of computing this
limit, in various settings, and the main result is below.

Theorem 1. Fig. 1 shows the complexities of various decision problems and
computation problems concerning their asymptotic conditional probabilities. Up-
per bounds hold for q, v, v′ ∈ CQ(c, 6=); lower bounds hold for both q, v, v′ ∈ CQ(c)
and for q, v, v′ ∈ CQ(6=). For q, v, v′ ∈ CQ all problems are in PTIME.

1.1 Motivation

Our motivation comes from the following problem in databases: evaluate a prop-
erty q of an unknown database instance I given some facts v about the instance.
The problem appears in a wide range of applications, for instance in data pri-
vacy [8] where we want to analyze a sensitive query using published facts, in
data integration [12, 15] where we want to answer queries using views and in
cardinality estimation [10, 2] where we want to estimate the size of a query using
known statistics about the data. In many applications, the standard approach
is to use the notion of certain answers [12], where the property q is said to be
certain if it is true on every possible instance I that is consistent with the facts
v. However, this approach has two limitations that make it unsuitable for certain
applications. First, it does not revel anything about tuples that are not certain
answers to the query, whereas in applications like data privacy, we are interested
in knowing which tuples are more (or less) likely to be the query answers given
the facts in v. The second limitation of the approach is that it cannot incorporate
any knowledge about the relative likelihood of possible instances. Applications
often have auxiliary information, like statistical knowledge, that makes certain
instances more likely than others. In data privacy setting, it is important to take
the auxiliary information into account; in cardinality estimation this is often the
only kind of information available.

Example 1. (K-Anonymity) Suppose a medical agency wants to publish its data
patients data for research purposes, but wants to protect the identity of individ-
ual patients. The data is in the table Patients(name, age, zipcode, disease).

The agency publishes the following view:

Diseases(age, zipcode, disease) :− Patients(name, age, zipcode, disease)

In addition, suppose the following view is publically known:

Name(name, age, zipcode) :− Patients(name, age, zipcode, disease)

The contents of the views are given below. Note that some of the values in the
view are partially hidden.

Names=

name age zipcode
JOHN 25 98190
MARY 25 98192
MARK 31 98100
FRANK 31 98111
LARRY 32 98100

Diseases=

age zipcode disease
25 9819* FLU
25 9819* FEVER
31 981** FLU
** ***** CANCER

We want to analyze the information given by v = {Diseases, Names} about
the following query q(name, disease) :− Patients(name, age, zipcode, disease).
The Diseases table is 2-anonymous [19], meaning that for every tuple in the
Diseases table, there are at least two individuals that may have that record.
For instance, the tuple (25, 98192, FLU) could either refer to JOHN or MARY
or a third person that does not appear in the views. There are no certain answers
to the query.

The technique of k-anonymization guarantees that each record in the pub-
lished data refers to at least k individuals. However, Machanavajjhala et al. [19]
have shown that k-anonymization does not guarantee data privacy when the at-
tacker has auxiliary/background knowledge about the data, and they raise the
problem of analyzing data privacy in the presence of such information. Exam-
ples of background information are: (i) every (age, zipcode) occurs four times in
expectation and (ii) around 80% of all the patients have FLU. We need a frame-
work where we can use such statistics on the data and evaluate the likelihood
that a particular tuple is the answer to the query given the views.

Bayesian Approach In order to provide such a framework, we consider an
alternative approach to the problem using a technique from knowledge represen-
tation based on degrees of beliefs [3]. Here the uncertainty about the underlying
database is expressed as a probability distribution P, called the prior probability
distribution, or simply the prior, which is an assessment of the likelihood of each
data instance to occur before observing any facts about the database. Starting
from this prior distribution, any subsequent knowledge v about the database is
encapsulated by conditioning P on v. Thus, the probability that the database
satisfies a property q is given by the conditional probability P(q | v). Query eval-
uation thus amounts to computing the conditional probabilities on the prior.

Example 2. Let us revisit Example 1 where we have the relation Patients(name,
age, zipcode, disease), where each attribute takes value from a domain1 of size
1 Assume for simplicity that all attributes take values from the same domain.

n. Suppose that the only background knowledge we have is that the expected
size of the table is 100. Consider the following probability distribution: there are
n4 tuples that are possible over the domain, pick each of them randomly and
independently with probability 100/n4. The resulting distribution is a sparse
random structure with each tuple having probability p(n) = 100/n4. Further, it
is easy to see that the expected size of Patients under this distribution is 100.

Now suppose we want to check if q ≡ Patients(JOHN, 25, 98190, CANCER)
is true given the views v = {Names, Patients}. We compute the probability that
q is true given v, i.e. the quantity P(q | v). It can be shown that P(q | v) =
1/101 + O(1/n). Intuitively, there are 100 records expected in the database,
so there is around 1/100 chance that the facts Names(JOHN, 25, 98190) and
Diseases(∗∗, ∗∗∗∗∗, CANCER) talk about the same tuple.

