
HoTTSQL: Proving Query Rewrites

with Univalent SQL Semantics

Shumo Chu, Konstantin Weitz, Alvin Cheung, Dan Suciu

University of Washington, USA

{chushumo, weitzkon, akcheung, suciu}@cs.washington.edu

http://cosette.cs.washington.edu

Abstract

Every database system contains a query optimizer that per-

forms query rewrites. Unfortunately, developing query opti-

mizers remains a highly challenging task. Part of the chal-

lenges comes from the intricacies and rich features of query

languages, which makes reasoning about rewrite rules dif-

ficult. In this paper, we propose a machine-checkable de-

notational semantics for SQL, the de facto language for in-

teracting with relational databases, for rigorously validating

rewrite rules. Unlike previously proposed semantics that are

either non-mechanized or only cover a small amount of SQL

language features, our semantics covers all major features

of SQL, including bags, correlated subqueries, aggregation,

and indexes. Our mechanized semantics, called HoTT SQL,

is based on K-Relations and homotopy type theory, where

we denote relations as mathematical functions from tuples to

univalent types. We have implemented HoTT SQL in Coq,

which takes only fewer than 300 lines of code, and have

proved a wide range of SQL rewrite rules, including those

from database research literature (e.g., magic set rewrites)

and real-world query optimizers (e.g., subquery elimina-

tion), where several of them have never been previously

proven correct. In addition, while query equivalence is gen-

erally undecidable, we have implemented an automated de-

cision procedure using HoTT SQL for conjunctive queries:

a well-studied decidable fragment of SQL that encompasses

many real-world queries.

CCS Concepts • Information systems→Database query

processing; Structured Query Language; • Theory of

computation→ Program verification

Keywords SQL, Formal Semantics, Homotopy Types, Equiv-

alence

1. Introduction

From purchasing plane tickets to browsing social network-

ing websites, we interact with database systems on a daily

basis. Every database system consists of a query optimizer

that takes in an input query and determines the best program,

also called a query plan, to execute in order to retrieve the

desired data. Query optimizers typically consist of two com-

ponents: a query plan enumerator that generates query plans

that are semantically equivalent to the input query, and a plan

selector that chooses the optimal plan from the enumerated

ones to execute based on a cost model.

The key idea behind plan enumeration is to apply rewrite

rules that transform a given query plan into another one that,

hopefully, has a lower cost than the input. While numerous

plan rewrite rules have been proposed and implemented, un-

fortunately designing such rules remains a highly challeng-

ing task. For one, rewrite rules need to be semantically pre-

serving, i.e., if a rule transforms query plan Q into Q′, then

the results (i.e., the relation) returned from executing Q must

be the same as those returned from Q′, and this has to hold

for all possible input database schemas and instances. Ob-

viously, establishing such a proof for any non-trivial query

rewrite rule is not an easy task.

Coupled with that, the rich language constructs and subtle

semantics of SQL, the de facto programming language used

to interact with relational database systems, only makes the

task even more difficult. As a result, while various rewrite

rules have been proposed and studied extensively in the data

management research community [39, 42, 43, 50], to the best

of our knowledge only some simple ones have been formally

proven to be semantic preserving. This has unfortunately led

to dire consequences as incorrect query results have been

returned from widely-used database systems due to unsound

rewrite rules, and such bugs can often go undetected for

extended periods of time [22, 49, 51].

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.

PLDI’17, June 18–23, 2017, Barcelona, Spain
ACM. 978-1-4503-4988-8/17/06...$15.00
http://dx.doi.org/10.1145/3062341.3062348

510

https://www.acm.org/publications/policies/artifact-review-badging
http://cosette.cs.washington.edu

In this paper, we describe a system to formally verify

the equivalence of two SQL expressions. We demonstrate

its utility by proving correct a large number of query rewrite

rules that have been described in the literature and are cur-

rently used in popular database systems. We also show that,

given counter examples, common mistakes made in query

optimization fail to pass our formal verification, as they

should. Our system shares similar high-level goals of build-

ing formally verified systems using theorem provers and

proof assistants as recent work [12, 37, 38].

The biggest challenge in a formal verification system for

query equivalence is choosing the right SQL formalization.

Although SQL is an ANSI standard [34], the “formal” se-

mantics defined there is of little use for formal verification: it

is loosely described in English and has resulted in conflicting

interpretations [21]. In general, two quite different formal-

izations exists in the literature. The first comes from the for-

mal methods community [41, 59, 60], where SQL relations

are interpreted as lists, and SQL queries as functions over

lists; two queries are equivalent if they return lists that are

equal up to element permutation (under bag semantics) or up

to element permutation and duplicate elimination (under set

semantics). The problem with this semantics is that even the

simplest equivalences require lengthy proofs in order to rea-

son about order-independence or duplicate elimination, and

these proofs become huge when applied to rewrites found in

real-world optimizations. The second semantics comes from

the database theory community and uses only set semantics

[1, 6, 44]. This line of work has led to query containment

techniques for conjunctive queries using tableau or homo-

morphisms [1, 8] and to various complexity results for the

query containment and equivalence problems [8, 24, 48, 57].

The problem here is that it is restricted only to set semantics,

and query equivalence under bag semantics is quite differ-

ent; in fact, the first paper that noted that is entitled “Op-

timization of Real Conjunctive Queries,” with an emphasis

on real [10]. Under set semantics equivalence for both Con-

junctive Queries1 (CQ) and Unions of Conjunctive Queries

(UCQ) is NP-complete [1], but under bag semantics equiva-

lence is the same as graph isomorphism for CQ and is unde-

cidable for UCQ [33].

This paper contributes a new SQL formalization that is

both simple and allows simple query equivalence proofs. We

demonstrate its effectiveness by proving the correctness of

powerful query optimization rules found in the literature.

Our semantics consists of two non-trivial generalizations

of K-relations [28], which represent a relation as a mathe-

matical function that takes as input a tuple and returns its

multiplicity, with 0 meaning that the tuple does not exist in

the relation. A K-relation is required to have finite support,

meaning that only a finite set of tuples have multiplicity > 0.

K-relations greatly simplify reasoning about SQL: under set

semantics, a relation is simply a function that returns 0 or 1

1 Also called Select-Project-Join queries.

(i.e., a Boolean value), while under bag semantics it returns

a natural number (i.e., a tuple’s multiplicity). Database oper-

ations such as join or union denote into arithmetic operations

on the corresponding multiplicities: join becomes multipli-

cation, union becomes addition. Checking if two queries are

equivalent reduces to checking the equivalence of the func-

tions they denote; for example, proving that the join oper-

ation is associative reduces to proving that multiplication

is associative. As we will show, reasoning about functions

over cardinals is much easier than writing inductive proofs

on data structures such as lists.

However, K-relations, as defined by [28], are difficult to

use in proof assistants, because one needs to prove for ev-

ery SQL expression that its result has finite support. This

is easy with pen-and-paper, but hard to encode for a proof

assistant. Without a guarantee of finite support, some oper-

ations are undefined, for example projection on an attribute

leads to infinite summation. Hence, our first generalization

of K-relations is to drop the finite support requirement, and

meanwhile allow the multiplicity of a tuple to be any cardi-

nal number as opposed to a (finite) natural number. Then the

possibly infinite sum corresponding to a projection is well

defined. With this change, a relation in SQL is interpreted as

a possibly infinite bag, where a tuple may have a possibly

infinite multiplicity. To the best of our knowledge, ours is

the first SQL semantics that interprets relations as both finite

and infinite.

Our second generalization of K-relations is to replace

cardinal numbers with univalent types. Homotopy Type The-

ory (HoTT) [52] has been introduced recently as a gen-

eralization of classical type theory by adding membership

and equality proofs. A univalent type is a cardinal number

(finite of infinite) together with the ability to prove equal-

ity. Since univalent types have been integrated into the Coq

proof assistant, this was a convenient engineering choice for

us, which simplified many of the formal proofs.

In summary, in our semantics a relation is a function map-

ping each tuple to a univalent type (representing its mul-

tiplicity), and a SQL query is a function from relations to

relations; we call this language HoTT SQL. Our language

covers all major features of SQL, including set and bag se-

mantics, nested queries, etc. We implemented HoTT SQL as

part of a new tool called COSETTE [17] for proving equiva-

lence of SQL rewrite rules, and used it to prove many rewrite

rules from the data management research literature, some

of which have never been formally proven before: aggre-

gates [9, 36], magic sets rewriting [2], query rewriting us-

ing indexes [55], and equivalence of conjunctive queries us-

ing the homomorphism theorem [1]. In the implementation

of COSETTE, all our proofs require at most a few dozens

lines of Coq code, as shown in Fig. 9. All definitions and

proofs presented in this paper are open-source and available

online.2

2 http://cosette.cs.washington.edu

511

http://cosette.cs.washington.edu

Rewrite Rule:

SELECT * FROM (R UNION ALL S) x WHERE b ≡

(SELECT * FROM R x WHERE b) UNION ALL

(SELECT * FROM S y WHERE b)

Denotation:

⇒λ t . (JRK t+ JSK t)× JbK t≡

λ t . JRK t× JbK t+ JSK t× JbK t

Proof: Apply distributivity of × over +.

Figure 1. Proving a rewrite rule using HoTT SQL. Re-

call that UNION ALL means bag-union in SQL, which in

HoTT SQL is translated to addition of tuple multiplicities

in the two input relations.

In summary, we make the following contributions:

• We present HoTT SQL, a language for expressing SQL

rewrite rules. HoTT SQL models a large fragment of

SQL and can be used to express many real-world rewrite

rules evaluated using bag semantics. (Sec. 3.)

