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ABSTRACT
We consider the view selection problem for XML content
based routing: given a network, in which a stream of
XML documents is routed and the routing decisions are
taken based on results of evaluating XPath predicates
on these documents, select a set of views that maximize
the throughput of the network. While in view selection
for relational queries the speedup comes from eliminat-
ing joins, here the speedup is obtained from gaining di-
rect access to data values in an XML packet, without
parsing that packet. The views in our context can be
seen as a binary representation of the XML document,
tailored for the network’s workload.

In this paper we define formally the view selection prob-
lem in the context of XML content based routing, and
provide a practical solution for it. First, we formalize
the problem; while the exact formulation is too complex
to admit practical solutions, we show that it can be sim-
plified to a manageable optimization problem, without
loss in precision. Second we show that the simplified
problem can be reduced to the Integer Cover problem.
The Integer Cover problem is known to be NP-hard,
and to admit a log n greedy approximation algorithm.
Third, we show that the same greedy approximation
algorithm performs much better on a class of work-
loads called ’hierarchical workloads’, which are typical
in XML stream processing. Namely, it returns an op-
timal solution for hierarchical workloads, and degrades
gracefully to the log n general bound as the workload
becomes less hierarchical.

1. INTRODUCTION
In XML content based routing, a stream of XML packets
is sent from a set of data producers to a set of data
consumers. Consumers subscribe to the data by means
of predicates, or filters, typically expressed in XPath,
and then receive a copy of all packets that satisfy those
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filters, independently of where the packets originated.
Packets are delivered through a network of routers 1, or
severs, in which each router receives and forwards XML
packets, based on the values of some predicates stored at
that server. This style of routing is called content-based
routing [3, 17], because the packets are routed based on
their content, and not based on any destination address.

There are several applications of XML packet routing.
In selective dissemination of information (SDI) or pub-
lish/subscribe systems [8, 18, 19] users subscribe to text
documents by specifying the predicate that the docu-
ment should satisfy. Early SDI systems were based on
the vector or the boolean model, but recently Franklin
and Altinel [1] described an SDI system using XML and
XPath. In reliable multicasting of data over mesh-based
overlay network [17], XML content routing is used to fa-
cilitate intelligent content pruning. In Web services, ap-
plications can exchange XML messages in a style resem-
bling remote procedure calls, typically using the SOAP
protocol [11, 12]. All these applications share a common
framework: XML documents from a continuous stream
are checked against a workload of XPath predicates, and
then forwarded to other servers or clients, sometimes in
a distributed fashion.

The main performance metric in XML content routing
is the global throughput of the system, or the number
of XML packets that the system can deliver in a unit
time. This can be improved in two ways: by improving
the query evaluation at each server, and by improving
the network configuration. In this paper we address the
first method.

XPath query evaluation has been studied recently for
large query workloads [1, 4, 6, 10, 14]. The state of
the art in evaluating large XPath query workloads is
that the complexity is dominated by the time needed to
parse the incoming XML document. The fastest parsers
today [5] achieve a throughput of about 10MB/s, while
advanced query evaluation techniques surpass this [2].
The only possible way to further improve the through-
put is to develop evaluation methods that avoid parsing.

We have recently proposed such a method called view

1These are not hardware level routers, but are instead
routers at the application level.



selection for stream processing [13]. The idea is the fol-
lowing: select a small set of linear XPath expressions
(views), let the data producers pre-compute the views
for each XML packet that they generate, and attach
them to the packet in the form of a header. When a
server receives an XML packet, it tries to evaluate its
workload by inspecting only the values in the header. If
it succeeds, then it doesn’t need to parse that packet:
we call this case a hit. If it fails, then it needs to parse
the entire packet and evaluate the query in a normal
way: we call this a miss.

The header can be thought of as a binary representation
of a subset of the XML document. A complete replace-
ment of the XML document with a binary representa-
tion would increase query performance significantly, but
would be platform dependent, preventing the universal
interoperation that the XML standard enables. Our so-
lution consists of adding only a small binary header to
the standard text representation of the XML packet, al-
lowing applications that do not recognize this format to
ignore it. In our prior work [13] we have checked the fea-
sibility of such a technique. We found that a hit takes
about 100 times less time than a miss, making the tech-
nique attractive even if the hit ratio is, say, only 80%
(then it results in a speedup by a factor of 5).

In this paper, we address the following problem: select
a view configuration that optimizes the entire network’s
throughput. We call this the View Configuration (VC)
problem. We present a sequence of results that, to-
gether, lead to a practical and efficient solution to the
view configuration problem.

First, we formalize the problem and describe it as an op-
timization problem. In its exact formulation the prob-
lem is unmanageable. Our first result is to show that
(VC) is equivalent, under certain conditions, to a Sim-
plified View Configuration (SVC) problem. The latter
has a much cleaner formulation, and the fact that the
two are equivalent is rather surprising.

In our second result we show that the header minimiza-
tion variant of the (SVC) problem is equivalent to the
Integer Cover (IC) problem, that has been intensively
studied in the past [7, 15, 9, 16], while the dual through-
put maximization problem is a variant of the integer
packing (IP) problem. Both problems are well-known to
be NP-complete, but these reductions are nevertheless
very important in practice given the rich literature on
the (IC) problem (the (IP) problem has been less stud-
ied). In particular, Dobson [7] describes a simple greedy
algorithm for (IC) that gives a solution no worse than
log(1+n) times the optimal. We adapt this greedy algo-
rithm to the header minimization variant of the (SVC)
problem. In the case of workloads with constant selec-
tivities, n is the largest number of XPath expressions
in any query in the workload. Since n can be around
10− 20 in practice, the algorithm may generate header
sizes that are four times larger than needed, which is
unacceptable in practice.