Using a Sparse Random Graph as a Prior Choosing a suitable prior
distribution is an important step in this analysis, and the problem is well studied
in the area of Knowledge Representation [3]. In our previous work [6], we look at
this problem from a database perspective. We consider a framework for specify-
ing prior knowledge about the database that allows statistics like the expected
size of a relation, the expected number of distinct values of an attribute and
integrity constraints like functional dependencies and inclusion dependencies.
Under this framework, we describe how to represent such prior knowledge as a
probability distribution using a technique from Knowledge Representation called
entropy maximization. Applying this technique to Example 2, with the statistics
that the expected size of Patients relation is 100, we get exactly the probability
distribution where each tuple is chosen independently with probability 100/n4,
which is a sparse random structure.

Other Prior Distributions The probability distribution in Example 2 be-
longs to a special class of sparse random structures where pRi(n) = cin

−Arity(Ri)

for each Ri. We studies these distributions in one of our previous works [5]. One
of the properties of these distributions is that with high probability, all the tu-
ples in the structure are disjoint. For instance, in Example 2, all the zipcode
values in the Patients tables are distinct with high probability. If we want to
incorporate the knowledge that each zipcode is expected to have 10 records, we
can add this statistics in our framework to obtain a new prior distribution. In
this new distribution, the tuples are not independent since each zipcode value
occurs 10 times in expectation, hence the new distribution will not be a random
structure. In [6], we show that statistics like these can be captured using a gen-
eralization of random structures. For lack of space, we only describe results in
this paper for random structures, but the results also extend to these generalized
random structures described in [6].

Domain Size Given a sparse random structure with probability distribution
µn, and conjunctive properties q and v, we seek the conditional probability
µn(q | v). In general, we do not know the domain size, n. But the domain is
usually large. Hence, we study the behavior of conditional probability for large
n by looking at the limit limn→∞ µn(q | v), which we denote µ(q | v). Below, we

describe some specific problems related to the computation of µ(q | v) motivated
by the data privacy application.

Data Privacy Here, the owner of a database wishes to publish certain facts
about a private database, while keeping certain sensitive information hidden.
There are two basic problems. The first is leakage: does the view v leak infor-
mation about a sensitive property s ? Various authors [8, 20, 14] have modeled
non-leakage by requiring the a priori probability of s to be close to the a pos-
teriori probability after seeing v, i.e. P(s) ≈ P(s | v). We make this precise by
requiring µ(s | v) = µ(s), which amounts to µ(s | v) = 0 since, as we show,
µ(s) = 0 for all practical queries. The second problem is usage: a legitimate user
wants to check a property q over the data, by examining v, and this amounts to
checking µ(q | v) = 1. In addition to these basic questions, we consider two more
complex questions motivated by real application scenarios. In collusion detection
we know that µ(s | v) = µ(s | v′) = 0 and have to decide if µ(s | v, v′) = 0.
In relative security the data owner has already published some view v, possibly
leaking some information about the secret s: the damage cannot be undone, but
the data owner wants to publish a second view v′ and wants to know if there
any additional leakage, i.e. µ(s | v, v′) > µ(s | v)?

Query Evaluation Vardi [23] has studied the query evaluation problem
in databases: given I, q, decide if I |= q. In the combined complexity both I
and q vary, while in the data complexity, q is fixed and I varies. The problem
we investigate in this paper is related to query evaluation: evaluate q on the
observations v, i.e. compute µ(q | v). The database is given by v, with the
unknown part filled in by the random graph. Data complexity corresponds here
to a fixed q and a variable v.

1.2 Related Work

The study of convergence laws for logical statements on random graphs has been
a widely explored areas of model theory. Fagin [9] and Glebskĭi et al. [11] con-
sidered random graphs with p(n) a constant and proved a 0-1 law for statements
of first order logic. However, asymptotic limits for conditional probabilities do
not always exist [9] for this class of graphs, and even the problem of determining
if they exist is undecidable [16]. The class of random graphs with edge proba-
bilities of the form βn−α with α > 1 have also been studied before and there
are results on the existence of asymptotic probabilities for statements of first or-
der logic [21, 17, 18]. However, existence of asymptotic conditional probabilities,
and the complexity of computing them, has not been studies previously. The
applications of sparse random graphs and their generalizations [5, 6] have been
discussed before, but again these works did not study the complexity of query
evaluation.

2 Computing Asymptotic Probabilities

For a conjunctive query q given by Eq.(1) let goals(q) denote the set of its
relational predicates (i.e. of the form Ri(y1, · · · , yj), and called “subgoals”),

V ar(q) = {x1, x2, . . .} the set of variables, Const(q) the set of constants men-
tioned in q. Here we show that the asymptotic conditional probabilities always
exist for conjunctive queries and are computable. The basic result is:

Theorem 2. For any conjunctive query q ∈ CQ(c, 6=), there exists two constants
coeff(q) and exp(q), such that

µn(q) = coeff(q)(1/n)exp(q) + o((1/n)exp(q))

Corollary 1. For q ∈ CQ(c, 6=), the asymptotic probability µ(q) always exists.
It equals coeff(q) if exp(q) = 0 and 0 otherwise.