• We implement HoTT SQL based on a generalization of

K-relations to infinite relations and univalent types. The

goal of this semantics is to enable easy proofs of query

equivalence. (Sec. 4.)

• We show how SQL expressions can be translated into al-

gebraic expressions over univalent types, called uninomi-

als (Sec. 4.)

• In COSETTE, we prove a wide variety of well-known

and widely-used SQL rewrite rules, many of which have

never been formally proven before; each proof requires

at most a few dozens lines of Coq code. (Sec. 5.)

We are aware of two prior projects for formally verifying

SQL query equivalence. Malecha et al. [41] represent rela-

tions as lists and prove the correctness of 5 simple rewrite

rules (removing redundant predicates that always evaluate

to true or false, union with empty resulting in the same

relation, pushing selection through projection, conjunction

of two predicate equals applying them separately), requir-

ing more than 700 lines of Coq code; in contrast, the same

rules take fewer than 40 lines in our framework. Benzaken

et al. [4] use only set semantics, consider only conjunctive

queries, and prove formally several textbook equivalences

including the equivalence of two conjunctive queries using

the homomorphism theorem. As we explained above, this

approach cannot handle equivalence under bag semantics;

and it also cannot represent nested SQL queries. In contrast,

HoTT SQL allows both set and bag semantics, and includes

nested queries along with other features of SQL.

2. Overview

SQL The basic datatype in SQL is a relation, which has

a schema (a relation name R plus attribute names σ), and

an instance (a bag of tuples). A SQL query maps one or

more input relations to a (nameless) output relation. For

example, if a relation with schema R(a, b) has instance

{(1, 40), (2, 40), (2, 50)} then the SQL query

Q1:SELECT x.a as a FROM R x

returns the bag {1, 2, 2}.
SQL freely mixes set and bag semantics, where a set is

simply a bag without duplicates. One uses the distinct

keyword to remove duplicates. For example, the query:

Q2:SELECT DISTINCT x.a as a FROM R x

returns the set {1, 2} given the definition of R(a, b) above.

List Semantics Previous approaches to mechanizing for-
mal proofs of SQL query equivalences represent bags as
lists [41, 59, 60]. Every SQL query admits a natural inter-
pretation over lists, using a recursive definition [7]. To prove
that two queries are equivalent, one uses their inductive defi-
nition on lists, and proves that the two results are equal up to
element reordering and duplicate elimination (for set seman-
tics). The challenges in this approach are coming up with the
induction hypothesis, and dealing with list equivalence un-
der permutation and duplicate elimination. Inductive proofs
quickly grow in complexity, even for simple query equiva-
lences. Consider the following query:

Q3:SELECT DISTINCT x.a AS a FROM R x,R y WHERE x.a = y.a

Q3 is equivalent to Q2, because it performs a redundant self-

join: the inductive proof of their equivalence is quite com-

plex, and has, to the best of our knowledge, not been done

formally before. A much simpler rewrite rule, the commu-

tativity of selection, requires 65 lines of Coq proof in prior

work [41], and only 10 lines of Coq proof in our seman-

tics. Powerful database query optimizations, such as magic

sets rewrites and conjunctive query equivalences, are based

on generalizations of redundant self-joins elimination like

Q2≡Q3, but significantly more complex (see Sec. 5), and

inductive proofs become impractical. This motivated us to

consider a different semantics; we do not use list semantics

in this paper.

K-Relation SQL Semantics A commutative semi-ring is

a structure K = (K,+,×, 0, 1) where both (K,+, 0) and

(K,×, 1) are commutative monoids, and × distributes over

+. For a fixed set of attributes σ, denote Tuple(σ) the type

of tuples with attributes σ. A K-relation [28] is a function:

JRK :Tuple σ → K

with finite support, meaning that {t | JRK t 6= 0} is finite.
Intuitively, JRK t represents the multiplicity of t in R. For

example, a bag is an N-relation, and a set is a B-relation. All

512

relational operators are expressed in terms of the semi-ring
operations, for example:

JR UNION ALL SK = λ t . JRK t+ JSK t

JSELECT * FROM R x, S yK = λ (t1, t2) . JRK t1 × JSK t2

JSELECT * FROM R x WHERE bK = λ t . JRK t× JbK t

JSELECT x.a1 as a2 FROM R xK =

λ t2 .
∑

t1∈Tuple σ1

(Ja2Kt2 = Ja1Kt1)× JRK t1

JSELECT DISTINCT * FROM R xK = λ t . ‖JRK t‖

where, for any predicate b: JbK t = 1 if the predicate holds

on t, and JbK t = 0 otherwise. The function ‖ ‖ is defined as

‖x‖ = 0 when x = 0, and ‖x‖ = 1 otherwise (see Sec. 3.3).

The projection JaK t returns the attribute a of the tuple t,

while equality (x = y) is interpreted as 0 when x 6= y and 1

otherwise.

To prove that two SQL queries are equal one has to

prove that two semi-ring expressions are equal. For example,

Fig. 1 shows how we can prove that selections distribute over

unions, by reducing it to the distributivity of× over +, while

Fig. 2 shows the proof of the equivalence for Q2≡Q3.

Notice that the definition of projection requires that the

relation has finite support; otherwise, the summation is over

an infinite set and is undefined in N. This creates a major

problem for our equivalence proofs, since we need to prove,

for each intermediate result of a SQL query, that it returns a

relation with finite support. This adds significant complexity

to the otherwise simple proofs of equivalence.

HoTT SQL Semantics To handle this challenge, our se-

mantics generalizes K-Relation in two ways: we no longer

require relations to have finite support, and we allow the

multiplicity of a tuple to be an arbitrary cardinality (possi-

bly infinite). More precisely, in our semantics a relation is

interpreted as a function:

JRK :Tuple σ → U

where U is the class of homotopy types. We call such a rela-

tion a HoTT-relation. A homotopy type n ∈ U is an ordinary

type with the ability to prove membership and equality be-

tween types.

Homotopy types form a commutative semi-ring and can

well represent cardinals. The cardinal number 0 is the empty

homotopy type 0, 1 is the unit type 1, multiplication is the

product type ×, addition is the sum type +, infinite summa-

tion is the dependent product type Σ, and truncation is the

squash type ‖·‖. Homotopy types generalize natural num-

bers and their semiring operations, and is now well inte-

grated with automated proof assistants like Coq.3 As we will

show in the rest of this paper, the equivalence proofs retain

3 After adding the Univalence Axiom to Coq’s underlying type theory.

Rewrite Rule:

SELECT DISTINCT x.a AS a1 FROM R x,R y WHERE x.a = y.a

≡ SELECT DISTINCT x.a AS a1 FROM R x

Equational HoTT SQL Proof:

⇒λ t .

∥

∥

∥

∥

∥

∑

t1,t2

(t = JaK t1)× (JaK t1 = JaK t2)× JRK t1 × JRK t2

∥

∥

∥

∥

∥

≡ λ t .

∥

∥

∥

∥

∥

∑

t1,t2

(t = JaK t1)× (t = JaK t2)× JRK t1 × JRK t2

∥

∥

∥

∥

∥

≡ λ t . ‖(
∑

t1

(t = JaK t1)× JRK t1)×

(
∑

t2

(t = JaK t2)× JRK t2)‖

≡ λ t .

∥

∥

∥

∥

∥

∑

t1

(t = JaK t1)× JRK t1

∥

∥

∥

∥

∥

We used the following semi-ring identities:

(a = b)× (b = c)≡(a = b)× (a = c)
∑

t1,t2

E1(t1)× E2(t2)≡
∑

t1

E1(t1)×
∑

t2

E2(t2)

‖n× n‖≡‖n‖

Deductive HoTT SQL Proof:

⇒ ∀ t.∃t0(JaK t0 = t) ∧ JRK t0 ↔

∃t1,t2(JaK t1 = t) ∧ JRK t1 ∧ JRK t2 ∧ (JaK t1 = JaK t2)

Then case split on↔. Case→: instantiate both t1 and t2 with t0,

then apply hypotheses. Case←: instantiate t0 with t1, then apply

hypotheses.

Figure 2. The proof of equivalence Q2≡Q3.

the simplicity of N-relations and can be easily mechanized,

but without the need to prove finite support.

In addition, homotopy type theory unifies squash types

and propositions. Using the fact that propositions are types

in homotopy type theory [52, Ch 1.11], in order to prove

the equivalence of two squash types, ‖p‖ and ‖q‖, it suffices

to just prove the bi-implication of types (i.e., p ↔ q),

which is arguably easier in Coq. For example, transforming

the equivalence proof of Figure 2 to bi-implication would

not require a series of equational rewriting using semi-ring

identities any more, which is complicated because it is under

the variable bindings of the dependent product type Σ. The

bi-implication can be easily proved in Coq by deduction.

The queries in rewrite rule shown in Figure 2 fall under

the well-studied category of conjunctive queries, for which

equality is decidable (while equality between arbitrary SQL

queries is undecidable). Using Coq’s support for automating

deductive reasoning (i.e., Ltac), we have implemented a

decision procedure to determine the equality of conjunctive

513

queries. With that, the aforementioned rewrite rule can be

proven in one line of Coq code.

Extending K-relations to infinite size frees us from need-

ing to prove the finiteness of relations in every proof step.

Furthermore, using homotopy types gives us an easy way

to model cardinal numbers (to represent the size of rela-

tions), which is not supported by Coq’s standard library.

Even though we allow relations to be of infinite in size in

HoTT SQL, doing so does not alter the meaning of queries

as compared to standard SQL, as standard SQL does not give

semantics to relations of infinite size. However, in practice,

we are unaware of any scenarios where distinguishing be-

tween finite vs infinite relations matters.

