Typechecking for XML Transformers*

Tova Milo Dan Suciu
Tel Aviv University University of Washington
milo@tau.math.ac.il suciu@cs.washington.edu

Victor Vianuf
U.C. San Diego
vianu@cs.ucsd.edu

Abstract

We study the typechecking problem for XML transformers: given an
XML transformation program and a DTD for the input XML documents,
check whether every result of the program conforms to a specified out-
put DTD. We model XML transformers using a novel device called a k-
pebble transducer, that can express most queries without data-value joins
in XML-QL, XSLT, and other XML query languages. Types are modeled
by regular tree languages, a robust extension of DTDs. The main result
of the paper is that typechecking for k-pebble transducers is decidable.
Consequently, typechecking can be performed for a broad range of XML
transformation languages, including XML-QL and a fragment of XSLT.

1 Introduction

Traditionally, database query languages have focused on data retrieval, with
complex data transformations left to applications. The new XML data exchange
standard for the Web, and emerging applications requiring data wrapping and
integration, have shifted the focus towards data transformations. A typical
scenario is provided by a mediator system, where the integrated view is con-
structed from the data sources [20]. Several languages have been proposed to
express XML transformations [15, 12, 11, 33].

XML data can have complex structure and flexible typing. Elements may be
nested to arbitrary depth and new tags (element names) can be created at will.
The structure of an XML document may be constrained by a Document Type
Definition (DTD). An XML document which specifies a DTD and which also
conforms to that DTD is called valid. The benefits of the information provided

*Work supported in part by the U.S.-Israel Binational Science Foundation under grant
number 97-00128

TThis author supported in part by the National Science Foundation under grant number
I1S-9802288.

by DTDs are numerous. Some are analogous to those derived from schema
information in relational query processing. Perhaps most importantly to the
context of the Web, DTD can be used to validate data exchange. In a typical
scenario, a user community would agree on a common DTD and on producing
only XML documents valid with respect to the specified DTD. This raises the
issue of typechecking, which comes in two flavors: dynamic, and static. Dynamic
typechecking validates at runtime each XML document produced, and can be
performed by a validating parser (several are publicly available). Its obvious
drawback is that errors are only detected at runtime. In contrast, this paper
studies the static typechecking problem (simply called typechecking from here
on). It consists of verifying at compile time that every XML document which is
the result of a specified transformation satisfies the output DTD. DTDs restrict-
ing the input documents may also be available as input to the typechecker. As
we shall see, typechecking of XML transformations requires novel query analysis
techniques.

Studying formally the typechecking problem is complicated by the fact that
XML transformation languages and the notion of DTD are constantly evolving.
More specifically:

e There is no generally accepted XML transformation language. Several
transformation languages exist for XML, including XML-QL and XSLT [15,
12, 11]. Other languages result from restricting query languages for semistruc-
tured data to trees (e.g. Lorel, StruQL, UnQL [27, 18, 9]). Yet more
languages can be defined using algebras, motivated mainly by systems
considerations (see [5]). These languages define incomparable classes of
transformations, and it is not a priori clear how to define a single query
language subsuming them, that could provide a relevant, broad framework
for studying the typechecking problem.

e There is no generally accepted notion of schema for XML. DTDs are the
most widely accepted because they are part of the existing XML standard,
but several variations and extensions of DTDs are being considered by the
XML community. A recent effort tries to unify these extensions into a
single framework called XML-Schema [3, 7]

We address these difficulties as follows. First we define an abstract and
rather general model of XML transformation languages called a k-pebble tree
transducer, expressing transformations on ordered, labeled trees. Up to k peb-
bles can be placed on the input tree, moved up and down the tree, and removed,
subject to a stack discipline where only the highest numbered pebble currently
placed on the tree can be moved. Traditional top-down regular tree transducers
[34] correspond to the particular case when k = 1 and the pebble is allowed to
move only downwards. All transformations expressible without joins on data
values in XML-QL, LOREL, UnQL, StruQL, and a fragment of XSLT, can also
be expressed by k-pebble transducers. Therefore, the results on typechecking
described in this paper also apply to these languages, and are likely to remain