Corollary 2. For q1, q2 ∈ CQ(c, 6=), the conditional asymptotic probability, µ(q1 |
q2), always exists and is as follows:

µ(q1 | q2) =

{
0 exp(q1q2) > exp(q2)
coeff(q1q2)
coeff(q2)

exp(q1q2) = exp(q2)

In the remainder of the section, we show how to compute coeff(q) and exp(q).
For a subgoal g ∈ goals(q), let α(g) and β(g) denote α(R) and β(R) where R is
the relation to which g refers. Define

V (q) = the number of distinct variables in q

α(q) =
∑
{α(g) | g ∈ goals(q)}

β(q) =
∏
{β(g) | g ∈ goals(q)}

D(q) = α(q)− V (q)

A substitution η for a query q is a mapping η : V ar(q)→ V ar(q)∪Const(q)
that does not violate the inequalities in q. We denote η(q) the result of applying
η to the subgoals of q. For example, if q ← R(a, x), R(x, y), R(y, z), x 6= y then
the substitution η = {x → b, y → y, z → y} is defined on q and by applying
it we obtain the query q0 = η(q), q0 ← R(a, b), R(b, y), R(y, y), b 6= y. If η(q)
results in duplicate subgoals, we remove duplicates2. We call a query of the
form η(q) a unifying query for q, since it unifies some of the subgoals in q, and
denote with UQ(q) the set of all unifying queries for q up to isomorphism. Let
P be the partition on goals(q) induced by η, where two subgoals g, g′ are in the
same equivalence class if η(g) = η(g′). Call η a most general unifier if, for any
other unifier η′ inducing P there exists a substitution θ s.t. η′ = θ ◦ η. In this
case we call η(q) a most general unifying query of q, and we define mguq(q) the
set of most general unifying queries of q (up to isomorphism). Define:

E(q) = min{D(q0) | q0 ∈ mguq(q)}
mguq0(q) = {q0 | q0 ∈ mguq(q), D(q0) = E(q)}

aut(q) = |{η | η(q) is isomorphic to q}|
2 While this sounds evident, we insist on it because the functions D(−) and β(−)

return different (and wrong) results if we fail to eliminate duplicates.

We view a subset q1 ⊆ goals(q) as another conjunctive query, q1 = ∃x1∃x2 . . .
(
∧

g∈q1
g). Construct a graph whose nodes are goals(q) and edges are pairs of

sub-goals that share a variable, and consider all queries q1, q2, . . . given by its
connected components. We write qi ' qj to denote that the queries qi and qj

are isomorphic, and let k be the number of distinct isomorphism types among
queries qi with D(qi) = 0. Define the following partition on goals(q) into k + 2
classes:

– qN =
⋃
{qi | D(qi) < 0}.

– qP =
⋃
{qi | D(qi) > 0}.

– rt1
1 , · · · , rtk

k , where D(ri) = 0, rti
i =

⋃
{qj | qj ' ri}, ti =| {qj | qj ' ri} |.

We call qP the kernel of q and we call rt1
1 , · · · , rtk

k the zero subgoals or q.
Let Γ (x,m) =

∑m
j=1 xje−m/j be the Poisson distribution function. Given a

query qs of the form rt1
1 , · · · , rtk

k , define

f(qS) =
k∏

i=1

(1− Γ (
β(ri)

aut(ri)
, ti))

If qS is empty, then f(qS) = 1. Given a set Qs, where each element is a query of
the form qS , define

F (Qs) =
∑

S⊆Qs

(−1)|S|f(∧qs∈Sf(qs)

Now we are ready to describe the coeff(q). Group the queries in mguq0(q)
so that all queries that have the same kernel are in one group. Define a pair
(qP , Qs) for each group where qP is the kernel, and Qs is the set consisting of
sets of zero sub-goals of all queries in the group. Let G(q) be the set of such
pairs and let

C(q) =
∑

(qP ,Qs)∈G(q)

β(qP)
aut(qP)

F (Qs)

Theorem 3. For any q ∈ CQ(c, 6=), exp(q) = max(E(q), 0) and coeff(q) =
C(q).

Example 3. For a simple illustration, consider the following query q. Assume
α(R) = 4.

∃x∃y∃z∃u∃v.R(a, x, y, c), R(z, z, u, c)R(v, a, b, c), y 6= b

Here a, b, c are constants. Define:

q1 ≡ ∃y∃v.R(a, a, y, c), R(v, a, b, c), y 6= b

q2 ≡ ∃x∃y.R(a, x, y, c), R(a, a, b, c), y 6= b

Then mguq = {q, q1, q2}, D(q) = 7, D(q1) = D(q2) = 6, hence exp(q) = 6,
mguq0 = {q1, q2}, G(q) = {(q1, ∅), (q2, ∅)}, aut(q1) = aut(q2) = 1 and β(q) =
2β2(R). Thus: µn(q) = 2β2(R)/n6 + o(1/n6)

3 Complexity Results

We state, explain, and expand here our complexity results that were briefly
mentioned in Th. 1.

3.1 Computing coeff and exp

A direct application of the definitions for exp(q) and coeff(q) leads to an expo-
nential time algorithm. The following gives a tight bound on their complexity:

Theorem 4. ∀C ∈ {CQ(c),CQ(6=),CQ(c, 6=)}
1. The problem: given q ∈ C and a number k, decide if exp(q) < k, is NP-

complete.
2. The problem: given q ∈ C compute coeff(q), is #coNP-complete.