3. HoTT SQL and Its Semantics

In this section, we present HoTT SQL, our formal represen-

tation of SQL which covers all major features of the SQL

query language. HoTT SQL is in fact a superset of SQL,

since it includes additional language constructs, like generic

predicates that range over all Boolean predicates, or generic

schemas that range over a set of schemas. As we will see,

these are needed to express and prove rewrite rules (i.e.,

query equivalences) that hold for a set concrete instantia-

tions of generic predicates and schemas.

3.1 Data Model

We first describe how schemas for relations and tuples are

modeled in HoTT SQL. Both of these foundational concepts

are from relational theory [18] that HoTT SQL builds upon.

Schema and Tuple Conceptually, a database schema is an

unordered bag of attributes represented as pairs of (n, τ),
where n is the attribute name, and τ is the type of the

attribute. We assume that each of the SQL types can be

translated into their corresponding Coq type.
In HoTT SQL, a user can declare a schema σ with three

attributes as follows:

schema σ(Name:string, Age:int, Married:bool);

A database tuple is a collection of values that conform to a
given schema. For example, the following is a tuple with the
aforementioned schema:

{Name : “Bob”; Age : 52; Married : true}

Attributes are accessed using record syntax. For instance

t.Name returns “Bob” where t refers to the tuple above.
The goal of HoTT SQL is to enable users express rewrite

rules over arbitrary schemas. As such, we distinguish be-
tween concrete schemas, in which all of their attributes are
known, from generic schemas, which might contain un-
known attributes that are denoted using ??. For example,
the following rewrite rule:

SELECT x.a as a FROM r x WHERE TRUE AND x.a = 10

≡ SELECT x.a as a FROM r x WHERE x.a = 10

holds for any table with a schema containing at least the
integer attribute a. In HoTT SQL, this is expressed as a
generic schema that is declared as:

schema σ(a:int, ??)

Relation In HoTT SQL a relation is modeled as a function

from tuples to homotopy types called HoTT-Relations with

type Tuple σ → U , as discussed in Sec. 2; we will define

homotopy types shortly.

3.2 HoTT SQL: A DSL to express SQL rewrites

We now describe HoTT SQL, our frontend language for

expressing rewrite rules. Figure 4 shows the syntax of

HoTT SQL.

A HoTT SQL program consists of statements. Each state-

ment is either a declaration (of a schema, table, predicate,

function, or an aggregate) or a verify statement that contains

two SQL queries whose equivalence is to be checked. Each

SQL query in the verify statement is constructed using the

declarations mentioned.

Schema and table declaration As described in Sec. 3.1,

a schema declaration statement declares a schema with its

attributes and the type of each attribute. A generic schema

is declared by appending ?? after the last known attribute.

Additionally, a table declaration declares a relation of a

declared schema. Notice that a table declaration represents

either a base table or a SQL subquery. For example, the rule

in Figure 3 expresses an identity of two queries where t1, t2
stand for either table names or subqueries.

Predicate declaration A predicate declaration declares a

generic predicate that ranges over all possible Boolean pred-

icates on a list of schemas (e.g., predicate β1(σ1, σ2);
in Figure 3). Concrete predicates, such as x.a=1, are written

explicitly in HoTT SQL. When a generic predicate is used in

a query, users need to provide a list of tuple variables that the

predicate will be applied to (e.g., β1(x, y) in the verify state-

ment in Figure 3, where x and y are tuple variables ranging

over the relations t1 and t2 respectively).

Function declaration A function declaration declares an

uninterpreted function of expressions f(e1, . . . , en) that are

used to represent arithmetic operations, including constants

(which are nullary functions).

Aggregate declaration An aggregate declaration constructs

a generic aggregate (i.e., one that ranges over all of the six

aggregates defined in SQL) and the schema of relation that

it will be applied.

Verify Statement A verify statement states the two queries

whose equivalence is to be decided. Each query is a stan-

dard SQL query that uses the declarations mentioned earlier.

Figure 3 shows an example HoTT SQL program illustrat-

ing the rewrite rule that a generic predicate (β2) applied to

table t2 can be pushed down into a subquery on t2. While

514

schema σ1(??); schema σ2(??);
table t1(σ1); table t2(σ2);
predicate β1(σ1, σ2);
predicate β2(σ2);
verify SELECT * FROM t1 x, t2 y WHERE β1(x, y) AND β2(y)
≡ SELECT *

FROM t1 x, (SELECT * FROM t2 y WHERE β2(y)) z

WHERE β1(x, z);

Figure 3. An example HoTT SQL program

h ∈ Program ::= s1; . . . ; sn;
s ∈ Statement ::= schema σ(a1 : τ1, . . . , an : τn, ??)

| table t(σ)
| predicate β(σ1, . . . , σn)
| function f(e1, . . . , en) : τ
| aggregate α(σ) : τ
| verify q1 ≡ q2

a ∈ Attribute

q ∈ Query ::= t

| SELECT p q

| FROM q1 x1, . . . , qn xn

| q WHERE p

| q1 UNION ALL q2
| q1 EXCEPT q2
| DISTINCT q

x ∈ TableAlias

b ∈ Predicate ::= e1 = e2
| NOT b | b1 AND b2 | b1 OR b2
| TRUE | FALSE
| β(x1, . . . , xn)
| EXISTS q

e ∈ Expression ::= x.a | f(e1, . . . , en) | α(q)
p ∈ Projection ::= * | x.* | e AS a | p1, p2

Figure 4. Syntax of HoTT SQL

previous formalization in database literature like relational

algebra lacks the ability to reason about generic predicates,

HoTT SQL allows users to express rewrite rules with generic

predicates in a concise and user-friendly way.

3.3 UniNomials

To prove the equivalence of two HoTT SQL SQL queries,

we interpret HoTT SQL’s Query expressions using UNINO-

MIALs, which is an algebra based on univalent types.

Definition 3.1. UNINOMIAL, the algebra of univalent

Types, is (U , 0, 1,+,×, · → 0, ‖·‖ ,
∑

), where:

• (U , 0, 1,+,×) forms a semi-ring, where U is the universe

of univalent types, 0, 1 are the empty and singleton types,

and +,× are binary operations. U × U → U : n1 + n2,

is the direct sum, and n1 × n2 is the Cartesian product.

• · → 0, ‖·‖ are derived unary operations with type U →
U , where (0 → 0) = 1 and (n → 0) = 0 when n 6= 0,

and ‖n‖ = (n→ 0)→ 0.

•
∑

: (A → U) → U is the infinitary operation:
∑

f is

the direct sum of the set of types {f(a) | a ∈ A}.

Importantly for us, every natural number k is represented

by a finite univalent type consisting of k elements. Follow-

ing standard notation [52], we say that the type n inhabits

some universe U . The base cases of n come from the denota-

tion of HoTT-Relation and equality of two tuples (In HoTT,

propositions are squash types, which are either 0 or 1 [52,

Ch 1.11]). There are 5 type-theoretic operations on U :

Cartesian product (×) Cartesian product of univalent
types is analogous to Cartesian product of two sets. For
A,B : U , the cardinality of A × B is the cardinality of
A multiplied by the cardinality of B; when A,B are natural
numbers, then A×B is their standard product. For example,
the cross product of two HoTT-Relations is defined using
the Cartesian product of univalent types:

JSELECT * FROM R1 x, R2 yK , λ t. (JR1K t.1)× (JR2K t.2)

In English: the cross product of R1 and R2 is a HoTT-

Relation of type Tuple (node σR1
σR2

) → U , defined as

follows. The number of times that a tuple t occurs in the

output schema equals to the product of how many times t.1
occurs in R1 multiplied by how many times t.2 occurs in R2.

Disjoint union (+) Disjoint union of univalent types is
analogous to union of two disjoint sets. For A,B : U ,
the cardinality of A + B is the cardinality of A plus the
cardinality of B; for natural numbers, this corresponds to
standard addition. For example, SQL’s UNION ALL is defined
in terms of +:

JR1 UNION ALL R2K , λ t. (JR1K t) + (JR2K t)

In SQL, UNION ALL means bag union of two relations.

We also denote logical OR of two predicates using +.

A + B corresponds type-theoretic operation of logical OR

if A and B are squash types (recall that squash types are 0

or 1 [52, Ch 1.11]).

Squash (‖n‖) Squash is a type-theoretic operation that
truncates a univalent type to 0 or 1. For A : U , ‖A‖ = 0
if A’s cardinality is zero or ‖A‖ = 1 otherwise. An example
of using squash types is in denoting DISTINCT (DISTINCT
removes duplicated tuples, i.e., converting a bag to a set):

JDISTINCT RK , λ t. ‖JRK t‖

For a tuple t ∈ DISTINCT R, t’s cardinality equals to 1 if its

cardinality in R is non-zero and equals to 0 otherwise. This

is exactly ‖JRK t‖.

Negation (n → 0) If n is a squash type, then n → 0 is
the negation of n. We have 0 → 0 = 1 and 1 → 0 = 0.
Negation is used to denote EXCEPT and negating a predicate,
for example:

JR1 EXCEPT R2K , λ t. (JR1K t)× (‖JR2K t‖ → 0)

515

A tuple t ∈ R1 EXCEPT R2 retains its multiplicity in R1

if its multiplicity in R2 is not 0 (since if JR2K t 6= 0, then

‖JR2K t‖ → 0 = 1).

Summation (
∑

) Given A : U and B : A→ U ,
∑

x:A B(x)
is a dependent pair type (

∑
) and is used to denote projec-

tion. For example:

JSELECT k FROM RK , λ t.
∑

t′:Tuple σR

∥

∥JkK t′ = t
∥

∥× JRK t′

For a tuple t in the result of this projection query, its car-

dinality is the summation of the cardinalities of all tuples of

schema σA that also has the same value on column k with t.