relevant as the languages evolve. In our view, the notion of k-pebble tree trans-
ducers is one of the main contributions of this work. Beyond their role in the
study of typechecking, we believe they are of interest on their own as a sim-
ple, robust model for tree transformations. In particular, the transformations
defined by k-pebble transducers have PTIME data complexity (in a sense made
precise in the paper). From a practical perspective, k-pebble transducers cor-
respond directly to simple recursive functions written in C++ or Java, accessing
both the input and the output tree via a restricted API. The API for the input
tree consists of k£ pointers to nodes in the tree. For each pointer we can read
the tag, test whether the current node is a leaf, or the root, and advance the
pointer to a child (given by the child number) or to the parent of the current
node. The stack discipline requires us to reset (i.e. move to the root) pointers
i+ 1,4+ 2,...,k whenever we move pointer i. The API for the output tree
allows us to write one output node at a time, then call recursive functions in
parallel to construct the node’s children. All the functions inherit the current
function’s state, and they know the position of the child of the output node on
which they act.

Second, as type formalism we adopt regular tree languages. A regular tree
language is the set of trees accepted by a regular tree automaton (of which
there are many equivalent variations, see [34] for the ranked case and [8] for
the unranked case). It is easy to see that DTDs define a set of valid XML
documents which (when viewed as labeled trees) form a regular tree language.
Moreover, various proposed extensions of DTDs define regular tree languages
as well; e.g., several such proposals decouple element names from tag names
[4, 14, 32, 25, 31]. It is easily seen that DTDs with decoupling define precisely
the regular tree languages [4, 32, 13]. Note that regular tree languages cannot
capture semantic constraints, such as keys and foreign keys, or explicitly describe
unordered data, hence our results do not carry over to such schemas.

Formally, the typechecking problem studied in the paper is the following:
given two types (regular tree languages) 71,72, and a k-pebble transducer T',
verify that T'(t) C 7 for every t € 7. ! The main result of the paper is that
typechecking is decidable. To understand our approach, consider first a closely
related problem: type inference. In our framework, the type inference problem
is the following: given a k-pebble transducer 7" and an input type 71, construct
a type 7{ that describes precisely the image of T on inputs satisfying 7. If
type inference were possible, it would solve the typechecking problem: to check
conformance of T to 72 on inputs satisfying 7, first infer 7{, then check that
71 C 7 (inclusion of regular tree languages is decidable). Unfortunately, as
discussed in the paper, type inference in the above sense is not possible because,
even for simple XML queries, their image is not a regular tree language (and
there is no smallest regular tree language containing the image). However, the
failure of type inference for transformation languages has an interesting twist,
which lies at the core of our approach: the inverse of any k-pebble transfor-

1The transducer T may be non-deterministic; T'(t) denotes the set of possible outputs of
T on input t.

mation admits type inference. That is, given a k-pebble transducer T' and an
output type 7, the set of trees t such that T'(t) C 7 is a regular tree language
771 which can be inferred? from 7' and 7. We refer to the problem of finding
77! given T and 7 as the inverse type inference problem. Its solution is the
main result in our paper, and it implies immediately a typechecking algorithm.
The technical development leading to the solution of the inverse type inference
problem has three main stages:

(i) define an acceptor variant of the k-pebble transducer, called k-pebble tree
automaton;

(ii) show that for each k-pebble transducer T' and type 7, the set {¢t | T'(t) C 7}
is recognized by some k-pebble automaton; and,

(iii) prove that every k-pebble automaton recognizes a regular tree language.

Limitations There are two limitations of the typechecking method de-
scribed here. The first is that it does not apply to transformations expressed
with joins on data values. All XML query languages mentioned here can express
such joins with conditions of the form x =y, where x, y are variables bound
to atomic values in the input XML data (#PCDATA, in XML terminology). The
domain of such values is infinite (e.g. strings), while k-pebble transducers are
defined only for trees with labels from a finite alphabet (corresponding to the
tags in XML). To capture data values one can extend the data model to trees
whose internal nodes are labeled from a finite alphabet (as before), and whose
leaves are labeled from an infinite domain of data values. If we allow the k-
pebble transducers to test only unary predicates on the data values (i.e. allow
predicates such as (x > 5) or (x like ‘Smith’’)), then the same typecheck-
ing techniques still work. However, if we extend the transducers to allow them
to perform joins between these data values (i.e. include the predicate x = y),
then typechecking becomes undecidable®. Thus, in the case of XML-QL, Lorel,
StruQL, and UnQL, the type checking technique described here applies only to
queries without joins on data values. We briefly describe in Section 5 a simple
idea by which one can apply these techniques to an important class of queries
with data joins, but we leave a full treatment for future work. We should clar-
ify however that some languages (Lorel, StruQL) frequently use joins on node
oids to search for patterns in the input data: such joins are also of the form
x =y, but with x, y bound now to nodes in the tree: these conditions can be
expressed by k-pebble transducers, and, hence, typechecking works for these
queries too. Finally, the case of XSLT is more interesting. In its early version
(called XSL) it could not express data value joins and its expressive power for
tree transformations was strictly less than that of k-pebble transducers. Recent
additions to the language however include data value joins and constructs made