Our third contribution consists in proving that the same
greedy algorithm performs much better on constant-
selectivity workloads that are hierarchical. We give a
formal definition of hierarchical workloads, argue that
they are typical for XML packet routing applications,
and prove that the greedy algorithm is optimal in this
case. Next, we study the behavior of this algorithm
on workloads that are small deviations from hierarchi-
cal workloads. We introduce a parameter called the
hierarchy measure of a workload, ∆, s.t. hierarchical
workloads have ∆ = 0 and arbitrary workloads have
∆ ≤ n. We show that the greedy algorithm always
finds a solution within a factor ln(1+∆) of the optimal.
This result generalizes both Dobson’s theorem (the case
when ∆ = n) and the result for hierarchical workloads
(∆ = 0).

The rest of the paper is organized as follows. In Sec. 2,
we develop the background necessary for this problem,
then we define the problem formally in Sec. 3. We show
how to simplify the view configuration problem to a
manageable version in Sec. 4. Next we show that the
simpler problem can be reduced to the integer cover
problem, in Sec. 5, and describe a greedy approximation
algorithm. In Sec. 6 we prove better bounds for this
algorithm in special cases. Finally we conclude in Sec. 7.

2. BACKGROUND
We overview here the problem definition from [13]. An
XML Content Routing Network consists of a network
of servers that evaluate and route a stream of XML
documents, called packets. Each server has a local set
of queries which it evaluates on every incoming packet.
Based on the result of these queries, it decides to which
neighbor or set of neighbors to forward the packet. Our
goal is to optimize the total throughput of the network,
i.e. the number of packets it can process in a unit of
time, by improving the query processing time at each
server. We discuss next various aspects of our problem.

The network We denote with S the set of servers, and
we assume that all XML packets originate outside of
the network, at data producers that send the packets
directly to some server. Given a server s, we denote
with t(s) the average time spent by s in evaluating its
set of predicates on a single XML document. We also
denote with gs the average fraction of all XML packets
produced that eventually reach the server s: since we
assume that each server receives at least some packets,
we have 0 < gs ≤ 1. The numbers gs, s ∈ S either
can be measured in the network, or can be computed
from other statistics, e.g., the fraction of the packets
that each server sends along each of its links. Let T be
the inverse of the network’s throughput. Then we have:

T = max
s∈S

gs × t(s)

Our goal is to minimize T .

The queries We assume queries to be conjunctive queries
over the XML packet. For example, the following is such
a query:



q = /news/agency/name/text() like "%Reuters%"

and /news/company/text() = "IBM"

which checks whether the agency’s name contains the
string Reuters and whether the company is IBM. To sim-
plify the discussion we shall allow only very restricted
XPath expressions, consisting only of tags and child
navigation axes. This allows us to define a set P =
{p1, . . . , pn} of all XPath expressions occurring in all
queries. We assume that any two path expressions, pi

and pj , i 6= j are independent, i.e. they refer to dis-
joint sets of XML nodes. A query q is a conjunction of
atomic predicates, where an atomic predicate is of the
form p r c, where p ∈ P, r is a relational operator (e.g.
=,≤, <,≥,>), and c is a constant.

The workload at a server s consists of a set of con-
junctive queries, Qs = {q1, . . . , qms}, ms ≥ 1, and the
server s must evaluate all queries in the workload on
every incoming packet d. Based on prior work on XML
stream processing [10] we make the simplifying assump-
tion that t(s) is constant, independent of the workload.
The justification is that query processing time is dom-
inated largely by the parsing time, and the latter de-
pends only on the average document size, and not on
the XPath workload. By choosing appropriate units for
time, we set t(s) = 1, under the assumption that evalua-
tion proceeds in a “standard” way, i.e., parsing followed
by XPath evaluation: we will describe in a moment a
technique under which t(s) < 1.

The views A view, v, is an XPath expression v ∈ P and
a view configuration is an ordered set of views, V ⊆ P.
The method proposed in [13] to improve the network’s
throughput starts by choosing offline a view configura-
tion, V , which is then made available to all servers in the
network. During the network’s normal operation, the
data producers compute the views in V for each docu-
ment d that they produce, and attach their results to d,
in the form of a binary header, H(d). The header con-
tains byte offsets in the XML document for each XPath
expression in the view, rather than the actual result,
thus, if k = |V |, then the header size is 2k bytes2.
When we need to evaluate a query containing p ∈ V ,
we fetch the byte offset for p from the header and read
p’s value from that offset in the packet.

Each server s that receives a packet d attempts to com-
pute its workload by inspecting only the header H(d),
without parsing the packet. When it succeeds, we say
it is a hit; when it is forced to parse the packet and re-
vert to standard evaluation techniques, we call it a miss.
We describe the evaluation, starting first with a single
conjunctive query q = (p1 r1 c1) ∧ (p2 r2 c2) ∧ . . . and
an XML packet d. The query is evaluated in “short-
circuit”, i.e. the evaluation stops once we find a con-
junct pi ri ci which is false. First, we evaluate the con-
juncts for which pi ∈ V , and only then proceed to the
other conjuncts if needed. If for some pi ∈ V the cor-

2We assume that packet size is limited to 216bytes. So,
at most 2 bytes are needed to represent an offset.

responding conjunct evaluates to false, or if the path
expressions referred to by all conjuncts in the query are
in V , then we have a hit; otherwise we have a miss.
The entire workload Qs is evaluated by evaluating each
query separately: if all queries q ∈ Qs have a hit, then
Qs has a hit; if at least one query has a miss, then Qs

has a miss.