Here ‖JkK t′ = t‖ equals to 1 if t and t′ have same value on

k, otherwise it equals to 0. Unlike K-Relations, using uni-

valent types allow us to support summation over an infinite

domain and evaluate expressions such as the projection de-

scribed above.

In general, proving rewrite rules using UNINOMIAL

allows us to use powerful automatic proving techniques

such as associative-commutative term rewriting in semi-ring

structures (recall that U is a semi-ring) similar to the ring

tactic [3] and Nelson-Oppen algorithm on congruence clo-

sure [45]. Both mitigate our proof burden.

3.4 Derived HoTTSQL Constructs

HoTT SQL supports additional SQL features including

grouping, integrity constraints, and indexes. All such fea-

tures are commonly utilized in query optimization. These

features are supported by automatic syntactic rewrites in

HoTT SQL.

Grouping Grouping is a widely-used relational operator
that projects rows with a common value into separate groups,
and applies an aggregation function (e.g., average) to each
group. In SQL, this is supported via the GROUP BY operator
that takes in the attribute names to form groups. HoTT SQL
supports grouping by de-sugaring GROUP BY using a cor-
related subquery that returns a single attribute relation, and
applying aggregation function to the resulting relation [6].
Below is an example of such a rewrite expressed using SQL,
where α represents any of the standard SQL aggregates:

SELECT k AS k, α(x.a) AS a1 FROM R x GROUP BY x.k

rewrites to ⇓

SELECT DISTINCT k AS k,

α(SELECT x.a AS a FROM R x WHERE x.k = y.k) AS a1

FROM R y

We will illustrate grouping in rewrite rules in Sec. 5.1.2.

Integrity Constraints Integrity constraints are used in

database systems and facilitate various semantics-based

query optimizations [20]. HoTT SQL supports two impor-

tant integrity constraints: keys and functional dependencies,

again through syntactic rewrites.
A key constraint requires an attribute to have unique val-

ues among all tuples in a relation. In HoTT SQL, declaring

an attribute a as a key in relation R is rewritten to the fol-
lowing assertion:

key k(R);

rewrites to ⇓

SELECT * FROM R x =
SELECT x.* FROM R x, R y WHERE x.k = y.k

To see why this rewrite satisfies the key constraint, note

that k is a key in R if and only if R is equal to its self-join

on k after converting the result into a set. Intuitively, if k

is a key, then self-join of R on k will keep all the tuples of

R with each tuple’s multiplicity unchanged. Conversely, if

some value of k occurs n > 1 times in R, then the second

query increases the multiplicity of all those tuples by n, thus

the two queries are not equivalent.

Functional Dependencies Keys are used in defining func-
tional dependencies and indexes. A functional dependency
constraint from attribute a to b requires that for any two tu-
ples t1 and t2 in R, (t1.a = t2.a) → (t1.b = t2.b) This is
equivalent to saying that a is a key in the projection of R on
the attributes a, b:

fd a -> b in R;

rewrites to ⇓

key a(DISTINCT SELECT x.a AS a, x.b AS b FROM R x);

Index An index on an attribute a is a data structure that

speeds up the retrieval of tuples with a given value of a [23,

Ch. 8].
To reason about rewrite rules that use indexes, we fol-

low the idea that an index can be treated as a logical relation
rather than physical data structure [55]. Since defining in-
dex as a relation requires a unique identifier of each tuple
(analogous to a pointer to each tuple in the physical imple-
mentation of an index in database systems), we define index
as a HoTT SQL query that projects on the a key of the re-
lation and the index attribute. For example, if k is a key of
relation R, an index i of R on attribute a can be defined as:

index i(a,R);
rewrites to ⇓

i := SELECT x.k AS k, x.a AS a FROM R x

Here := means by definition (rather than proved). In Sec-

tion 5.1.4, we show example rewrite rules that utilize indexes

that are commonly used in query optimizers.

3.5 Limitations

HoTT SQL does not currently support ORDER BY. ORDER BY

is usually used with LIMIT n, e.g., output the first n tuples

in a sorted relation. In addition, we currently do not support

NULLs (i.e., 3-valued logic), and leave them as future work.

4. Translating HoTT SQL to UNINOMIAL

We translate HoTT SQL to UNINOMIAL by first compil-

ing HoTT SQL to an intermediate language HoTT IR. In

516

τ ∈ Type ::= int | bool | string | . . .

JintK ::= Z

JboolK ::= B

. . .

σ ∈ Schema ::= empty

| leaf τ

| node σ1 σ2

Tuple empty ::= Unit

Tuple (node σ1 σ2) ::= Tuple σ1 × Tuple σ2

Tuple (leaf τ) ::= JτK

Attribute σ τ ::= Tuple σ → JτK

Figure 5. HoTT IR’s implementation of HoTT SQL’s Data

Model

schema σ(a:int, ??); ⇒ σ : Schema.
a: Attribute σ τ.

schema of ⇒ node (leaf int)
SELECT "Bob" AS Name, (node (leaf int)
52 AS Age, TRUE AS Married (leaf bool))

schema of ⇒ node σ1 σ2

SELECT * FROM t1 x, t2 y

(table t1 σ1; table t2 σ2;)

Figure 6. Examples of HoTT IR’s implementation of

schemas

this section, we describe the implementation of HoTT SQL’s

data model using HoTT IR, and provide a denotational se-

mantics of HoTT IR to UNINOMIAL.

4.1 Implementing Data Model in HoTT IR

Figure 5 shows HoTT IR’s implementation of HoTT SQL’s

relational data model in Coq. Schemas are modeled as a

collection of types organized in a binary tree, with each

type corresponding to an attribute. Tuples in HoTT SQL are

implemented as dependent types on a schema. As shown

in Figure 5, given a schema s, if s is the empty schema,

then only the empty (i.e., Unit) tuple can be constructed

from it. Otherwise, if s is a leaf node in the schema tree

with type τ , then a tuple is simply a value of type JτK.

Finally, if s is recursively defined using two schemas s1
and s2, then the resulting tuple is an instance of a product

type Tuple(s1) × Tuple(s2). An attribute in HoTT SQL is

implemented as an uninterpreted function from a tuple of its

schema to its data type.

Figure 6 shows three examples of HoTT IR’s Coq imple-

mentation of schemas and tuples. A declaration of a generic

schema σ(a:int,??) is implemented as a Schema declara-

tion (σ:Schema), and an attribute declaration (a:Attribute

σ τ) in Coq. In the second example, the output schema of

the SQL query is represented as a tree. Lastly, the output

schema of a SQL query that performs a Cartesian product of

two tables is implemented as a tree with each table’s schema

as the left and right node, respectively.

HoTT IR implements schemas as trees. We do so sim-

ply for engineering convenience, as using trees allows us

to easily support generic schemas in Coq. Consider the

third example in Figure 6, which joins two tables with

generic schema σ1 and σ1 into a table t with schema

(node σ1 σ2). Since we know that every tuple of t has

type (Tuple (node σ1 σ2)), by the computation rule for

Tuple, it has type (Tuple σ1 × Tuple σ2). This computa-

tional simplification enables accesses to the components of

a tuple which was generated by joins of tables with generic

schemas. A straightforward alternative implementation is to

model schemas as lists. Then t’s schema is the list concate-

nation of σ1 and σ2, i.e., append(σ1, σ2), and every tuple of

t has type (Tuple append(σ1, σ2)). However, this cannot be

further simplified computationally, because the definition of

append gets stuck on the generic schema σ1.

4.2 From HoTT SQL to HoTT IR

HoTT SQL programs are first translated to an intermediate

representation called HoTT IR. HoTT SQL and HoTT IR

have the same syntax, except that HoTT IR uses the un-

named approach to represent schemas and attributes [1],

similar to De Bruijn indexes [5]. Doing so decouples the

equivalence proof from naming resolution, and allows schema

equivalences to be determined based on structural equality.

Translating from HoTT SQL to HoTT IR is straightforward

except for two aspects: 1) each construct in HoTT IR comes

with a context for evaluation, and contexts need to be in-

ferred from the input HoTT SQL program, and 2) resolving

names to convert from named to unnamed approach when

accessing attributes is based on the inferred contexts.

First, contexts are represented as schemas. We infer the

contexts for each query construct in HoTT SQL following

standard evaluation of SQL, starting from the FROM clause

of the outermost query. For instance, we start with query

q1 in the HoTT SQL query shown in Figure 7 and infer its

context, Γ1, to be that of a tree with two leaves: Γ0 and σR1

(recall that schemas are represented as trees as discussed

in Sec. 4.1). Γ1 is then passed to the inner query q2 to

continue the inference. Each HoTT SQL construct is then

appended with its inferred context during the translation.

For predicates, which already come with the schema that it

is intended to be applied to, we use CASTPRED to alter its

context to the appropriate one depending on where it is used.

Given that, attribute naming is resolved using the inferred

contexts. For instance, the inferred context for evaluating the

WHERE clause in q2 in Figure 7 is (node (node empty σR1
) σR2

. Thus, as x.a in the selection predicate refers to the

schema of R1, it is converted to the unnamed version as

left.right.a.

517

SELECT ∗ FROM R1 x WHERE q1
EXISTS SELECT ∗ FROM R2 y WHERE x.a = y.a AND q2
EXISTS SELECT ∗ FROM R3 z WHERE β(z) q3

(. . . ; predicate β(σR3
); . . .)