The complexity class #coNP [13] is the class of counting problems of the follow-
ing form

f(A) = #x ∀y R(x, y, A)

where R is some polynomial function. Thus, #coNP counts the number of x that
satisfies a certain property where checking the property itself requires an coNP
machine.

For pure conjunctive queries, we have:

Theorem 5. Given a query q ∈ CQ over some fixed schema, both exp(q) and
coeff(q) can be computed in PTIME.

For q ∈ CQ one can compute exp(q) in PTIME because here it is always possible
to unify completely all subgoals referring to the same relation name, and this
unifier has the minimal D. (However, to compute coeff(q) one needs to consider
additional unifiers, but it can still be done in polynomial time for a fixed schema).
It follows that for conjunctive queries q, v, µ(q | v) can be computed in PTIME
and all the problems we described in Sec 1 have PTIME complexity.

Pure conjunctive queries are not very interesting because in practice there
is not much we can express without constants. For example, in k-anonymity we
need constants to refer to the constants being published and need 6= to state
that two published rows correspond to distinct rows in the data. We consider
only CQ(c), CQ(6=), and CQ(c, 6=) in the rest of the paper.

3.2 Conditional Probabilities

We now consider the two decision problems for conditional probabilities that we
formulated in Sec 1: deciding µ(q | v) = 0 and deciding µ(q | v) = 1.

In the following discussion, C denotes any of CQ(c),CQ(6=),CQ(c, 6=): all re-
sults hold for any of these three classes. Let S ⊆ [0, 1]. We define the Asymptotic
Conditional Probability problem for S to be:

ACPS = {(q, v) | q, v ∈ C, µ(q | v) ∈ S}

We only consider the cases when S = {0}, (0, 1) or {1}.

Theorem 6. ACP{0} is Θp
2-complete. ACP(0,1) is Σp

2 -complete. ACP{1} is
Πp

2 -complete.

The complexity class Θp
2 [24], also referred to as PNP[O(log n)], is the class of

languages that can be decided by a polynomial time oracle Turing-machine that
makes O(log n) calls to an NP oracle. Thus, Θp

2 ⊆ PNP = ∆p
2 ⊆ Πp

2 , Σp
2 .

The ACP{1} property is related to query containment, a well studied problem
in finite model theory. For boolean queries containment becomes logical impli-
cation, and v ⇒ q iff ∀n.µn(q | v) = 1 , while ACP{1} means limn µn(q | v) = 1.
The complexity of query containment for CQ is NP-complete[4]. Similarly ACP0

is related to non-containment, which, by complementation, is coNP-complete.
Data complexity We study two notions of data complexity. In the first

setting, we fix the query and study the complexity as a function of the size of
the view. For a query q and set S ⊆ [0, 1] we define the following problem:

ACPS
q = {v | µ(q | v) ∈ S}

Theorem 7. Let q be any query in CQ(c, 6=) and S be any of {0}, (0, 1) and
{1}. Then, ACPS

q is in Θp
2. Further, there exists a query q ∈ CQ(c, 6=) such that

ACPS
q is Θp

2-complete.

In the second setting, we fix the query as well as a non-boolean view definition
and study complexity as a function of the size of the view instance. A non-
boolean conjunctive query V is a formula Eq.(1) possibly with free variables.
For example the following query V has free variables {x, y}:

∃zR(x, a, z), S(z, y) (1)

Let V̄ = V1, . . . , Vm be a set of non-boolean views and let J̄ = J1, . . . , Jm be sets
of tuples, with Ji having the same arity as the arity of Vi. Denote vi ≡ Vi/Ji

the boolean conjunctive query stating that all tuples in Ji must be in the result
of Vi. For example, if V is given by Eq 1, and J = {(a, b), (c, b)}, then V/J ≡
∃z1∃z2R(a, a, z1), S(z1, b), R(c, a, z2), S(z2, b).

For a query q, view definitions V̄ , and set S ⊆ [0, 1] we define the following
problem:

ACPS
q,V̄ = {J | µ(q | V̄ /J̄) ∈ S}

Theorem 8. For any q, V̄ ∈ CQ(c, 6=) and S ∈ {{0}, (0, 1), {1}}, the problem
ACPS

q,V̄ is in Θp
2. Further, there exists q, V̄ ∈ CQ(c, 6=) such that ACPS

q,V̄ is
Θp

2-complete.

Here, too, the problem ACP
{1}
q,V̄

is related to another well studied problem in
the literature: the query answering using views problem, under the open world
assumption [12]. Indeed, the latter is ∀n.µn(q | V̄ /J̄) = 1, since this means that
q is true on all instances I consistent with the observations J , i.e. q is “certain”.
This problem is known to be in PTIME [1], even for CQ(c, 6=). (One can also check
it immediately, since it can be restated as the containment problem V̄ /J̄ ⊆ q,
where q is a fixed query.)