In prior work [13] we have discussed implementation
techniques for the packets’ headers, and have found ex-
perimentally that the processing time of a hit is about
two orders of magnitude smaller than that of a miss.
Since the latter is 1 (it is essentially the parsing time),
the average processing time of a document t(s) at a
server s is given by the miss ratio at that server, denoted
M(V, s), i.e. the fraction of XML packets for which we
have a miss.

To compute the miss ratio M(V, s), we assume the fol-
lowing statistics to be known. For each XPath expres-
sion p ∈ P and each query q, σp,q ∈ (0, 1] denotes the
selectivity of the atomic predicate with path expression
p in q. We may safely define σp,q = 1 when no atomic
predicate in q refers to p. Furthermore, with each query
q, we associate a set, which consists of the XPath ex-
pressions (neglecting the relational operators and the
constants) that appear in that query. We will refer to
this set using q, thus making q ⊆ P, Whether q refers to
this set of path expressions or to the query itself, will be
clear from the context. Then, the miss ratio for a single
query, m(V, q), the miss ratio for the set of queries at
server s, M(V, s), the average time to process a packet
at server s, and the inverse of the network’s throughput
are given by:

m(V, q) =

�
0 if q ⊆ V�

p∈V ∩q
σp,q otherwise

(1)

M(V, s) = 1 − �
q∈Qs

(1 −m(V, q)) (2)

t(s) = M(V, s) (3)

T = max
s∈S

gs × t(s) (4)

The effectiveness Clearly, the larger the set V , the
lower the miss ratio m(V, q), and the lower the average
processing time t(s). But we cannot choose a large V
because a large header increases the packet size, thus
defeating the purpose of increasing the throughput. In
some preliminary experiments, partially described in [13],
we have found that even with a relatively small header
size (10-15), optimally chosen views can result in miss
ratios of about 5%-10%. This, in turn, results in large
speedups over traditional processing (by factors of 10-
20). Clearly, well designed view configuration can im-
prove significantly the query processing speed at the
severs in a network. The key problem that needs to be
solved is how to choose that view configuration. This is
the topic of our paper.



3. THE VIEW CONFIGURATION PROB-
LEM(VC)

We give here a formal definition of the view configura-
tion problem.

3.1 Problem Definition
We model the view configuration problem abstractly as
follows. We are given the following:

• A set of servers S.

• For each server s the number gs representing the
fraction of XML packets that reach the server s.

• For each server s ∈ S, a set Qs. We denote |Qs| =
ms, Q = �

s
Qs = {q1, q2, . . . , qm}, and call the

elements of Q queries.

• A set P = {p1, p2, . . . , pn}, whose elements we call
path expressions.

• A relation ε ⊆ P × Q. We write p ∈ q whenever
(p, q) ∈ ε. When no confusion arises we write q
for the set {p | p ∈ q} and we write p for the set
{q | p ∈ q}.

• For each p ∈ q a number σp,q ∈ (0, 1] called selec-
tivity. When p 6∈ q, we set σp,q = 1.

Assuming these parameters to be given, we define two
flavors of the view configuration problem:

Throughput Maximization (VC-T) Here the input
is a number k, the header size, and we need to find
a view configuration V ⊆ P s.t. |V | ≤ k and T is
minimal, where T is given by Equations (4), (1),
(2), (3).

Header Size Minimization (VC-H) Here the input
is a number T0, the inverse of the required through-
put, and we need to find a view configuration
V ⊆ P s.t. T ≤ T0 and |V | is minimal, where
T is given by Equations (4), (1), (2), (3).

There are obvious polynomial-time reductions between
the two problems, based on binary search.

4. SIMPLIFYING THE PROBLEM
The view configuration problem defined in Sec. 3 is
dauntingly complex. We show here how it can be re-
duced to a manageable problem, with minimal loss in
precision. We define the simplified view configuration
problem (SVC) by the following constraints:

m(V, q) = �
p∈V ∩q

σp,q (5)

M(V, s) = max
q∈Qs

m(V, q) (6)

t(s) = M(V, s)

T = max
s∈S

gs × t(s)

Notice that the last two equations have not changed: we
have included them for readability. The only change is
in the definition of m(V, q) and M(V, s). As before, we
consider the two variants, the throughput optimization
problem and the header size optimization problem.

Simplified Throughput Maximization (SVC-T) Here
the input is a number k, the header size, and
we need to find a view configuration V ⊆ P s.t.
|V | ≤ k and T is minimal, where T is given by
Equations (4), (5),(6), (3).

Simplified Header Minimization (SVC-H) Here the
input is a number T0, the inverse of the required
throughput, and we need to find a view configura-
tion V ⊆ P s.t. T ≤ T0 and |V | is minimal, where
T is given by Equations (4), (5), (6), (3).

We justify next why a good solution to (SVC) is also a
good solution to (VC). Consider first Eq. (5) versus Eq.
(1). The two equations for m(V, q) are actually identical
when q 6⊆ V . We argue that this simplification is harm-
less for two reasons. The first is that often a view config-
uration will not cover completely query q, and then no
error is introduced at all: the header is typically small,
and, thus, V is expected to cover completely only very
few queries. Second, even if some query is completely
covered, the error thus introduced is

�
p∈V ∩q σp,q, which

is small when the selectivities σp,q are small. While it is
possible to quantify this error precisely, we will simplify
our discussion in the sequel and assume that q 6⊆ V for
every query q, hence the migration from Eq.(1) to (5)
introduces no error.