⇓
SELECT ∗ FROM R1 WHERE q1

EXISTS SELECT ∗ FROM R2 WHERE q2
left.right.a=right.a AND

EXISTS SELECT ∗ FROM R3 q3
WHERE (CASTPRED Right β)

Query Context schema of WHERE clause

init Γ0=empty

q1 Γ1=node Γ0 σR1

q2 Γ2=node Γ1 σR2

q3 Γ3=node Γ2 σR3

Figure 7. Translating HoTT SQL query with correlated

subqueries to HoTT IR

Figure 7 shows an example of translating HoTT SQL

query with correlated subqueries to HoTT IR. The full set

of translation rules can be found in the appendix of the full

version of this paper [16].

4.3 Denoting HoTT IR to UNINOMIAL

We now describe how each of the constructs in HoTT IR is

denoted to UNINOMIAL.

Queries A query q is denoted to a function from q’s con-

text tuple (of type Tuple Γ) to a HoTT-Relation (of type

Tuple σ → U):

JΓ ⊢ q : σK : Tuple Γ→ Tuple σ → U

The FROM clause is recursively denoted to a series of cross

products of HoTT-Relations. Each cross product is denoted

using × as shown in Section 3.3. For example:

JΓ ⊢ FROM q1, q2 : σK ,

λ g t. (JΓ ⊢ q1 : σK g t.1)× (JΓ ⊢ q2 : σK g t.2)

where t.1 and t.2 index into the context tuple Γ to retrieve

the schemas of q1 and q2 respectively.

Note the manipulation of the context tuple in the denota-

tion of WHERE: for each tuple t, we first evaluate t against the

query before WHERE, using the context tuple g. After that, we

evaluate the predicate b by first constructing a new context

tuple as discussed (namely, by concatenating Γ and σ, the

schema of q), passing it the combined tuple (g, t). The com-

bination is needed as t has schema σ while the predicate b is

evaluated under the schema node Γ σ, and the combination

is easily accomplished as g, the context tuple, has schema Γ.

UNION ALL, EXCEPT, and DISTINCT are denoted using +,

negation (n → 0), and squash (‖n‖) on univalent types are

denoted as shown in Section 3.3.

Predicates A predicate b is denoted to a function from a

tuple (of type Tuple Γ) to a univalent type (of type U):

JΓ ⊢ bK : Tuple Γ→ U

More specifically, the return type U must be a squash

type [52, Ch. 3.3]. A squash type can only be a type of 1

element, namely 1, and a type of 0 element, namely 0. A

HoTT SQL program with the form q WHERE b is denoted to

the Cartesian product between a univalent type and a mere

proposition.

As an example, suppose a particular tuple t has multiplic-

ity 3 in query q, i.e., q t = JRKt = 3, where 3 is a univalent

type. Since predicates are denoted to propositions, applying

the tuple to the predicate returns either 1 or 0, and the over-

all result of the query for tuple t is then either 3× 0 = 0, or

3× 1 = 1, i.e., a squash type.

Expressions and Projections A value expression e is de-

noted to a function from a tuple (of type Tuple Γ) to its data

type, such as int and bool (JτK):

JΓ ⊢ e : τK : Tuple Γ→ JτK

A projection p from Γ to Γ′ is denoted to a function from a

tuple of type Tuple Γ to a tuple of type Tuple Γ′.

Jp : Γ⇒ Γ′K : Tuple Γ→ Tuple Γ′

Projections are recursively defined. Projections can be com-

posed using “.”. The composition of two projections, “p1. p2”,

where p1 is a projection from Γ to Γ′ and p2 is a projection

from Γ′ to Γ′′, is denoted to a function from a tuple of type

Tuple Γ to a tuple of type Tuple Γ′′ as follows:

λ g. Jp2 : Γ′ ⇒ Γ′′K (Jp1 : Γ⇒ Γ′K g)

We apply the denotation of p1, which is a function of type

Tuple Γ → Tuple Γ′, to the argument of composed pro-

jection g, then apply the denotation of p2 to the result of the

application. A projection can be combined by two projec-

tions using “,”. The combining of two projection, p1, p2,

denotes to:

λ g. (Jp1 : Γ⇒ Γ0K g, Jp2 : Γ⇒ Γ1K g)

where we apply the denotation of p1 and the denotation of p2
to the argument of combined projection (g) separately, and

combine their results using the pair constructor.

5. COSETTE: A Tool for Checking Rewrite

Rules

To demonstrate the effectiveness of HoTT SQL, we imple-

mented it using Coq as part of COSETTE, a tool for check-

ing the equivalence of SQL rewrite rules. The HoTT SQL

component of COSETTE consists of five parts, 1) a parser

that parses HoTT SQL programs and translates them to

518

JΓ ⊢ q : σK : Tuple Γ→ Tuple σ → U (* Query *)

JΓ ⊢ table : σK , λ g t. JtableK t

JΓ ⊢ SELECT p q : σK , λ g t.
∑

t′:Tuple σ′ (Jp : node Γ σ′ ⇒ σK (g, t′) = t)× JΓ ⊢ q : σ′K g t′

JΓ ⊢ FROM q1, q2 : node σ1 σ2K , λ g t. JΓ ⊢ q1 : σ1K g t.1× JΓ ⊢ q2 : σ2K g t.2

JΓ ⊢ FROM q : σK , λ g t. JΓ ⊢ q : σK g t

JΓ ⊢ q WHERE b : σK , λ g t. JΓ ⊢ q : σK g t× Jnode Γ σ ⊢ bK (g, t)

JΓ ⊢ q1 UNION ALL q2 : σK , λ g t. JΓ ⊢ q1 : σK g t+ JΓ ⊢ q2 : σK g t

JΓ ⊢ q1 EXCEPT q2 : σK , λ g t. JΓ ⊢ q1 : σK g t× ((JΓ ⊢ q2 : σK g t)→ 0)

JΓ ⊢ DISTINCT q : σK , λ g t. ‖JΓ ⊢ q : σK g t‖

JΓ ⊢ bK : Tuple Γ→ U (* Predicate *)

JΓ ⊢ b1 AND b2K , λ g. JΓ ⊢ b1K g × JΓ ⊢ b2K g

JΓ ⊢ NOT bK , λ g. (JΓ ⊢ bK g)→ 0

JΓ ⊢ EXISTS qK , λ g.
∥

∥

∥

∑

t:Tuple σ
JΓ ⊢ q : σK g t

∥

∥

∥

JΓ ⊢ CASTPRED p bK , λ g. JΓ′ ⊢ bK (Jp : Γ⇒ Γ′K g)

JΓ ⊢ e : τK : Tuple Γ→ JτK (* Expression *)

JΓ ⊢ f(e1, . . .) : τK , λ g. JfK(JΓ ⊢ e1 : τ1K g, . . .)

JΓ ⊢ agg(q) : τ ′K , λ g. JaggK (JΓ ⊢ q : leaf τK g)

Jp : Γ⇒ Γ′K : Tuple Γ→ Tuple Γ′
(* Projection *)

J∗ : Γ⇒ ΓK , λ g. g

JLeft : node Γ0 Γ1 ⇒ Γ0K , λ g. g.1

JRight : node Γ0 Γ1 ⇒ Γ1K , λ g. g.2

Jp1. p2 : Γ⇒ Γ′′K , λ g. Jp2 : Γ′ ⇒ Γ′′K (Jp1 : Γ⇒ Γ′K g)

Jp1, p2 : Γ⇒ node Γ0 Γ1K , λ g. (Jp1 : Γ⇒ Γ0K g, Jp2 : Γ⇒ Γ1K g)

Figure 8. Selected rules of the denotational semantics of HoTT SQL, more rules are shown in the appendix of the full version

[16].

HoTT IR, 2) the denotational semantics of HoTT IR, 3) a

library consisting of lemmas and tactics that can be used as

building blocks for constructing proofs of arbitrary rewrite

rules, 4) a fully automated decision procedure for the equiva-

lence of rewrite rules consisting only of conjunctive queries,

and 5) a number of proofs of existing rewrite rules from the

database literature and real world systems as showcases. Be-

sides the parser implemented in Haskell, all other parts are

implemented in Coq.

The Coq part of COSETTE relies on the Homotopy Type

Theory Coq library [29]. Its trusted code base contains the

parser (531 lines of Haskell) and 296 lines of specification of

HoTT IR. Its verified part contains 405 lines of library code

(including the decision procedure for conjunctive queries),

and 1094 lines of code that prove well-known SQL rewrite

rules.

In the following sections, we first show various rewrite

rules and the lemmas we use from the COSETTE’s Coq

library, and then explain our automated decision procedure.

5.1 Proving Rewrite Rules in COSETTE by Examples

We proved 23 rewrite rules from both the database literature

and real world optimizers using HoTT SQL. Figure 9 shows

the number of rewrite rules that we proved in each category

and the average lines of code (LOC) required per proof.

The following sections show a sampling of interesting

rewrite rules in these categories. Sec 5.1.1 shows how two

basic rewrite rules are proved. Sec 5.1.2 shows how to prove

a rewrite rule involving aggregation. Sec 5.1.3 shows how to

prove the magic set rewrite rules, and Sec 5.1.4 shows how

to state a rewrite rule involving indexes.

5.1.1 Basic Rewrite Rules

Basic rewrites are simple rewrite rules that are fundamen-

tal building blocks of query optimizers in relational database

519

Category No. of rules Avg. LOC (proof)

Basic 8 11.1

Aggregation 1 50

Subquery 2 17

Magic Set 7 30.3

Index 3 64

Conjunctive Query 2 1 (automatic)

Total 23 25.2

Figure 9. Rewrite rules proved

systems. We demonstrate how to prove the correctness of ba-

sic rewrite rules in COSETTE using two examples: selection

push down and commutativity of joins.