µ(q | v1) µ(q | v2) µ(q | v1v2) v1 v2 q
0 0 0 R(a1,−) R(a2,−) R(−, b)
0 0 (0,1) R(a,−) R(−, b) R(a, b)
0 0 1 R(a, b,−) R(−, b, c) R(a, b, c)
0 (0,1) 0 R(a, b, d) R(a, b,−), R(−,−, c) R(a,−, c)
0 (0,1) (0,1) R(a,−) R(a,−), R(−, b) R(a, b)
0 (0,1) 1 R(a, b,−) R(a,−,−), R(−, b, c) R(a, b, c)
0 1 0 R(a, b, d) R(a, b,−), R(−, b, c) R(a, b, c)
0 1 (0,1) R(−, b, d) R(a, b,−), R(−, b, c) R(a, b, c)
0 1 1 R(−, b, c) R(a, b,−), R(−, b, c) R(a, b, c)

(0,1) (0,1) 0 R(a, b,−), R(−,−, c), R(a, e, d) R(a, e,−), R(−,−, c), R(a, b, d) R(a,−, c)
(0,1) (0,1) (0,1) R(a,−), R(−, b) R(a,−), R(−, b) R(a, b)
(0,1) (0,1) 1 R(a, b,−), R(−,−, c) R(a,−,−), R(−, b, c) R(a, b, c)
(0,1) 1 0 R(a, b,−), R(−,−, c), R(a, e, d) R(a, e,−), R(−, e, c), R(a, b, d) R(a,−, c)
(0,1) 1 (0,1) R(a, e,−,−), R(−,−, c, f), R(a, b, g,−) R(a, b,−,−), R(−, b, c, h) R(a,−, c,−)
(0,1) 1 1 R(a, b,−), R(−,−, c) R(a,−, c), R(−, b, c) R(a, b, c)

1 1 0 R(a, b,−), R(−, b, c), R(a, e, d) R(a, e,−), R(−, e, c), R(a, b, d) R(a,−, c)
1 1 (0,1) R(a, b,−), R(−, b, c), R(−, e, d) R(a, e,−), R(−, e, c), R(−, b, d) R(a,−, c)
1 1 1 R(a, b,−), R(−, b, c) R(a,−, c), R(a, b,−) R(a, b, c)

Fig. 2. Each of the 27 classes ACPS
S1,S2 is nonempty, assuming α(R) = A(R).

3.3 Complex Problems

Collusions For S, S1, S2 ∈ {0, (0, 1), 1}, denote ACPS
S1,S2

the problem of decid-
ing, for queries (q, v1, v2), whether (q, v1v2) ∈ ACPS given that (q, v1) ∈ ACPS1

and (q, v2) ∈ ACPS2 .

Theorem 9. The complexity of ACPS
S1,S2

is same as that of ACPS.

The theorem essentially contains 27 statements, for all combinations of S1, S2, S.
A priori, it is not even clear why all the 27 classes ACPS

S1,S2
are nonempty. To

see that, Fig. 2 shows for each class ACPS
S1,S2

an example of v1, v2 and q in
that class. For queries, we use the shorthand notation where each ”-” stands for
a unique existentially quantified variable. There are less than 27 entries due to
the symmetry between S1 and S2.

Fig. 2 reveals an interesting and counter-intuitive phenomenon, which we
refer to as the non-monotonicity of information disclosure: publishing more in-
formation results in less information disclosure. For example, the entry corre-
sponding to 1, 1, 0 shows that with v1, v2, q as given in the figure, we have
µ(q | v1) = µ(q | v2) = 1 but µ(q | v1v2) = 0. Here the query q is very likely true
given either v1 or v2 alone but is very likely false given both v1 and v2.

Relative Security Finally, we explain the last three entries in Fig. 1 The
complexity class P.coNP, also called probabilistic coNP, is the set of languages
L for which there is a coNP Turing machine M that uses random bits such
that for all strings x: (1) x ∈ L ⇒ Pr(M accepts x) > 1/2, and (2) x 6∈ L ⇒
Pr(M accepts x) ≤ 1/2.

4 Proofs of Main Results

We include here some proofs and defer the rest to our technical report [7].

Recall the definition of zero sub-goals and expression for exp(q) and coeff(q)
from Sec. 2. In all the proofs in this section, we consider only those queries
that do not have any zero sub-goals and that they do not have any non-trivial
automorphisms, i.e aut(q) = 1. We call such queries simple conjunctive queries. It
is tedious but straightforward to incorporate zero-subgoals and automorphisms
in these results, and we omit their discussion here.

For simple conjunctive queries, the expression for exp and coeff can be sim-
plified to exp(q) = minη D(η(q)) and coeff(q) =

∑
η|D(η(q))=exp(q) β(η(q))

Proposition 1. Given a conjunctive query q, the complexity of evaluating coeff(q)
is #coNP-complete.

Proof. coeff(q) is simply the size of the set

{(η, k) | ∀η0D(η(q)) ≤ D(η0(q)) ∧ k < β(η(q))}

Thus, computing coeff(q) is in #coNP.
To prove the #coNP-hardness, we will give a reduction from #NSAT. In

#NSAT, we are given a 3-CNF formula φ where the set of variables can be par-
titioned into two sets X and Y , and we need to count the number of assignments
of X that can be extended to an assignment of φ. #NSAT is known [22] to be
#coNP-hard.