2For simplicity, we sometimes blur the distinction between a regular tree language and its
specification as a regular tree automaton.

3This follows from a straightforward reduction from the finite satisfiability problem for
first-order logic.

it at least as expressive as k-pebble transducers for tree transformations [6]. An
analysis of the expressive power of the full language has to be postponed until
the language settles.

The second limitation is the complexity. Our typechecking algorithm has
non-elementary complexity, and we show that this is also a lower bound. The
main source of complexity is the number of pebbles of the transducer. However,
as discussed in the paper, there are many restricted cases of practical interest
for which the complexity of typechecking is reasonable, because only one or two
pebbles are needed in the corresponding transducer.

Related Work Most practical XML languages that perform type checking
do this through type inference: XDuce [23] uses such an approach, and so does
XQuery [17]. The idea is to infer the most general output type of a program,
then checking that this type is contained in the specified output type. Checking
containment of regular tree languages is decidable, and a practical algorithm
specifically designed for XML typechecking is described in [24].

As we show in this paper such most general output type may not exists: in
these cases the type inference will return some approximation, and, as a con-
sequence, may fail to typecheck correct programs. Despite this limitation type
inference is appealing in practice because of it is relatively easy to implement
and to extend to a variety of languages.

Two kinds of tree transducers are described in [34]: top-down and bottom-
up (called there root-to-frontier and frontier-to-root). Any top-down transducer
can be simulated by a 1-pebble transducer with moves restricted to go down-
wards only. Interestingly, it is an open problem whether k-pebble transducers
can simulate all bottom-up transducers (more on that below). Both top-down
and bottom-up transducers are known to have the inverse type inference prop-
erty: k-pebble transducers however can express transformations which are not
expressible by either top-down or bottom-up transducers.

The k-pebble transducers generalize several formalisms considered in the
literature. Aho and Ullman [2] introduce tree-walk automata. These devices
have a single head which can move up and down the tree, starting from the
root. The set of tree languages accepted by a tree-walk automata is included
in the set of regular tree languages, but it is a long standing open problem
whether the inclusion is strict [16]. The question whether k-pebble transducers
can simulate all bottom-up transducers can be reduced to this open problem
(in fact, as we explain in the sequel, the two problems become equivalent when
k = 1). Note that for the case of strings, the analog of tree-walk automata
are precisely the two-way automata, which are known to express all regular
languages.

Engelfriet et al. [16] extend the tree-walk automata with marbles and one
pebble, and prove that the new machines capture precisely the regular tree
languages. Unlike pebbles, marbles are in infinite supply, but the input head
is restricted to stay below the last marble placed. Our k-pebble automata (the
acceptor version of the k-pebble transducer) can also capture all regular tree
languages, but use branching, a different extension of the tree-walk automata
with a form of and-alternation.

String automata with or-alternations, and-alternations, and a rather re-
stricted form of k-pebbles are considered by Goberman and Harel [21]. They
prove certain lower bounds in the gap of succinctness of the expressibility of
such automata. We do not address the corresponding lower bounds for k-pebble
transducers or automata, but we note that the emptiness problem for k-pebble
automata has a non-elementary lower bound.

Query automata are described by Neven and Schwentick in [29]. This work
was the first to use Monadic Second Order logic (MSO) to study query lan-
guages for XML. Query automata however differ significantly from k-pebble
transducers: they take an XML input tree and return a set of nodes in the
tree. By contrast a k-pebble transducer returns a new output tree. Several
transformation languages which are abstractions of XML are studied in [26],
and connections to extended tree-walking transducers with look-ahead are es-
tablished. Various static analysis problems are considered, such as termination,
emptiness, and usefulness of rules. It is also shown that ranges of the transduc-
ers are closed under intersection with generalized DTDs (defined by tree regular
grammars).