The second simplification replaces Eq. (2) with Eq. (6),
and seems much more ad hoc and mysterious. Surpris-
ingly, we can show that it incurs no loss in precision,
under certain assumptions. Given a VC problem, de-
fine its gap, G, to be the following:

G = min{
gs ×m(V, q)

(gs′ ×m(V ′, q′))
|

V, V ′ are view configurations

s, s′ ∈ S, q ∈ Qs, q
′ ∈ Qs′

and
gs ×m(V, q)

(gs′ ×m(V ′, q′))
> 1}

The gap is obtained by enumerating all possible values
of gs×m(V, q), for all combinations of servers s, queries
q ∈ Qs and view configurations V , computing all ra-
tios between two such values, and retaining the smallest
such ratio larger than 1. The gap is always well defined
because the number of view configurations is finite. In
general, the gap becomes very large when the selectiv-
ities σp,q are small. For example, in the case of a VC
problem with constant query selectivities, where there
exists some number σ s.t. for all p, q either σp,q = 1 or
σp,q = σ, and constant server selectivities, where there
exists some constant g s.t. gs = g ∀ s ∈ S, then G = 1/σ.
Indeed, each value gs ×m(V, q) is in this case equal to
g × σk, for some k ≥ 0, hence all ratios greater than 1
are of the form 1/σn, and the gap is 1/σ.



We can prove that if the gap is large, then (VC) and
(SVC) are equivalent. Recall that ms = |Qs| is the
number of queries at server s.

Theorem 4.1. Suppose that the gap satisfies G >
ms, for every server s, and any optimal solution V to
the (SVC-T) satisfies q 6⊆ V for every query q ∈ Q.
Then there exists an optimal solution V to the (SVC-T)
which is also an optimal solution to the (VC-T).

Proof. For a view configuration V we denote TV C(V )
and TSV C(V ) the values of T to the (VC) and (SVC)
problems respectively. Similarly, MV C(V, s) and MSV C(V, s)
denote the values of M under the two definitions, Eq.
(2) and (6). We have the following:

Lemma 4.2. Give two servers s, s′, and two view con-
figurations V, V ′, such that gs × MSV C(V, s) < gs′ ×
MSV C(V ′, s′), then gs×MV C(V, s) < gs′×MV C(V ′, s′).

Proof. Let q0 ∈ Qs be the query that maximizes
m(V, q); in other words, MSV C(V, s) = maxq∈Qs m(V, q) =
m(V, q0). Similarly, let q′0 ∈ Ss′ be the query that max-
imizes m(V ′, q′). Since gs ×m(V, q0) < gs′ ×m(V, q′0)
we have gs ×m(V, q0) ≤

1

G
× gs′ ×m(V ′, q′0), where G

is the gap. Then the following holds, where ms = |Qs|:

gs ×MV C(V, s)

= gs × (1− �
q∈Qs

(1−m(V, q)))

≤ gs × (1− �
q∈Qs

(1−m(V, q0)))

= gs × (1− (1−m(V, q0))
ms)

≤ gs × (1− 1 + ms ×m(V, q0))

= gs ×ms ×m(V, q0)

≤ gs′ ×ms ×
1

G
×m(V ′, q′0)

< gs′ ×m(V ′, q′0)

≤ gs′ ×MV C(V ′, s′)

The last inequality follows from the fact that m(V ′, q) ≤
MV C(V ′, s′), whenever q ∈ Qs′ .

We now prove the theorem. Let V be an optimal so-
lution to the (SVC), and V ′ be an optimal solution to
the (VC). If TSV C(V ) ≥ TSV C(V ′) then we are done,
because V ′ is also an optimal solution to (SVC). So
suppose TSV C(V ) < TSV C(V ′) and we will show that it
leads to a contradiction. Let s0 ∈ S be the server that
maximizes gs ×MV C(V, s); it follows that TV C(V ) =
gs0
×MV C(V, s0). We show now that there exists some

query q0 ∈ Qs0
for which gs0

×m(V, q0) = TSV C(V ). In-
deed, by definition, there exists some s ∈ S and q ∈ Qs

s.t. TSV C(V ) = gs ×MSV C(V, s) = gs ×m(V, q). Sup-
pose now that ∀q0 ∈ Qs0

, gs0
×m(V, q0) < gs×m(V, q):

this implies that gs0
×MSV C(V, s0) < gs×MSV C(V, s),

and, by the lemma, that gs0
× MV C(V, s0) < gs ×

MV C(V, s), contradicting our definition of s0. Hence

TSV C(V ) = gs0
×m(V, q0). Now we turn to V ′, for which

we assumed that TSV C(V ) < TSV C(V ′). This implies
gs0
×MSV C(V, q0) = TSV C(V ) < gs ×MSV C(V ′, s) for

every sever s. Then, we apply the lemma and prove that
gs0
×MV C(V, s0) < gs ×MV C(V, s), for every server s.

But this implies that TV C(V ) < TV C(V ′), contradicting
the fact that V ′ is an optimal solution to (VC).

5. ALGORITHMS FOR SIMPLIFIED VIEW
CONFIGURATION PROBLEM

5.1 The Simplified Header Size Minimiza-
tion

We reduce (SVC-H) to the Integer Cover problem (IC),
and then adapt Dobson’s [7] greedy algorithm for (IC)
to solve (SVC-H).

5.1.1 Reduction to Integer Cover
The Integer Cover (IC) problem is the following. Given
an m× n matrix A and n-dimensional row vectors c, u
and b, find x ∈ {0, 1, 2, . . . , }n such that:

Ax ≥ b

x ≤ u

and cx is maximized. (IC) has been extensively studied,
see e.g. [7, 9, 15, 16]. We prove now that the header size
minimization problem can be reduced to (IC).