Selection Push Down Selection push down moves a selec-

tion (filter) directly after the scan of the input table to dra-

matically reduce the amount of data in the execution pipeline

as early as possible. It is known to be one of most power-

ful rules in database optimizers [23]. We formulate selection

push down as the following rewrite rule in HoTT SQL:

SELECT * FROM R x WHERE β1(x) AND β2(x) ≡
SELECT * FROM (SELECT * FROM R x WHERE β1(x)) y

WHERE β2(y)

This is denoted to:

λ g t. Jβ1K (g, t)× Jβ2K (g, t)× JRK g t ≡
λ g t. Jβ2K (g, t)× (Jβ1K (g, t)× JRK g t)

The proof proceeds by functional extensionality,4 along

with the associativity and commutativity of ×.

Commutativity of Joins Commutativity of joins allows an
optimizer to rearrange the order of joins to obtain the join
order with the best performance. This is one of the most
fundamental rewrite rules that almost every SQL optimizer
uses. We formulate the commutativity of joins in HoTT SQL
as follows:

SELECT * FROM R x, S y ≡
SELECT y.*, x.* FROM S x, R y

Note that the select clause flips the tuples from S and R,

such that the order of the tuples matches the original query.

A proof of this rewrite rule is provided in the full version of

the paper available on project website.

5.1.2 Aggregation and Group By Rewrite Rules

Aggregation and Group By are widely used in analytic
queries [9]. The standard data analytic benchmark TPC-H
[54] has 16 queries with group by and 21 queries with ag-
gregation out of a total of 22 queries. Following is an ex-
ample rewrite rule for aggregate queries. The query on the
left-hand side groups the relation R by the column k, sums
all values in the b column for each resulting partition, and
then removes all results except the partition whose column k

4 Function extensionality is implied by the Univalence Axiom.

is equal to the constant l. This can be rewritten to the faster
query that first removes all tuples from R whose column
k 6= l, and then computes the sum. A proof of this rewrite
rule is provided in the full version.

SELECT *

FROM (SELECT k, α(b) FROM R x GROUP BY x.k) y

WHERE x.k = l ≡
SELECT k, α(b) FROM R x WHERE x.k = l GROUP BY x.k

5.1.3 Magic Set Rewrite Rules

Magic set rewrites are well-known rewrite rules that were

originally used in processing recursive queries in deductive

databases [2, 47]. It was then used for rewriting complex

decision support queries and has been implemented in com-

mercial systems such as IBM’s DB2 database [42, 50]. As

described in [50], all magic set rewrites can be composed

from three basic rewrite rules on semijoins: introduction of

θ-semijoin, pushing θ-semijoin through join, and pushing θ-

semijoin through aggregation.
We firstly define θ-semijoin as a syntactic rewrite in

HoTT SQL:

A SEMIJOIN B ON θ ,

SELECT * FROM A x

WHERE EXISTS (SELECT * FROM B y WHERE θ(x, y))

Introduction of θ-semijoin This rules shows how to intro-
duce semijoin from join and selection. Using HoTT SQL,
the rewrite can be expressed as follows:

SELECT * FROM R2 x, R1 y WHERE θ(x, y) ≡
SELECT *

FROM (R2 x SEMIJOIN R1 y ON θ(x, y)) z1, R1 z2
WHERE θ(z1, z2)

which is denoted to:

λ g t. JθK (g, t)× JR2K g t.1× JR1K g t.2 ≡
λ g t. JθK (g, t)× JR2K g t.1× JR1K g t.2×

∥

∥

∥

∑

t1
JθK (g, (t.1, t1))× JR1K g t1

∥

∥

∥

The proof uses Lemma 5.1 provided by the COSETTE li-

brary.

Lemma 5.1. ∀P, T : U , where P is either 0 or 1, we have:

(T → P)⇒ ((T × P) = T)

Proof. Intuitively, this can be proven by cases on T . If T is

inhabited, then P holds by assumption, and T × 1 = T . If

T = 0, then 0× P = 0.

Using this lemma, it remains to be shown that JθK (g, t)
and JR2K g t.1 and:

JR1K g t.2⇒

∥

∥

∥

∥

∥

∑

t1

JθK (g, (t.1, t1))× JR1K g t1

∥

∥

∥

∥

∥

We show this by instantiating t1 with t.2, and then by

hypotheses.

520

Pushing θ-semijoin through join The second rule in
magic set rewrites is the rule for pushing θ-semijoin through
join. Using HoTT SQL, the rewrite can be expressed as fol-
lows:

(SELECT * FROM R1 x, R2 y WHERE θ1(x, y))
SEMIJOIN R3 ON θ2 ≡
(SELECT *

FROM R1 x,

(R2 SEMIJOIN (FROM R1, R3) ON θ1 AND θ2) y

WHERE θ1(x, y)) SEMIJOIN R3 ON θ2

The rule is denoted to:

λ g t.
∥

∥

∥

∑

t1
Jθ2K (g, (t, t1))× JR3K g t1

∥

∥

∥
×

Jθ1K (g, t)× JR1K g t.1× JR2K g t.2 ≡

λ g t.
∥

∥

∥

∑

t1
Jθ2K (g, (t, t1))× JR3K g t1

∥

∥

∥
×

Jθ1K (g, t)× JR1K g t.1× JR2K g t.2×
‖
∑

t1
Jθ1K (g, (t1.1, t.2))× Jθ2K (g, ((t1.1, t.2), t1.2))

×JR1K g t1.1× JR3K g t1.2‖

We can prove this rule by using a similar approach to the

one used to prove introduction of θ-semijoin: rewriting the

right hand side using Lemma 5.1. and then instantiating t1
with (t.1, t1) (t1 is the witness of the Σ hypothesis).

Pushing θ-semijoin through aggregation The final rule
pushes θ-semijoin through aggregation. Using HoTT SQL,
the rewrite can be expressed as follows (a proof of this
rewrite rule is provided in the full version):

(SELECT x.c1 AS c1, α(a) FROM R1 x GROUP BY x.c1)

SEMIJOIN R2 ON θ ≡
SELECT x.c1, α(a)

FROM (R1 SEMIJOIN R2 ON θ) x GROUP BY x.c1

5.1.4 Index Rewrite Rules

As introduced in Section 3.4, we define an index as a
HoTT SQL query that projects on the indexed attribute and
the primary key of a relation. Assuming k is the primary
key of relation R, and i is an index on column a (index
i(a, R)), we prove the following common rewrite rule that
converts a full table scan to a lookup on an index and a join:

SELECT * FROM R x WHERE x.a = l ≡
SELECT * FROM i x, R y

WHERE x.a = l AND x.k = y.k

We omit the proof here for brevity.

5.2 Automated Decision Procedure for Conjunctive

Queries

The equivalence of two SQL queries is in general undecid-

able [53]. The most well-known decidable subclass are con-

junctive queries, which are of the form DISTINCT SELECT p

FROM q WHERE b, where p is a sequence of arbitrarily many

projections, q is the cross product of arbitrarily many input

relations, and b is a conjunct consisting of arbitrarily many

equality predicates between attribute projections.

We implement a decision procedure to automatically

prove the equivalence of conjunctive queries in HoTT SQL.

After denoting the HoTT SQL query to UNINOMIAL, the

decision procedure automates the steps similar to the proof

in Section 5.1.2. First, after applying functional extension-

ality, both sides become squash types due to the DISTINCT

clause. The procedure then applies the fundamental lemma

about squash types ∀AB, (A ↔ B) ⇒ (A = B). In both

cases of the resulting bi-implication, the procedure tries all

possible instantiations of the Σ, which is due to the SELECT

clause. This search for the correct instantiation is imple-

mented using Ltac’s built-in backtracking support. The pro-

cedure then rewrites all equalities and tries to discharge the

proof by direct application of hypotheses.
The following is an example of two equivalent conjunc-

tive SQL queries that COSETTE can solve using its decision
procedure:

DISTINCT SELECT x.c1 AS c1 FROM R1 x, R2 y

WHERE x.c2 = y.c3 ≡
DISTINCT SELECT x.c1 AS c1 FROM R1 x, R1 y, R2 z

WHERE x.c1 = y.c1 AND x.c2 = z.c3

which is denoted as:

λ g t. ‖
∑

t1
JR1K gt1.1× JR2K g t1.2×

(Jc2K t1.1 = Jc3K t1.2)×
(Jc1K t1.1 = t)× ‖ ≡

λ g t. ‖
∑

t1
JR1K g t1.1.1× JR1K g t1.1.2× JR2K g t1.2×

(Jc1K t1.1.1 = Jc1K t1.1.2)× (Jc2K t1.1.1 = Jc3K t1.2)×
(Jc1K t1.1.1 = t)‖

The decision procedure turns this goal into a bi-implication,

which it proves by cases. For the→ case, the decision pro-

cedure destructs the available Σ witness into tuple tx from

R1 and ty from R2, and tries all instantiations of t1 using

these tuples. The instantiation t1 = ((tx, tx), ty) allows the

procedure to complete the proof after rewriting all equali-

ties. For the← case, the available tuples are tx from R1, ty
from R1, and tz from R2. The instantiation t1 = (tx, tz)
allows the procedure to complete the proof after rewriting

all equalities.

6. Related Work

6.1 Query Rewriting

Query rewriting based on equivalence rules is an essential

part of modern query optimizers. Rewrite rules are either

fired by a forward chaining rule engine [31, 46], or are used

as basis of search space [25–27].

In the implementation of COSETTE, we formally prove

a series of rewrite rules from the database literature. Those

rules include basic algebraic rewrites such as selection push

down [56], rewrite rules using indexes [23], and unnesting

aggregates with joins [43]. Using COSETTE, we proved one

521

of the most complicated rewrite rules that are also widely

used in practice: magic set rewrites [2, 42, 50]. Magic set

rewrites involve many SQL features such as correlated sub-

queries, aggregation, and grouping. To our best knowledge,

its correctness has not been formally proven before.