In previous work [28] we studied type inference for XML-QL selection queries:
we are given a type of the input XML document and an XML pattern with one
or several variables, and the problem is to find all possible types of the vari-
able bindings. This was motivated by declarative query languages like XML-
QL [15], which separate the variable binding step from the XML construction
step: the type inference in [28] studies the binding step in isolation, and, thus,
is a much more restricted problem than typechecking the entire XML trans-
formation, which we consider here. In other work [32] the type inference for
XML is solved for a restricted class of transformations. In the general case,
type inference does not admit a solution (see discussion in Section 4).

The paper is organized as follows. Section 2 provides background material,
including DTDs, regular tree languages, and regular tree automata. Section 3
introduces and illustrates the k-pebble transducer, and shows its PTIME data
complexity. Our results on typechecking of k-pebble transducers are presented
in Section 4, and some extensions are discussed in Section 5. Section 6 provides
brief conclusions.

2 Background

2.1 Trees

We begin with some basic definitions.

Unranked trees Assume a fixed finite alphabet Y. Unranked trees over X
are trees with node labels from X, with no predefined bound on the number of
children of each node. The trees we consider are ordered (the children of a given
node form a list); a forest, F, is a list of trees, and a tree, T', is a node and a
forest, representing the children:

T:=a(F), a€X; F:=TF

T == a(), a€l; F:=T
We denote Uy, the set of unranked trees.
Given a tree t, a subexpression occurrence of type T is called a node. The
set of all nodes in ¢ is denoted nodes(t); the root node is root(t). Given a node

T = o(F), with F' a forest or ¢, its symbol is symbol(T) def a, and its children

are children(T) 4 F. We abbreviated a leaf node a() with @ when no confusion
arises.

A path expression is a string w € X*. The result of evaluating a path
expression on a tree T is a set of nodes in T', defined as follows:

eval(e, T) 4y
eval(a,T) it g = symbol(T') then {T'} else ()
eval(a.w,T) it g = symbol(T)

then UT'echildren(T) eval(w,T') else @

A regular path expression is a regular expression r over Y. The result of

evaluating a regular path expression r on a tree T' is eval(r,T") def U{eval(w,T) |

w € lang(r)}. Regular path expressions are used in all XML query languages to
query the input tree.

Ranked trees We only consider ranked trees that are complete binary
trees. The alphabet X is partitioned into ¥ = Xy U ¥5. A ranked tree over
Y is a tree in which every node labeled with a € X is a leaf and every node
labeled with a € ¥5 has two children. Tx denotes the set of ranked trees over

Y. Similarly, T5(X) denotes the set of ranked trees with “variables in X”.

Formally, Tx(X) def Tq, where the alphabet 2 defined by Qg def Yo UX, and

Q, ¥y,

We will denote leaf symbols with ag, by, - .. € 3, while symbols for internal
nodes with as, b, ... € ¥5. We omit the index when it is clear from the context,
i.e. by writing a,b,c.. ..

We encode unranked trees into complete binary trees over alphabet ¥’ def

U {-,|}, with —,| two new symbols. Define X, def {|}, and %, “yy {-}.

The encoding is given by encode : Us — T (defined recursively with encodey,
the encoding of a forest):

encode(a(F)) lef a(encodes(F),)
encode(a()) def a(|, 1)
encodey (T, F') def —(encode(T'), encodes(F))

encodey (T') def encode(T)

For example eHCOde(a’(b: ba C(d)a e)) = a(_(ba _(ba —(C(—(d, |)7 |)7 —(6, |)))): |)a
see Figure 1.

There is a one-to-one label-preserving mapping between the nodes in T' and
nodes in encode(T'). It is easy to translate path expressions, and regular path
expressions, while preserving semantics under this mapping (we have chosen

(-1

@ (b) I

Figure 1: Encoding of an unranked tree (a) into a binary tree (b).

the binary encoding such as to make the translation possible). A (regular) path
expression 7 over X is translated into a (regular) path expression translate(r)
over X U {—} (the symbol | is never used): we omit its (rather obvious) formal
definition, but give two examples.

translate(a.c.d) = a.(=)*.c.(=)*.d

translate(a.(b|(c.d))*.e) =

a.(=)".(b.(=)"[(e.(=)"-d(=)"))"-e
When the translated regular expression is evaluated on the encoded binary

tree we get an encoded version of the original result; more precisely:

eval(translate(r), encode(t)) = {encode(t') | t' € eval(r,t)}.