Theorem 5.1. The problem (SVC-H) can be reduced

to (IC) with c = ~1 and u = ~1.

Proof. Given a formulation of (SVC-H), let n = |P|
and m = |Q| = �

s∈S
|Qs|. Recall that we denoted

the global workload by Q = {q1, . . . , qm}. Define gi

to be gs where s is the site holding the query qi (i.e.
qi ∈ Qs). Identical queries belonging to two different
sites are treated as two different queries. Then define:

aij = − log σpj ,qi
, i = 1, . . . , m;

j = 1, . . . , n
bi = − log T0 + log gi i = 1, . . . , m
cj = 1 j = 1, . . . , n
uj = 1 j = 1, . . . , n

Intuitively, aij is the coverage that the path expression
pj can provide to query qi, and bi is the total cover-
age required by the query qi. Setting cj to 1 for each
j, means that each path expression, if chosen to be a
part of the view configuration, takes up same amount of
space in the header. And setting uj equal to 1 for each
j means that no path expression can be chosen more
than once. The view configuration selected is given by
{pj | xj = 1}.

5.1.2 A Greedy Algorithm
Here we describe a greedy algorithm for (SVC-H). The
greedy algorithm works by including, at each stage,



the path expression pj′ that provides maximum addi-
tional coverage. In the algorithm below, setting xj′ = 1
amounts to selecting the path expression pj′ to be in
the view configuration.

Algorithm 1 A Greedy Algorithm for Header Size Min-
imization
1: for j = 1→ n do
2: xj ← 0
3: end for
4: for i = 1→ m do
5: for j = 1→ n do
6: aij = − log σpj ,qi

7: end for
8: minai

← min1≤j≤n,aij 6=0 aij

9: bi = (− log T0 + log gi)/minai

10: for j = 1→ n do
11: aij ← aij/minai

12: end for
13: if for each j, aij is an integer then
14: bi = dbie
15: end if
16: end for
17:
18: while b 6= 0 do
19: if for each j, � m

i=1
aij < 1 then

20: for any row i such that aij 6= 0 has not been
scaled so far, scale row i to δ

21: end if
22: j′ ← j such that � m

i=1
aij is maximum

23: xj′ ← 1
24: for i = 1→ m do
25: bi ← bi − aij′

26: for j = 1→ n do
27: aij ← min(aij , bi)
28: end for
29: aij′ ← 0
30: end for
31: end while

Lines 6 and 9 perform the reduction from (SVC-H) to
(IC). The rest is Dobson’s algorithm [7], and we describe
it next. The main loop is in lines 18-31. At each step
it picks that xj′ to set to 1 that maximizes the sum

� m

i=1
aij . Then it “sets” xj′ to 1, by decreasing the bi’s.

Values of aij that are larger than bi are reduced to bi in
line 27: this does not affect the algorithm’s correctness,
but is important for the proof of the theorem below.

Lines 10 to 15 handle the case when A and b are not
integral. First all entries in A are normalized to be ≥ 1
in lines 10-11. Then, line 19, does the following. When
the sum in a row i becomes < 1 then one can prove that
all coefficients in that row, including bi are equal: they
are all substituted with some small number δ < 1/m.
Values in these rows will not contribute to maximizing

�
i
aij until all rows have had their coefficients adjusted

to δ. Again, this is important for the theorem below.
Based on Dobson’s theorem, we derive the following for
the (SVC-H) problem. Recall that the function H is
defined as H(d) = 1 + 1/2 + 1/3 + . . . + 1/d ≈ ln d.

Theorem 5.2. [7] Algorithm 1 returns a solution to
(SVC-H) that is within max1≤j≤n{log(Σm

i=1aij) + 1 +
H(dj)} of the optimal solution, where dj is the number
of queries in which the path expression pj occurs.

5.2 The Simplified Throughput Maximiza-
tion Problem

5.2.1 A Greedy Algorithm
While the header minimization problem corresponds to
integer cover, the throughput maximization problem cor-
responds to the integer packing problem, for which no
good approximation results exist. We introduce here a
new greedy algorithm, which we will show to be opti-
mal in a special case. The algorithm starts off by placing
every path expression into the view configuration, and
then it eliminates them one by one, until it is left with
a view configuration of size k.

Definition 5.3. Given an instance of (SVC-T), let
V ⊆ P, then we define a vector cov(Q, V ) ∈ Rm, called
the coverage vector. The ith component of this vector is
given by cov(qi, V ) = − log gi− �

p∈qi∩V
log σp,qi

, where
gi = gs and s is site holding the query qi.

Definition 5.4. Given two vectors u, v ∈ Rm, we
say that u is lexicographically greater than v if there
exist 1 ≤ i ≤ m such that (i) uj = vj , ∀j < i and (ii)
ui > vi. Two vectors are lexicographically equal if they
are equal in all their components.

Algorithm 2 A Greedy Algorithm for Throughput
Maximization
1: V = P, the set of all path expressions
2: while |V | ≥ k do
3: j′ ← j such that sort(cov(Q, V −{pj})) is lexico-

graphically maximal
4: V ← V − {pj′}
5: end while

Line 3 is the greedy decision-making step. The function
sort takes a vector and returns a vector whose compo-
nents are sorted in increasing order. Note that, starting
with an empty view configuration and adding path ex-
pressions, one by one, using the same greedy criterion
as in line 3 of Algorithm 2 can result in a solution whose
approximation ratio can be arbitrarily bad. This is il-
lustrated by the following example:

Example 5.5 There is a single server s with gs = 1,
and with workload consisting of two queries q1 = {p1, p2}
and q2 = {p1, p3}, with σp1,q1 = σp1,q2 = σ0 and σp2,q1 =
σp3,q2 = σ1 (which is less than σ0). The optimal view
configuration of size 2 in this case is V = {p2, p3}, which
is also the solution returned by Algorithm 2. However,
if instead we start with an empty view configuration and
add path expressions to it, one by one, using the same
greedy criterion as the one in line 3 of Algorithm 2, then
the solution is V ′ = {p1, p2}. The miss ratio for V is



σ1, whereas for V ′, it is σ0, which is off by a factor of
σ0/σ1, which can be made arbitrarily large by choosing
σ0 and σ1 appropriately.