COSETTE automates proving rewrite rules on the decid-

able fragments of SQL. According to Codd’s theorem [19],

relational algebra and relational calculus (formulas of first-

order logic on database instances) are equivalent in expres-

sive power. Thus, the equivalence between two SQL queries

is in general undecidable [53]. Extensive research has been

done to study the complexity of containment and equiva-

lence of fragments of SQL queries under bag semantics and

set semantics [8, 11, 24, 33, 35, 48, 58].

6.2 SQL Semantics

SQL is the de-facto language for relational database systems.

Although the SQL language is an ANSI/ISO standard [34],

it is loosely described in English and leads to conflicting in-

terpretations [21]. Previous related formalizations of various

fragments of SQL include relational algebra [1], compre-

hension syntax [6], and recursive and non-recursive Datalog

[11]. These formalisms are not suited for rigorous reason-

ing about the correctness of real world rewrite rules since

they mostly focus exclusively on set semantics. In addition,

to express rewrite rules in these formalism, non-trivial trans-

formation from SQL are required.

There are a number of prior approaches in formalizing

SQL in proof systems [4, 13, 14, 40, 41, 59, 60]. In Qex

[59, 60], SQL semantics are encoded in the Z3 SMT solver

for test generation. In Ynot RDBMS [41], an end to end

verified prototype database system is implemented in Coq.

In Datacert [4], a relational data model and relational alge-

bra are implemented in Coq. Different from Datacert, our

semantics uses bag semantics and denotes all major fea-

tures of SQL, many of which, such as grouping, aggrega-

tion, and correlated subqueries are not supported in Datac-

ert. The COKO-KOLA system [13, 14] can express query

rewrite rules and prove them using the Larch proof system

[30]. COKO-KOLA relies on a trusted collection of domain

specific axioms for proving rewrite rules. The consistency of

these axioms is not proven, and incorrect rewrite rules may

thus be provable. Modern theorem provers like Coq avoids

this problem by satisfying the De Bruijn criterion: the the-

orem prover is built on a small generic trusted core. Be-

sides, the COKO-KOLA papers are sparse on details, and the

front-end that handles non-trivial transformations from SQL

to their combinator-based backend language is not available

online. We thus were not able to perform an in-depth com-

parison between COKO-KOLA and HoTT SQL. Compared

with [4, 13, 14, 40, 41], HoTT SQL covers all important

SQL feature such as bags, aggregation, group by, indexes,

and correlated subqueries. As a result, we are able to ex-

press a wide range of rewrite rules. Unlike Ynot [41], we did

not build an end to end formally verified database system.

And similar to prior work [40], we also use Coq’s tactics to

automate the proving of conjunctive queries.

In HoTT SQL, SQL features such as aggregation af-

ter grouping and indexes are supported through syntactic

rewrites. Rewriting aggregation after grouping using corre-

lated subqueries is based on [6]. Finally, using logical rela-

tionals to represent indexes was first proposed by Tastalos et

al [55].

6.3 Related Formal Semantics in Proof Systems

A number of formal semantics in different application do-

mains have been developed using proof systems for soft-

ware verification. The CompCert compiler [38] specifies the

semantics of a subset of C in Coq and provides machine

checkable proofs of the correctness of compilation. HALO

denotes Haskell to first-order logic for static verification of

contracts [61]. Bagpipe [62] developed formal semantics for

the Border Gateway Protocol (BGP) to check the correct-

ness of BGP configurations. SEL4 [37] formally specifies

the functional correctness of an OS kernel in Isabelle/HOL

and developed a verified OS kernel. FSCQ [12] builds a

crash safe file system using an encoding of crash Hoare logic

in Coq. With the formal semantics implemented using proof

systems, a number of verified systems have been developed,

such as Verdi [63], Bedrock [15], and Ironclad [32].

7. Conclusion

In this paper, we described COSETTE, a tool for checking

the equivalence of SQL rewrite rules. To support COSETTE,

we defined a formal language, HoTT SQL, following SQL’s

syntax closely. HoTT SQL extends the semantics of SQL

from finite to infinite relations, and uses univalent types from

Homotopy Type Theory to represent and prove equalities of

cardinal numbers (finite and infinite). Using COSETTE, we

have demonstrated the power and flexibility of COSETTE

by proving the correctness of several powerful optimization

rules found in the database literature, with some of them not

proven correct before.

8. Acknowledgments

We thank our shepherd Steve Zdancewic and the anony-

mous reviewers for their helpful feedback on improving the

paper. This work is supported in part by the National Sci-

ence Foundation through grants IIS-1546083, IIS-1651489,

III-1614738, AITF-1535565, and CNS-1563788; DARPA

award FA8750-16-2-0032; DOE award DE-SC0016260; and

gifts from Adobe, Amazon, and Google.

References

[1] S. Abiteboul, R. Hull, and V. Vianu. Foundations of

Databases. Addison-Wesley, 1995. URL http://webdam.

inria.fr/Alice/.

522

http://webdam.inria.fr/Alice/
http://webdam.inria.fr/Alice/

[2] F. Bancilhon, D. Maier, Y. Sagiv, and J. D. Ullman. Magic

sets and other strange ways to implement logic programs. In

PODS, pages 1–15, 1986.

[3] B. Barras, B. Grégoire, A. Mahboubi, and L. Théry. Coq ref-

erence manual chapter 25: The ring and field tactic families.

https://coq.inria.fr/refman/Reference-Manual028.

html.

[4] V. Benzaken, E. Contejean, and S. Dumbrava. A coq formal-

ization of the relational data model. In ESOP, pages 189–208,

2014.

[5] D. Bruijn and N. Govert. Lambda calculus notation with

nameless dummies: A tool for automatic formula manipula-

tion, with application to the church-rosser theorem. Indaga-

tiones Mathematicae, 34:381–392, 1972.

[6] P. Buneman, L. Libkin, D. Suciu, V. Tannen, and L. Wong.

Comprehension syntax. SIGMOD Record, 23(1):87–96, 1994.

[7] P. Buneman, S. A. Naqvi, V. Tannen, and L. Wong. Principles

of programming with complex objects and collection types.

Theor. Comput. Sci., 149(1):3–48, 1995.

[8] A. K. Chandra and P. M. Merlin. Optimal implementation of

conjunctive queries in relational data bases. In STOC, pages

77–90. ACM, 1977.

[9] S. Chaudhuri and U. Dayal. An overview of data warehousing

and OLAP technology. SIGMOD Record, 26(1):65–74, 1997.

[10] S. Chaudhuri and M. Y. Vardi. Optimization of Real con-

junctive queries. In Proceedings of the Twelfth ACM SIGACT-

SIGMOD-SIGART Symposium on Principles of Database Sys-

tems, May 25-28, 1993, Washington, DC, USA, pages 59–70,

1993. doi: 10.1145/153850.153856. URL http://doi.acm.

org/10.1145/153850.153856.

[11] S. Chaudhuri and M. Y. Vardi. On the complexity of equiv-

alence between recursive and nonrecursive datalog programs.

In PODS, pages 107–116. ACM Press, 1994.

[12] H. Chen, D. Ziegler, T. Chajed, A. Chlipala, M. F. Kaashoek,

and N. Zeldovich. Using crash hoare logic for certifying the

FSCQ file system. In SOSP, pages 18–37, 2015.

[13] M. Cherniack and S. B. Zdonik. Rule languages and internal

algebras for rule-based optimizers. In SIGMOD Conference,

pages 401–412. ACM Press, 1996.

[14] M. Cherniack and S. B. Zdonik. Changing the rules: Transfor-

mations for rule-based optimizers. In SIGMOD Conference,

pages 61–72. ACM Press, 1998.

[15] A. Chlipala. The bedrock structured programming system:

combining generative metaprogramming and hoare logic in an

extensible program verifier. In ICFP, pages 391–402. ACM,

2013.

[16] S. Chu, K. Weitz, A. Cheung, and D. Suciu. HoTTSQL:

Proving query rewrites with univalent SQL semantics. CoRR,

abs/1607.04822, 2016. URL http://arxiv.org/abs/1607.

04822.

[17] S. Chu, C. Wang, K. Weitz, and A. Cheung. Cosette: An

automated prover for SQL. In CIDR. www.cidrdb.org, 2017.

[18] E. F. Codd. A relational model of data for large shared data

banks. Commun. ACM, 13(6):377–387, 1970.

[19] E. F. Codd. Relational completeness of data base sublan-

guages. In: R. Rustin (ed.): Database Systems: 65-98, Pren-

tice Hall and IBM Research Report RJ 987, San Jose, Califor-

nia, 1972.

[20] S. Dar, M. J. Franklin, B. T. Jónsson, D. Srivastava, and

M. Tan. Semantic data caching and replacement. In VLDB,

pages 330–341. Morgan Kaufmann, 1996.

[21] C. J. Date. A Guide to the SQL Standard, Second Edition.

Addison-Wesley, 1989. ISBN 978-0-201-50209-1.

[22] R. A. Ganski and H. K. T. Wong. Optimization of nested

SQL queries revisited. In SIGMOD Conference, pages 23–33.

ACM Press, 1987.

[23] H. Garcia-Molina, J. D. Ullman, and J. Widom. Database

systems - the complete book (2. ed.). Pearson Education, 2009.

ISBN 978-0-13-187325-4.

[24] G. Geck, B. Ketsman, F. Neven, and T. Schwentick. Parallel-

correctness and containment for conjunctive queries with

union and negation. In ICDT, volume 48 of LIPIcs, pages 9:1–

9:17. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik,

2016.

[25] G. Graefe. The cascades framework for query optimization.

IEEE Data Eng. Bull., 18(3):19–29, 1995.