Given any 3-CNF formula φ over variables X and Y , we construct two queries
q1 and q2. Let φ have c clauses and let |X| = k. The vocabulary consists of a
relation R of arity 4 and a relation S of arity 3 with β(R) = β(S) = B, where B
is some integer greater than 2k. We create a unique constant kx for each variable
x a unique constant kC for each clause C in φ, and two extra constants t and f .
The query q consists of q1q2 where q1 and q2 are two queries as described below.

q1 is constructed as follows. For each clause C(x, y, z) in φ, q1 contains 7 sub-
goals of the form R(kC ,vi, vj ,vk), where vi, vj and vk are such that C(vi, vj , vk)
is true. In addition, for each variable x ∈ X in φ, v contains three subgoals
S(kx, x, x), S(kx, t,−) and S(kx, f,−).

q2 is constructed as follows. For each clause C(x, y, z) in φ, q2 contains a
subgoal R(kC , x′, y′, z′), where x′, y′ and z′ are variables. Also, for each variable
x ∈ X in φ, v contains a subgoal S(kx,−, x′).

Claim: #φ = (coeff(q1q2) mod B7c+2k+1) / B7c+2k.
To verify the claim, lets first look at the unifiers of just q1. Each S(kx, x, x)

can be unified with either S(kx, t,−) or S(kx, f,−). There are 2k such unifiers,
one corresponding to each assignment of t or f to variables in X. If η is any
such unifier, β(η(q1)) = B7c+2k since there are 7c + 2k subgoals.. Further, if η
corresponds to an assignment that can be extended to an assignment of φ, then
q2 can be completely mapped to q1, i.e. η(q1)q2 ≡ η(q1).

There are two cases, #φ is either 0 or its greater than 0. In the latter case,
there is at least one η with the property that η(q1)q2 ≡ η(q1). Every such η adds
the term B7c+2k to the coeff resulting in coeff(q1q2) = #φ∗B7c+2k. The claim
follows since B is chosen to be greater than 2k and #φ is at most 2k. In the
former case, when #φ = 0, every minimal unifier of q1q2 must contain at least
7c + 2k + 1 subgoals, so coeff(q1q2) is a multiple of B7c+2k+1. The claim follows.

Theorem 10. ACP{1} is Πp
2 -complete.

Proof. We first show that ACP{1} belongs to Πp
2 . (q, v) ∈ ACP{1} can be

restated as

∀η0(∀η1D(η0(v)) ≤ D(η1(v))⇒ ∃η2 η2(qv) = η0(v))

Thus, ACP{1} ∈ Πp
2 .

For completeness, we give a reduction from the ∀∃SAT problem defined be-
low, which is known to be Πp

2 -complete.

∀∃SAT = {(X, Y, φ(X, Y)) | X,Y sets of variables,φ(X, Y) a 3CNF formula,
and ∀X∃Y φ(X, Y)}

Given (X, Y, φ(X, Y)), we construct two conjunctive queries q and v. The vocab-
ulary consists of R,S of arities 4 and 2 respectively, and there are two constants
t and f.

The query v is constructed as follows. Every clause C(x, y, z) in φ(X, Y),
which is a disjunction of x,y and z or their negations, contributes seven subgoals
to v. These are of the form R(kC , vi, vj , vk), where kC is a unique constant for
each clause and each of vi,vj ,vk is either t or f so that the resulting assignment
makes the clause true. Every x ∈ X contributes four subgoal to v given by
S(kx, t ,−), S(kx, f ,−), S(kx,−, 0) and S(kx,−, 1), where kx is a unique constant
for each x.

The query q is constructed as follows. Corresponding to every clause C(x, y, z)
in φ, there is a subgoal R(kC , x, y, z), where kC is the same constant for the clause
as used in the definition of v and x,y,z are variables. For each x ∈ X, there is a
subgoal G(kx, x, 0), where again kx is the same constant used in v for variable
x.

Claim: (q, v) ∈ ACP{1} iff (X, Y, φ(X, Y)) ∈ ∀∃SAT.
To see this, let us analyze the set mguq0(v). The subgoals corresponding

to R relations cannot be unified with anything else, as all of them contain
only constants. The S subgoals corresponding to two different x cannot be uni-
fied because of the kx constants. For same x ∈ X, the four S subgoals can
be maximally unified in two possibles ways leading to S(kx, t , 0), S(kx, f , 1) or
S(kx, f , 0), S(kx, t , 1). The choice can be made independently for each x. Thus,
the size of mguq0(v) is 2|X|. Now, µ(q | v) = 1 iff for each of the query vi in
mguq0(v), q can be mapped to vi. Each vi, for each x, contains exactly one of
S(kx, t , 0) and S(kx, f , 0). The subgoal S(kx, x, 0) in q has to map to this subgoal.
Thus, x will be equated to t or f . After all the S subgoals in q are mapped, each
of the X variables will have a truth assignment. As we iterate over vi, we get
all possibles truth assignments for X. Also, after X is given a truth assignment,
all the R subgoals of q must map to one of the subgoals of v. This is possible
iff the Y variables can be given a truth assignment so that all clauses in φ are
satisfied. This proves that (q, v) ∈ ACP{1} iff (X, Y, φ(X, Y)) ∈ ∀∃SAT. Thus,
ACP{1} is Πp

2 -complete.