6. SPECIAL CASES
In this section, we consider the view configuration prob-
lem in some special cases.

6.1 Constant Query Selectivities
Recall from Sec. 4 that a (VC) problem has constant
query selectivities if there exists some constant σ s.t.
for all p, q, either σp,q = 1, or σp,q = σ. In this case
lines 8-15 of the Algorithm 1 will normalize the matrix
A to contain only 0’s and 1’s and then round the vector
b to an integer.

For this special case Dobson [7] proves a better bound
than the one in Theorem 5.2. When applied to the
(SVC-H) problem this gives:

Corollary 6.1. When the view configuration prob-
lem has constant selectivities, then Algorithm 1 returns
a solution to (SVC-H) that is within H(max1≤j≤n |pj |)
of the optimal solution. Here P = {p1, . . . , pn} is the
set of all path expressions, and |pj | denotes the number
of queries containing path expression pj, j = 1, . . . , n.

6.2 Hierarchical Workloads
Definition 6.2. Let ∆ ≥ 0 be an integer. We say

that a set of sets P is ∆-hierarchical if for every p, p′ ∈
P, one of the following four conditions hold:

• p ⊆ p′, or

• p′ ⊆ p, or

• |p ∩ p′| = 0 or

• |p| ≤ ∆, |p′| ≤ ∆.

When ∆ = 0, we call P a hierarchical set.

To see an example of a hierarchical workload consider:

q1: /news/region="Europe" and

/news/body/soccer/player="Zidane"

q2: /news/region="Europe" and

/news/body/soccer/player="Beckham"

q3: /news/region="USA" and

/news/body/baseball/inning/number="4"

All three queries start by inspecting the path expres-
sion /news/region and, depending on its value go on to
inspect other paths. There are three path expressions,
p1 = /news/region, p2 = /news/body/soccer/player,
and p3 = /news/body/baseball/inning/number. Thus,
P = {p1, p2, p3}, and the corresponding sets are: p1 =

{q1, q2, q3}, p2 = {q1, q2}, p3 = {q3}. Hence P is hi-
erarchical by the definition above. Such workloads are
typical in XML routing.

We associate the following DAG to a set of distinct sets
P: the nodes are the sets p ∈ P and the edges are
(p, p′) s.t. p ⊂ p′ and there is no other set “between” p
and p′. When P contains duplicate sets, ties are broken
arbitrarily. When P is hierarchical, this DAG is a forest,
which we denote forest(P). When P is ∆-hierarchical
then this DAG has the following structure. Define Pa =
{p | p ∈ P, |p| > ∆} and Pb = P − Pa. Then Pa is
hierarchical and its DAG is a forest, while all nodes in
the DAG Pb are below those in Pa.

The parameter ∆ allows us to measure the degree by
which a workload P of path expressions deviates from
being hierarchical. In particular, if m is the total num-
ber of queries in a workload, then any P is ∆-hierarchical
for ∆ = m.

Definition 6.3. Given a forest, we define a set of
nodes to be a prefix of the forest if whenever a node
belongs to that set then its parent node (if any) also
belongs to that set.

Header Minimization We first analyze the greedy Al-
gorithm 1 on the header minimization problem for hier-
archical and ∆-hierarchical workloads.

Theorem 6.4. Let P denote the set of all expres-
sions occurring in (SVC-H). If P is hierarchical, and if
the queries have constant selectivities, then Algorithm 1
computes an optimal solution to (SVC-H).

Proof. We first need to prove the following two lem-
mas before we can proceed with the proof of the theo-
rem:

Lemma 6.5. For a hierarchical workload, there is al-
ways an optimal solution to (SVC-H), which is a prefix
of the forest(P).

Proof. Let V ∗ denote an optimal solution to (SVC-
H). Let us assume that V ∗ is not a prefix of forest(P).
From this solution, we will construct another solution
V ′ to (SVC-H) that is a prefix of forest(P), and is no
worse than the optimal solution.

Since V ∗ is not a prefix of forest(P), it means that
there exists pj ∈ V ∗ such that pj′ = parent(pj) /∈ V ∗.
Notice that V ′ = V ∗ ∪ {pj′} − {pj} is also a solution to
the same instance of (SVC-H) because pj′ is a parent of
pj in forest(P), which implies that pj ⊆ pj′ . So, every
query that contains the path expression pj , also contains
the path expression pj′ . Thus pj can be replaced by
pj′ in the view configuration without increasing the miss
ratio for any query. Also, notice that V ′ is no worse than
V ∗ because |V ′| = |V ∗|. Continuing in this manner, we



can construct a view configuration that is optimal and
is also a prefix of forest(P).

Lemma 6.6. For a hierarchical workload, the view con-
figuration picked by the Algorithm 1 is always a prefix
of forest(P).