2.2 XML (eXtensible Markup Language)

In this paper we take the simplifying assumption that XML is a syntax for
unranked trees. Symbols in the alphabet ¥ correspond to XML tags. For
example, the unranked tree in Fig. 1 is written in XML as follows:

<a> <c><d></d></c> <e></e>

In XML terminology, a, b, c, ... are tags. Each tag has a start- and end-
tag (e.g. <c> and </c>): the text between them (tags including) is called an
element.

Under this assumption, query languages for XML are formalisms for express-
ing transformations on Uy. Some care is needed here, however, since some of
these languages (XML-QL, Lorel, StruQL) were initially defined on a graph data
model (OEM [30]). Restricting these languages to trees gives us a formalism for

transforming unordered trees, while our ranked trees are ordered. It has been
shown both for XML-QL and Lorel how to cope with order, and the same can
be done for UnQL and StruQL. XSLT was designed for an ordered model.

We will not describe these query languages here, but only mention a feature
present in all of them: pattern matching. A pattern is a tree in Upeyx), where
Reg(Y) is the set of regular expressions over X.. To illustrate, consider a pattern
with three nodes, p = [a.b]([c.(a | b)], [¢*.a]), containing three regular expres-
sions. Given an input tree t € Uy, a matching of the pattern in the tree is given
by three nodes 1, z2, 3 € nodes(t), satisfying the following three conditions:

z1 € eval(a.b,t)
z2 € eval(c.(a|b),z1)
z3 € eval(c*.a,z1)

As for the case of regular expressions, patterns over unranked trees can
be translated into equivalent patterns over ranked trees. This observation is
important, and justifies our choice to consider ranked trees only.

Of course, identifying XML documents with unranked trees is a simplifying
assumption that ignores several aspects of XML, such as data values (#PCDATA),
attributes and references. This limits the applicability of the results in this paper
to the full XML.

We comment on these limitations next.

o Fixed set of tags In XML new tags can be defined at will, while our
unranked trees are over a fixed, finite alphabet 3. This is not a serious
limitation. Our focus is on type inference, where “type” is defined as a
DTD (see below): in this setting the set of all XML tags is also fixed in
advance, hence fits our framework.

¢ No data values XML elements have content, which can be an arbitrary
text not restricted to a fixed, finite alphabet. For example:

<a> this is some text
<c> <d> some other text </d>
<e> yet more text <e/>
</c>

A more accurate model of XML would allow leaves to be labeled with
elements from an infinite data universe D. In the new model, queries can
express joins on data values. However, as we explained in the introduction,
the typechecking technique described in this paper fails for the extended
model, hence this limits its applicability to queries without joins on data
values.

e XML attributes XML has attributes: while these can be represented as
special kinds of nodes in the unranked tree, their interest for typechecking

is that DTDs can enforce, to a certain degree, the datatype of an attribute
(for example can impose that an attribute has a value from a fixed, finite
set): by contrast the datatype of an element is only text (#PCDATA). The
typechecking techniques in this paper can be easily extended to deal with
data types using the same technique as in [4].

¢ References XML has a limited form of reference, through attributes of
types ID, IDREF, and IDREFS. We do not deal here with references or
attribute constraints.

2.3 Types and DTDs

We next present DTDs and tree automata as type systems for unranked and
ranked trees, and explain how the latter can be used to model the former.

DTDs In XML one can define a Document Type Definition (DTD) to be used
for validation purposes. Formally, a DTD is an extended context-free grammar*
with non-terminals ¥. An XML document (or, the unranked tree representing
it) is valid with respect to the DTD if it is a derivation tree for the grammar.
For a DTD D, we denote by inst(D) the set of unranked trees representing valid
XML instances of D. For example, the XML document represented by the tree
of Fig. 1 is valid w.r.t to the DTD: @ := b*.c.e; b:=¢; c:=d*; d:=¢; e:=¢

Tree automata A tree automaton is a device that accepts or rejects ranked
trees. We only consider here binary trees, hence the alphabet X is 3o UXs. The
definition below is adapted from [37].