Theorem 11. ACP(0,1] is Θp
2-complete.

Wagner [24] has provided a very useful tool for proving Θp
2-hardness of problems,

which we state below.

Theorem 12 (Wagner [24]). Let D be an NP-complete set and let A be any ar-
bitrary set. Let χD be the characteristic function of D. If there exists a polynomial-
time computable function f such that

|{i | xi ∈ D}|is odd⇔ f(x1, . . . , x2k) ∈ A

for all k ≥ 1 and x1, . . . , x2k with χD(x1) ≥ · · · ≥ χD(x2k), then A is Θp
2-

complete3.

Before we give the proof of Thm. 11, we need few results. Call a 3-CNF for-
mula with k clauses almost satisfiable if there exists an assignment that satisfies
at least k − 1 clauses.

Lemma 1. There exists a polynomial-time function F such that if φ is a 3-
CNF formula, F (φ) is an almost satisfiable 3-CNF formula with the property
φ⇔ F (φ).

Lemma 2. There exists PTIME functions g, h s.t. if φ1 and φ2 are almost sat-
isfiable formulas, then φ1 ⇒ φ2 iff µ(g(φ1, φ2) | h(φ1, φ2)) > 0.

Proof. For each φi (i = 1, 2), we define two conjunctive queries q1(φi) and q2(φi).
q1(φi) is a query over a relation Ri of arity 4. Corresponding to each clause
C(x, y, z) in φi, there are seven subgoals in q1(φi) of the form Ri(kC , vj , vk, vl, 0),
where kC is a unique constant for each clause and (vj , vk, vl) ∈ {t , f }3 such that
C(vj , vk, vl) is true. We call these the type-0 subgoals since all of them end with
the constant 0. In addition, q1(φi) contains eight more subgoals of the form
Ri(xi, vj , vk, vl, 1), where xi is a variable and (vj , vk, vl) ∈ {t , f }3. We call these
the type-1 subgoals. q2(φi) is also a query over Ri. For each clause C(x, y, z) in
φi, q1(φi) contains a subgoal Ri(kC , x, y, z,−) where x,y,z are variables. Let S
be a new relation and a,b,c fresh constants:

g(φ1, φ2) = q2(φ2)

h(φ1, φ2) = q1(φ1)q2(φ1)q1(φ2)S(x1, x2, c), S(a, b, c)

We will show that g and h satisfy the required property, i.e. φ1 ⇒ φ2 iff
µ(g(φ1, φ2) | h(φ1, φ2)) > 0. Let us first analyze the set mguq0(h(φ1, φ2)). Also,
assume without loss of generality that φ1 and φ2 have distinct set of variables.
Then, the sub-query q1(φ1)q1(φ2) cannot be further unified. There are two cases:
(i) φ1 is satisfiable. Then, the sub-query q2(φ1) can be completely mapped to
the type-0 subgoals of q1(φ1). Further, S(x1, x2, c) can be unified with S(a, b, c).
The resulting query is the only one in mguq0(h(φ1, φ2)). Note that it equates x2

to b. (ii) φ2 is not satisfiable. Then, q2(φ1) cannot be completely mapped to the
type-0 subgoals of q1(φ1). But since φ2 is almost satisfiable, all but one subgoal

3 The class Θp
2 is referred to as PNP

bf in [24]

of q2(φ1) can be mapped to the type-0 subgoals. The remaining subgoal can be
unified with a type-1 subgoal, by equating x1 with the constant for the corre-
sponding clause. S(x1, x2, c) can no more be unified with S(a, b, c), since x1 has
been equated with a different constant. One can easily check that the resulting
query is the only one in mguq0(h(φ1, φ2)). Also note that x2 is still a free vari-
able in this query. In both cases, there is a unique query in mguq0(h(φ1, φ2)).
Call it q0. µ(g(φ1, φ2) | h(φ1, φ2)) > 0 holds iff g(φ1, φ2) = q2(φ2) maps to q0.
If φ1 is not satisfiable, q0 contains q1(φ2) as a sub-query, otherwise it contains
q1(φ2) with x2 equated to b. If φ2 is satisfiable, it can be mapped to the type-1
subgoal of q1(φ2), and hence can be mapped to q0. If φ2 is not satisfiable, it can
still be mapped to q1(φ2) by using a type-1 subgoal, but then x2 should be a free
variable, i.e., φ1 should also be not satisfiable. Hence, µ(g(φ1, φ2) | h(φ1, φ2)) > 0
iff φ1 ⇒ φ2.