[26] G. Graefe and D. J. DeWitt. The EXODUS optimizer gener-

ator. In SIGMOD Conference, pages 160–172. ACM Press,

1987.

[27] G. Graefe and W. J. McKenna. The volcano optimizer gener-

ator: Extensibility and efficient search. In ICDE, pages 209–

218. IEEE Computer Society, 1993.

[28] T. J. Green, G. Karvounarakis, and V. Tannen. Provenance

semirings. In PODS, pages 31–40, 2007.

[29] J. Gross, M. Shulman, A. Bauer, P. L. Lumsdaine, A. Mah-

boubi, and B. Spitters. The hott libary in coq. https:

//github.com/HoTT/HoTT.

[30] J. V. Guttag and J. J. Horning. Larch: Languages and Tools for

Formal Specification. Springer-Verlag New York, Inc., New

York, NY, USA, 1993. ISBN 0-387-94006-5.

[31] L. M. Haas, J. C. Freytag, G. M. Lohman, and H. Pirahesh.

Extensible query processing in starburst. In SIGMOD Confer-

ence, pages 377–388. ACM Press, 1989.

[32] C. Hawblitzel, J. Howell, J. R. Lorch, A. Narayan, B. Parno,

D. Zhang, and B. Zill. Ironclad apps: End-to-end security via

automated full-system verification. In OSDI, pages 165–181.

USENIX Association, 2014.

[33] Y. E. Ioannidis and R. Ramakrishnan. Containment of con-

junctive queries: Beyond relations as sets. ACM Trans.

Database Syst., 20(3):288–324, 1995.

[34] ISO/IEC. Iso/iec 9075-1:2011. https://www.iso.org/obp/

ui/#iso:std:iso-iec:9075:-1:ed-4:v1:en. Online; ac-

cessed 9-May-2016.

[35] T. S. Jayram, P. G. Kolaitis, and E. Vee. The containment

problem for REAL conjunctive queries with inequalities. In

PODS, pages 80–89. ACM, 2006.

[36] M. A. Khamis, H. Q. Ngo, and A. Rudra. FAQ: questions

asked frequently. In PODS, pages 13–28, 2016.

523

https://coq.inria.fr/refman/Reference-Manual028.html
https://coq.inria.fr/refman/Reference-Manual028.html
http://doi.acm.org/10.1145/153850.153856
http://doi.acm.org/10.1145/153850.153856
http://arxiv.org/abs/1607.04822
http://arxiv.org/abs/1607.04822
https://github.com/HoTT/HoTT
https://github.com/HoTT/HoTT
https://www.iso.org/obp/ui/#iso:std:iso-iec:9075:-1:ed-4:v1:en
https://www.iso.org/obp/ui/#iso:std:iso-iec:9075:-1:ed-4:v1:en

[37] G. Klein, K. Elphinstone, G. Heiser, J. Andronick, D. Cock,

P. Derrin, D. Elkaduwe, K. Engelhardt, R. Kolanski, M. Nor-

rish, T. Sewell, H. Tuch, and S. Winwood. sel4: formal ver-

ification of an OS kernel. In SOSP, pages 207–220. ACM,

2009.

[38] X. Leroy. Formal verification of a realistic compiler. Commun.

ACM, 52(7):107–115, 2009.

[39] A. Y. Levy, I. S. Mumick, and Y. Sagiv. Query optimization

by predicate move-around. In VLDB, pages 96–107. Morgan

Kaufmann, 1994.

[40] G. Malecha and R. Wisnesky. Using dependent types and

tactics to enable semantic optimization of language-integrated

queries. In DBPL, pages 49–58. ACM, 2015.

[41] J. G. Malecha, G. Morrisett, A. Shinnar, and R. Wisnesky.

Toward a verified relational database management system. In

POPL, pages 237–248, 2010.

[42] I. S. Mumick, S. J. Finkelstein, H. Pirahesh, and R. Ramakr-

ishnan. Magic is relevant. In SIGMOD Conference, pages

247–258, 1990.

[43] M. Muralikrishna. Improved unnesting algorithms for join

aggregate SQL queries. In VLDB, pages 91–102. Morgan

Kaufmann, 1992.

[44] M. Negri, G. Pelagatti, and L. Sbattella. Formal semantics

of SQL queries. ACM Trans. Database Syst., 16(3):513–534,

1991.

[45] G. Nelson and D. C. Oppen. Fast decision procedures based

on congruence closure. J. ACM, 27(2):356–364, 1980.

[46] H. Pirahesh, J. M. Hellerstein, and W. Hasan. Extensible/rule

based query rewrite optimization in starburst. In SIGMOD

Conference, pages 39–48. ACM Press, 1992.

[47] J. Rohmer, R. Lescoeur, and J. Kerisit. The alexander method

- A technique for the processing of recursive axioms in de-

ductive databases. New Generation Comput., 4(3):273–285,

1986.

[48] Y. Sagiv and M. Yannakakis. Equivalences among relational

expressions with the union and difference operators. J. ACM,

27(4):633–655, 1980.

[49] D. Schmitt. Bug #5673: Optimizer creates strange

execution plan leading to wrong results. https:

//www.postgresql.org/message-id/201009231503.

o8NF3Blt059661@wwwmaster.postgresql.org. Online;

accessed 1-July-2016.

[50] P. Seshadri, J. M. Hellerstein, H. Pirahesh, T. Y. C. Leung,

R. Ramakrishnan, D. Srivastava, P. J. Stuckey, and S. Sudar-

shan. Cost-based optimization for magic: Algebra and imple-

mentation. In SIGMOD Conference, pages 435–446, 1996.

[51] M. Sulik. Bug #70038: Wrong select count distinct with a field

included in two-column unique key. http://bugs.mysql.

com/bug.php?id=70038. Online; accessed 1-July-2016.

[52] The Univalent Foundations Program. Homotopy Type

Theory: Univalent Foundations of Mathematics. https:

//homotopytypetheory.org/book, Institute for Advanced

Study, 2013.

[53] B. A. Trakhtenbrot. Impossibility of an algorithm for the

decision problem in finite classes. Dok. Akad. Nauk USSR,

70(1):569–572, 1950.

[54] Transaction Processing Performance Council (TPC). Tpc

benchmark h revision 2.17.1. http://www.tpc.org/tpc

documents current versions/pdf/tpc-h v2.17.1.pdf.

[55] O. G. Tsatalos, M. H. Solomon, and Y. E. Ioannidis. The

GMAP: A versatile tool for physical data independence. In

VLDB, pages 367–378. Morgan Kaufmann, 1994.

[56] J. D. Ullman. Principles of Database and Knowledge-Base

Systems, Volume II. Computer Science Press, 1989.

[57] J. D. Ullman. Information integration using logical views. In

ICDT, volume 1186 of Lecture Notes in Computer Science,

pages 19–40. Springer, 1997.

[58] R. van der Meyden. The complexity of querying indefinite

data about linearly ordered domains. In PODS, pages 331–

345, 1992.

[59] M. Veanes, P. Grigorenko, P. de Halleux, and N. Tillmann.

Symbolic query exploration. In ICFEM, pages 49–68, 2009.

[60] M. Veanes, N. Tillmann, and J. de Halleux. Qex: Symbolic

SQL query explorer. In LPAR (Dakar), volume 6355 of

Lecture Notes in Computer Science, pages 425–446. Springer,

2010.

[61] D. Vytiniotis, S. L. P. Jones, K. Claessen, and D. Rosén.

HALO: haskell to logic through denotational semantics. In

POPL, pages 431–442, 2013.

[62] K. Weitz, D. Woos, E. Torlak, M. D. Ernst, A. Krishna-

murthy, and Z. Tatlock. Bagpipe: Verified BGP configuration

checking. Technical Report UW-CSE-16-01-01, University of

Washington Department of Computer Science and Engineer-

ing, Seattle, WA, USA, Jan. 2016.

[63] J. R. Wilcox, D. Woos, P. Panchekha, Z. Tatlock, X. Wang,

M. D. Ernst, and T. E. Anderson. Verdi: a framework for

implementing and formally verifying distributed systems. In

PLDI, pages 357–368. ACM, 2015.

524

https://www.postgresql.org/message-id/201009231503.o8NF3Blt059661@wwwmaster.postgresql.org
https://www.postgresql.org/message-id/201009231503.o8NF3Blt059661@wwwmaster.postgresql.org
https://www.postgresql.org/message-id/201009231503.o8NF3Blt059661@wwwmaster.postgresql.org
http://bugs.mysql.com/bug.php?id=70038
http://bugs.mysql.com/bug.php?id=70038
https://homotopytypetheory.org/book
https://homotopytypetheory.org/book
http://www.tpc.org/tpc_documents_current_versions/pdf/tpc-h_v2.17.1.pdf
http://www.tpc.org/tpc_documents_current_versions/pdf/tpc-h_v2.17.1.pdf

	Introduction
	Overview
	HoTTSQL and Its Semantics
	Data Model
	HoTTSQL: A DSL to express SQL rewrites
	UniNomials
	Derived HoTTSQL Constructs
	Limitations

	Translating HoTTSQL to UniNomial
	Implementing Data Model in HoTTIR
	From HoTTSQL to HoTTIR
	Denoting HoTTIR to UniNomial

	Cosette: A Tool for Checking Rewrite Rules
	Proving Rewrite Rules in Cosette by Examples
	Basic Rewrite Rules
	Aggregation and Group By Rewrite Rules
	Magic Set Rewrite Rules
	Index Rewrite Rules

	Automated Decision Procedure for Conjunctive Queries

	Related Work
	Query Rewriting
	SQL Semantics
	Related Formal Semantics in Proof Systems

	Conclusion
	Acknowledgments