Definition 2.1 A non-deterministic top-down tree automaton is

A:(EaQameFaP)

where @) is a finite set of states, qo € @ is the initial state, Qr C Yo X @ are
the final symbol-state pairs, and P C Yy X @ X Q X Q.

We write

(a,q9) — (q1,92) (1)

whenever (a,q,q1,q2) € P. Informally, the tree automaton starts in state
qo, and with a head on the root node of the input tree, labeled with symbol
a. The automaton chooses two states ¢1,¢2 such that (a,q0) — (q1,92), then
continues the computation both on the left child (starting in state ¢1) and on
the right child (starting in state g2). This can be thought of as spawning two
computation branches, the first starting at the left child and the second at the
right child. More branches are spawned for the subtrees and they stop when
reaching a leaf. The input tree is accepted if all branches stop in an accepting
state. inst(A) denotes the set of trees accepted by A. A type, 7, is a set of the
form 7 = inst(A), for some A.
Note that the automaton exhibits two kinds of nondeterminism:

4In an extended CFG, the right-hand sides of productions are regular expressions over the
terminals and non-terminals.

10

e Or-nondeterminism: for a given pair (a,q) we may have multiple transi-
tions ((L, Q) - (QIJqQ);

e And-nondeterminism: at every node, both the left computation and the
right computation must accept. This leads to a form of alternation [10].

An automaton such as the above is referred to in the literature as a top-down
or root-to-frontier tree automaton. Bottom-up tree automata (deterministic or
non-deterministic), that start from the leaves and work their way up to the
root, are known to be equivalent to the non-deterministic top-down automata.
Deterministic top-down automata are strictly weaker. For a comprehensive
discussion see [34].

DTDs and tree automata What is the relationship between tree automata
and DTDs? DTDs describe sets of valid XML documents, hence unranked trees.
Recall however that each such unranked tree ¢t has a unique representation
encode(t) as a ranked binary tree. Given a DTD D it is straightforward to
construct a tree automaton A such that inst(A) = {encode(t) | t € inst(D)}.
The converse is false: tree automata are strictly stronger than DTDs. For a
simple example consider the tree ¢ = a(b(c),b(d)) over the unranked alphabet
¥ ={a,b,c,d}. The set T = {t} C Uy cannot be described by a DTD, because
the “type” of the first b differs from that of the second b. However the set
{encode(t)} C T is regular, since every singleton set is regular. A very natural
extension of DTDs with decoupled tags (also called specialized DTDs) turn out
to be precisely equivalent to tree automata [8, 32]. From now on, whenever we
use the term type we mean regular tree language (or its specification as a tree
automaton).

Ranked vs. unranked trees Since both queries and types on unranked
trees can be encoded into complete, binary trees, we shall consider only the
latter in the remainder of the paper. Hence, from now on, the alphabet X is
assumed to be partitioned into Xy U Xa. All results carry over to unranked trees
via the encoding.

Top-down tree automata with silent transitions For technical reasons
we need to consider later a certain generalization of top-down automata. A
top-down tree automaton with silent transitions has, in addition to transitions
(), transitions of the following form:

(a,9) = ¢ (2)

Such a move causes a state change from ¢ to ¢’ while keeping the head on the
current node. We define their semantics formally. Given tree ¢, a configuration
of Aontiséd =|[q,z], where ¢ € Q, z € nodes(t); let A denote the set of all
configurations. The relation — on A x A* is defined as follows. Let § = [g, z].
For every non-silent transition (2.3) applicable to § we define § — §;6> where
61 = [q1, 1], 82 = [ga, x2], and z1, x5 are the two children of z. For every silent
transition (2) applicable to ¢ we define § — ¢, where §' = [¢’,z]. Finally,
whenever (a,q) € QF, where a is z’s label, then we also define § — £. Next,

11

define = on A* X A* to be the congruential closure of —: § — w' implies § = w’,
and w1 = ws implies wiw = wew and wwy = wws. Let = be its transitive and
reflexive closure. A tree t is accepted by A if o = &, where & = [go, root(t)] is
the initial configuration. For automata without silent transitions, this definition
of acceptance coincides with the informal one above.