Proof. (Thm. 11) First we show that ACP(0,1] belongs to Θp
2 . By Cor. 2, (q, v) ∈

ACP(0,1] iff exp(v) = exp(qv). The language {(q, k) | exp(q) ≤ k} is in NP
since given any (q, k), one only needs to check if there is a substitution η with
D(η(q)) ≤ k. Further, exp(q) cannot exceed D(q), which is polynomial in size of
q. Thus, exp(q) is determined by a binary search issuing O(log n) queries to an
NP oracle. Since exp(v) = exp(qv) can be checked by explicitly computing exp(v)
and exp(qv), we have ACP(0,1] ∈ Θp

2 . For completeness, let D = 3-SAT be the
set of all satisfiable 3-CNF formulas. We know D is NP-complete. Let x1, . . . , x2k

be s.t. χD(x1) ≥ · · · ≥ χD(x2k). For i = 1, . . . , k, let Qi = g(F (x2i−1), F (x2i))
and Vi = h(F (x2i−1), F (x2i)), where F, g, h are functions as defined in Lemmas 1
and 2. Assume that Qi and Vi use different set of relations for different i. Let
v = V1V2 . . . Vk and q = Q1Q2 . . . Qk. Then, µ(v | q) =

∏k
i=1 µ(Vi | Qi). By

Lemma 2, µ(Vi | Qi) > 0 ⇔ χD(x2i−1) = χD(x2i). Thus, µ(v | q) > 0 ⇔ |{i |
xi ∈ D}|is odd. By Thm. 12, ACP1 is Θp

2-complete.

5 Conclusions

We investigate the complexity of a new approach to incompleteness in databases,
based on Bayes’s notion of a prior probability distribution. In this new framework
we study the complexity of several fundamental problems, with applications
to information disclosure and query answering using views, and provide tight
complexity bounds.

References

1. Serge Abiteboul and Oliver M. Duschka. Complexity of answering queries using
materialized views. In PODS, pages 254–263, 1998.

2. Brian Babcock and Surajit Chaudhuri. Towards a robust query optimizer: a prin-
cipled and practical approach. In SIGMOD, pages 119–130, 2005.

3. Fahiem Bacchus, Adam J. Grove, Joseph Y. Halpern, and Daphne Koller. From
statistical knowledge bases to degrees of belief. Artificial Intelligence, 87(1-2):75–
143, 1996.

4. Ashok K. Chandra and Philip M. Merlin. Optimal implementation of conjunctive
queries in relational data bases. In STOC, pages 77–90, 1977.

5. Nilesh Dalvi, Gerome Milkau, and Dan Suciu. Asymptotic conditional probabilities
for conjunctive queries. In ICDT, 2005.

6. Nilesh Dalvi and Dan Suciu. Query answering using probabilistic views. In VLDB,
pages 805–816, 2005.

7. Nilesh Dalvi and Dan Suciu. Query evaluation on a database given by a random
graph, April 2006.

8. Alexandre Evfimievski, Johannes Gehrke, and Ramakrishnan Srikant. Limiting
privacy breaches in privacy preserving data mining. In PODS, pages 211–222,
2003.

9. R. Fagin. Probabilities on finite models. Journal of Symbolic Logic, 41(1):50–58,
1976.

10. Lise Getoor, Benjamin Taskar, and Daphne Koller. Selectivity estimation using
probabilistic models. In SIGMOD, pages 461–472, 2001.

11. Y. V. Glebskĭi, D. I. Kogan, M. I. Liogon’kĭi, and V. A. Talanov. Range and
degree of realizability of formulas in the restricted predicate calculus. Kibernetika,
2:17–28, 1969. [Engl. Transl. Cybernetics, vol. 5, 142–154 (1972)].

12. Alon Y. Halevy. Answering queries using views: A survey. The VLDB Journal,
10(4):270–294, 2001.

13. Lane A. Hemaspaandra and Heribert Vollmer. The satanic notations: Counting
classes beyond #p and other definitional adventures. Technical report, Rochester,
NY, USA, 1994.

14. Daniel Kifer and J. E. Gehrke. Injecting utility into anonymized datasets. In
SIGMOD, 2006.

15. Maurizio Lenzerini. Data integration: a theoretical perspective. In PODS, pages
233–246, 2002.

16. M. I. Liogon’kĭi. On the conditional satisfyability ratio of logical formulas. Math-
ematical Notes of the Academy of the USSR, 6:856–861, 1969.

17. James F. Lynch. Probabilities of sentences about very sparse random graphs.
random struct. algorithms, 3(1):33–54, 1992.

18. James F. Lynch. Infinitary logics and very sparse random graphs. In Logic in
Computer Science, pages 191–198, 1993.

19. Ashwin Machanavajjhala, Johannes Gehrke, Daniel Kifer, and Muthuramakrishnan
Venkitasubramaniam. l-diversity: Privacy beyond k-anonymity. In ICDE, page 24,
2006.

20. Gerome Miklau and Dan Suciu. A formal analysis of information disclosure in data
exchange. In SIGMOD, 2004.

21. J. Spencer and S. Shelah. Zero-one laws for sparse random graphs. J. Amer. Math.
Soc., pages 97–115, 1988.

22. L. Valiant. The complexity of computing the permanent. Theoretical Computer
Science, 8:189–201, 1979.

23. Moshe Y. Vardi. The complexity of relational query languages. In STOC, pages
137–146, 1982.

24. K. W. Wagner. More complicated questions about maxima and minima, and some
closures of NP. Theor. Comput. Sci., 51(1-2):53–80, 1987.