Proof. The (IC) portion of the algorithm runs on
a matrix A whose entries are always 0 and 1. Given
two path expressions pj1 and pj2 s.t. pj1 ⊃ pj2 , the
inequality � m

i=1
aij1 > � m

i=1
aij2 will always hold, until

xj1 is set to 1. Hence, the solutions picked by the greedy
algorithm form a prefix in the forest.

Let V ′ be the prefix of forest(P) constructed from an
optimal solution, and let V ′′ be the prefix of forest(P)
returned by Algorithm 1. To prove the theorem, we
need to show that the |V ′′| ≤ |V ′|. Let us assume the
contrary, i.e. |V ′′| > |V ′|.

Observe that in any tree of forest(P), a leaf node cor-
responds to the set of queries, which contains exactly
the path expressions, encountered from the root of the
tree to the leaf. So, for any query q ∈ Q, and a prefix V
of forest(P), the set of path expressions q ∩ V consists
of the first |q ∩ V | nodes on the path from root to the
leaf corresponding to q. This means that there exists a
query qi ∈ Q such that |V ′′

i | > |V
′

i | where V ′′
i = qi ∩V ′′

and V ′
i = qi∩V ′. Otherwise, we would have |V ′′| ≤ |V ′|.

Since, V ′
i and V ′′

i consist of the first |V ′
i | and |V ′′

i | nodes
on the path from the root to the leaf corresponding to
qi, and |V ′′

i | > |V ′
i |, we have V ′

i ⊂ V ′′
i , which in turn

means that there exists pj such that pj ∈ V ′′
i , but pj /∈

V ′
i . From Lemma 6.6, it follows that before the greedy

algorithm will pick pj , it will pick every node in V ′
i

because every node in V ′
i is an ancestor of pj . However,

from the definition of V ′
i it follows that, once the greedy

has picked the nodes in V ′
i , the constraints for all the

queries containing the path expression pj are satisfied,
thus implying that pj is never picked by the greedy.
This in turn implies that V ′′

i = V ′
i , thus contradicting

the assumption that |V ′′| > |V ′|.

Deviations from hierarchical workloads are probably likely
in practice, i.e. we may have ∆-hierarchical workloads
for small ∆ > 0. Interestingly, the greedy algorithm de-
grades gracefully with the amount of deviations, as we
show next.

Theorem 6.7. Let P denote the set of all path ex-
pressions occurring in (SVC-H). If P is ∆-hierarchical,
for some ∆ ≥ 0, and if all queries have constant se-
lectivities, then Algorithm 1 returns a solution that is
within a factor of ln(1 + ∆) of the optimal.

Proof. We prove a small lemma before we proceed
with the proof of the theorem.

Lemma 6.8. Let P, the set of all path expressions
occurring in (SVC-H), be ∆-hierarchical for some ∆.
Let V be the view configuration picked by Algorithm 1.
There exists an optimal solution V ∗, such that V ∗ ∩ Pa

= V ∩ Pa where Pa = {p | p ∈ P, |p| > ∆}.

Proof. Let pi1 , pi2 , . . . , be the order in which Algo-
rithm 1 selects the nodes in V ∩Pa. Let pij

be the first
node in this ordering which is not in V ∗ ∩ Pa. Since,
pij
∈ V , there exists q ∈ pij

such that pi1 , pi2 , . . . , pij−1

could not cover the query q. So, there must exist an-
other node p′

ij
∈ V ∗ such that q ∈ p′

ij
. Since pij

and

p′
ij

both cover q, so clearly |pij
∩ p′

ij
| 6= 0. Also, since

pij
∈ Pa, we know that |pij

| > ∆. And since the greedy
algorithm always picks a node before it picks any of
its children, pij

⊆ p′
ij

is also not possible. Since P
is ∆-hierarchical, the only possibility that remains is
p′

ij
⊆ pij

, i.e. pij
covers every query that is covered

by p′
ij

So, we can replace p′
ij

in the optimal solution by
pij

to get another optimal solution. Continuing in this
manner we can construct an optimal solution V ∗′ where
V ∩ Pa = V ∗′ ∩ Pa.

Now we proceed with the proof of the theorem. For
a workload with constant selectivities, the greedy al-
gorithm runs on integral instances of A and b, and at
each step picks a column with a maximal sum. In Al-
gorithm 1, let r denote the iteration of the while loop
when for the first time a column j is picked for which the
sum is ≤ ∆. Before this step all columns picked corre-
spond to path expressions in Pa, and from Lemma 6.8,
we know that there exists an optimal solution that will
contain all these path expressions. After this step, all
the remaining columns in A have a sum which is ≤ ∆,
and by Dobson’s theorem on integral (IC), the solution
returned by the algorithm for the sub-problem that re-
mains after the (r−1)st iteration will be within a factor
of ln(1 + ∆) of the optimal for the same sub-problem.
Thus the overall solution produced by Algorithm 1 is
also within a factor of ln(1 + ∆).

Notice that both Theorem 5.2 and Theorem 6.4 are spe-
cial cases of Theorem 6.7. The first is a special case
when ∆ = n: any workload is a ∆-hierarchical work-
load in this case. The second is a special case when
∆ = 0.

These theorems cannot be extended to queries with-
out constant selectivities, as shown by the example in
Fig. 1. This is a hierarchical workload, with p1 = p2 =
{q1, . . . , qn}, and pi = {qi−2} for i = 2, . . . , n + 2. The
optimal solution here is the vector x = (1, 1, 0, 0, . . . , 0).
But the greedy algorithm will first set x3 = 1, which
decreases b1 to 0 and reduces the first row in A to
0, . . . , 0. At the next iteration it sets x4 = 1, etc.
The solution returned is (0, 0, 1, 1, . . . , 1), a factor of
n/2 worse than the optimal. This is consistent with
Dobson’s theorem 5.2, where the dominating therm is
maxj log � i aij = log(2n − ε) ≈ n.