For every top-down automaton A = (X, @, qo, @ r, P) with silent transitions
there exists an equivalent top-down automaton A, without silent transitions.
To see that, denote ¢ —, ¢’ whenever a transition (a,q) — ¢’ is in P, and
let ¢ 5, ¢ be the transitive and reflexive closure. Define P’ to consists of all
transitions of the form (a,q) — (g1, ¢2) whenever ¢ =, ¢' and (a,q') — (g1,¢)
isin P: and QI = {((L, q) | q i>a qla (a7 ql) € QF} Then AO déf (EaQaQOaQFa-PO)
is equivalent to A (proof omitted) and has no silent transitions.

3 Tree Transformations

We use k-pebble transducers to model tree transformations. They generalize
classical top-down tree transducers, which are in turn extensions of the tree
automata described above.

3.1 The k-pebble tree transducer

The k-pebble transducer uses up to k pebbles to mark certain nodes in the
tree. Transitions are determined by the current node symbol, the current state,
and by the existence/absence of the various pebbles on the node. The pebbles
are ordered and numbered 1,2,...,k. The machine can place pebbles on the
root, move them around, and remove them. In order to limit the power of
the transducer (so that typechecking can be performed) the use of pebbles is
restricted by a stack discipline: pebbles are placed on the tree in order and
removed in reverse order, and only the highest-numbered pebble present on the
tree can be moved. More precisely, pebble ¢, (¢ > 1) can only be placed on the
tree if pebbles 1,...,%7—1 are present, and pebble ¢ — 1 cannot be moved as long
as pebble i is still on the tree. The stack discipline is essential for the results in
the paper.

The transducer works as follows. The computation starts by placing pebble
1 on the root. At each point, pebbles 1,2,...,7 are on the tree, for some
i € {1,...,k}; pebble i is called the current pebble, and the node on which it sits
is the current node. The current pebble serves as the head of the machine. The
machine decides which transition to make, based on the following information:
the symbol under the current pebble, a, the presence/absence of the other i — 1
pebbles on the current node, denoted by a vector b € {0,1}?~1, and the current
state, g. There are two kinds of transitions: move and output transitions. Move
transitions are of four kinds:

o down-left, down-right, up-left, up-right: the current pebble is moved from
the current node in the given direction (one edge only). If a move in the

12

specified direction is not possible, the transition does not apply.
e stay: the current pebble does not move, only the state changes.®

e place-new-pebble: pebble i+ 1 is placed on the root (becoming the current
pebble).

e pick-current-pebble: the current pebble ¢ > 1 is removed from the tree and
pebble ¢ — 1 becomes the current pebble.

After each move transition the machine enters a new state, as specified by
the transition. The moves up-left and up-right allow us to move up and test
whether the current node is the lef child or right child: a pair of two transitions,
one that moves up-left and enters state ¢; and another one that moves up-right
and enters state g2, have the same effect as moving the pebble to the parent
and checking wheter we are coming from the right (in which case we enter state
¢1) or from the left (in which case we enter state gs).

An output transition emits some output node with a symbol in o’ € ¥’ and
does not move the input head. There are two kinds of output transitions. In a
binary output ¢’ € X), and the machine spawns two computation branches com-
puting the left and right child respectively. Both branches inherit the positions
of all pebbles on the input, and do not communicate; each moves the k& pebbles
independently of the other. In a nullary output o' € X, the node being output
is a leaf and that branch of computation halts.

Looking at the global picture, the machine starts with a single computa-
tion branch and no output nodes. After a while it has constructed some top
fragment of the output tree, and several computation branches continue to com-
pute the remaining output subtrees. The entire computation terminates when
all computation branches terminate.

We now define k-pebble transducers formally:

Definition 3.1 A k-pebble tree transducer is T = (X,X',Q, qo, P), where:
e Y. %! are the ranked input and output alphabets.

e () is a finite set of states and is partitioned into:

Q=Q1U...UQs

Each state in QQ; “controls” pebble i: we denote elements in @Q; with a
superscript, as in g9

® qo € Q1 is the initial state

e P is a finite set of transitions of the forms:

50bserve that this can be simulated by moves of the above form, and is used here only for
convenience.