Throughput Maximization Next we analyze the greedy
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Figure 1: An example of a hierarchical workload on which the greedy algorithm performs no better
than in the general case

Algorithm 2, for throughput maximization, on hierar-
chical workloads.

Theorem 6.9. Algorithm 2 computes an optimal so-
lution to (SVC-T) when the workload is hierarchical and
the queries have constant selectivities.

We need to prove the following two lemmas before we
can proceed with the proof of the theorem:

Lemma 6.10. For a hierarchical workload, there is al-
ways an optimal solution to (SVC-T), which is a prefix
of forest(P).

Proof. The proof is similar to the proof of Lemma 6.5.
Once again, let V ∗ denote an optimal solution to (SVC-
T), and let us assume that V ∗ is not a prefix of forest(P).
Since V ∗ is not a prefix of forest(P), there exists pj ∈
V ∗ such that pj′ = parent(pj) /∈ V ∗. Consider the view
configuration given by V ′ = V ∗ ∪ {pj′} − {pj}. For the
queries that do not contain pj′ , the miss ratio remains
unchanged. For the queries that contain, pj′ , we have
two cases: (1) For any query q that also contain pj ,
the miss ratio remains unchanged. (2) For the queries
q that do not contain pj , m(V ′, q) = σ0 ×m(V ∗, q) ≤
m(V ∗, q). Hence, pj can be replaced by pj′ in the view
configuration without increasing the miss ratio for any
query. Continuing in this manner, we can construct
a view configuration that is optimal and is a prefix of
forest(P).

Lemma 6.11. For a hierarchical workload, the view
configuration picked by the Algorithm 2 is always a prefix
of forest(P).

Proof. The basic idea of the proof is similar to that
of Lemma 6.6. We will prove that the greedy algorithm
never picks a node before it picks all its children. Once
we have proved this, then the statement of the lemma
trivially follows from it.

Let us assume the contrary i.e. the greedy algorithm
indeed picks a node before it has picked all its children.
Let pj′ be the first such node, and let pj be one of
its children that has not yet been picked. This implies
that the iteration in which pj′ is picked, sort(cov(Q, V −
{pj′})) is lexicographically greater than sort(cov(Q, V −

{pj})). This implies that for some query qi ∈ Q, cov(qi, V−
{pj′}) > cov(qi, V − {pj}), which in turn implies that
− log σpj′ ,qi

< − log σpj ,qi
, i.e. σpj′ ,qi

> σpj ,qi
. How-

ever, since pj′ is a parent of pj , we know that for all
queries q ∈ Q, σpj′ ,q ≤ σpj ,q . Hence we have a contra-
diction.

Now, we go ahead with the proof of the theorem. Let
V ′ be the prefix of forest(P) constructed from an op-
timal solution, and let V ′′ be the prefix of forest(P)
returned by Algorithm 2. And let us assume that the
throughput with V ′′ is less than the throughput with
V ′. Let q′′ ∈ Q be the query for which cov(q′′, V ′′) is
minimum. This coupled with the fact that V ′ is optimal
implies that cov(q′′, V ′) ≥ cov(q′′, V ′′). If cov(q′′, V ′) =
cov(q′′, V ′′), then we are done. If however, cov(q′′, V ′) >
cov(q′′, V ′′), then it implies that |q′′ ∩ V ′| > |q′′ ∩ V ′′|.
So there must exist a p′′ ∈ (q′′∩V ′)− (q′′∩V ′′). Let p′′

be the last such path expression selected by the greedy
algorithm. Recall the fact that for any query q ∈ Q,
and a prefix V of forest(P), the set of path expressions
q ∩ V consist of the first |q ∩V | nodes on the path from
the root to the leaf corresponding to q. We also know
that |V ′| = |V ′′| = k, there must exist a query q′ such
that |q′ ∩ V ′| < |q′ ∩ V ′′|, i.e. cov(q′, V ′) < cov(q′, V ′′).
Again there must exist a p′ ∈ (q′ ∩ V ′′)− (q′ ∩ V ′).

Now consider the iteration of Algorithm 2 in which p′′

was selected. In the same iteration, p′ was also a candi-
date for being selected because p′ ends up being retained
in V ′′. Let V denote the set of path expressions, still a
part of the view configuration when this iteration began.
Observe that p′ /∈ V ′, the optimal solution. So, ∀q ∈ p′,
cov(q, V − {p′}) is at least equal to minq∈Qcov(q, V ′),
i.e. the value of the optimal solution. This is because
∀q ∈ p′, q ∩ V ′ ⊆ V − {p′}.

Also, from the choice of p′′, it follows that picking p′′

to throw out leaves query q′′ with coverage, cov(q, V −
{p′′}), which is equal to the value of the greedy solution,
which is less than the value of the optimal solution (by
assumption). So, greedy picks p′ to throw out, contra-
dicting the fact that the view configuration produced
by greedy contains p′.

7. CONCLUSION
We have described an application of the View Configu-
ration problem to a novel setting, where the views are
path expressions and the data consists of XML packets.
Although the exact formulation of the View Configu-



ration problem is too complex for practical purposes,
we have shown that it can be reduced to the Integer
Cover problem, without loss in precision, under gener-
ous assumptions. A greedy approximation algorithm
for the Integer Cover problem can be hence applied to
the View Configuration problem, to produce a solution
that is within a factor of log n of the optimal. Finally we
have shown that the same greedy algorithm results in
much better solutions in the case of special hierarchical
workloads.
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