13

(a,5,¢{") = (¢”, stay)

(a,b q§)) — (g5 (@) , down-left)

(a,b q§) — (q2 , down-right)

(a,5,0") = (a5”, up-left)

(a,5,¢{") = (¢”, up-right)

(a,b q§) — (qélﬂ) place-new-pebble)
(a,b C]§)) — (qéz , pick-current-pebble)
(a,b,qV) — (ah, outputO)

(a,b,¢") — (0/2(‘11 a‘h) output?)

where a € z:7aOaaQ € Zlab € {07 1}i7q(z)7q§1)7(b € Qz’ i = 1 k

In general T' can be nondeterministic and the transformation it defines is a
binary relation in T, x Ty,. We give the formal definition of the transformation
next. For a tree t € Ty, a configuration of T on t is a triple v = (4, ¢9, 7),
where 1 < i < k, ¢ € Q;, and & € (nodes(t))’. Let T' be the set of all
conﬁgurations for transducer 7' and input tree ¢. The initial configuration is:

'yo = (1 o, root(t)), where gq is the initial state in T'.

A partial computation of the transducer 7' on input ¢ is captured by a
tree in Tx/(T"). Nodes labeled with a € ¥’ represent the output generated
so far, while leaves labeled with v € T represent the on-going branches of the
computation. The transducer T defines a rewriting = on T5/(T"), called the
T-rewriting, describing one step of the computation: intuitively #{ = t} if ¢
can be obtained from t| by applying one transition step to one of the on-going
branches of computations in ¢j. The T-rewriting is defined in terms of a simpler
rewriting —, from T to T5/(T), with the meaning that v — ¢' if ¢ can be
obtained from -~ in one transition step, and we define — first. Recall that P is
the set of transitions in the transducer T. Given v = (4, ¢?, %) and a transition

(a,b q()) ... in P, we say that the transition applies to v if the following
four conditions hold: (1) i = i, (2) symbol(z;) = a, (3) B1B2...Bi_1 = b where
Bj =1ifx; =z;,and B; =0if x; #a;, for j=1,...,5—1, and (4) ¢©¥ :qu).
Now we can finally define —. This is done separately for move transitions and

for output transitions. For each move transition (a, b q(z)) — (qéj), d) in P that

applies to v, we define v — 4', where v' = (J,qgj),gj) such that the following

conditions hold: if d = stay, then i = j and T = §; if d = down-left, then i = j
and Z = Zx;, § = Zz}, and z} is the left child of z;; if d = up-left, then i = j,
T = Zz;, § = Zz}, and z; is the left child of z}; similarly for d = down-right
and d = up-right; if d = place-new-pebble then j = i + 1 and § = Zroot(t); if
d = pick-current-pebble then j =i — 1 and Z = gx;, for some node z;. For each
output transition (a,b,q")) — (aj, output0) in P, that applies to v, we define
v — al). For each output transition (a,b,q¢®) — (ay(q\?,g?), output2) that

applies to v, we define v — a(v1,72), where 71 = (i,q\", &), 72 = (i,¢5", 7).

14

Now we define = to be the congruence closure of —: (1) if v — ¢’ then
v =1, and (2) if t] = t}, then:

ay(ty, 1) = ay(ty, 1)
ap(t',t1) = ap(t'ty)

for all @}, € X4 and ' € Tx:(T). Let = be the transitive closure of =.

Finally, the transformation defined by the k-pebble tree transducer T is
defined as follows. For every t € Tx, T'(¢) def {t' | t' € Tsy, v = t'}, where o
is the initial configuration of T" on ¢. Thus, the transducer defines the binary
relation {(¢,t') |t' € T(¢)} on Tx x Tyy.

Relationship to top-down and bottom-up transducers Top-down and
bottom-up tree transducers have been considered previously [34] (the terms
frontier-to-root and root-to-frontier are used there). We recall here the definition
of a top-down transducer.

Definition 3.2 A top-down tree transducer is T = (X,%',Q, qo, P) where Q is
the set of states, qo € @ is the initial state, and P are the transitions of the
following form:

e (a,q) —> t', where a € ¥2,q € Q,t' € Tsr({&1,&6} x Q).
e (a,q) — t', where a € ¥y,q € Q,t' € Tx.
Here &1,&5 are two new symbols.

Transitions are as in tree automata, except that now the machine also con-
structs at each transition part of the output tree. We describe T’s computation
informally next. Given an input tree the transducer starts at the root in state
go- In general it is on some node z labeled a, and in some state gq. T chooses
some transition of the form (a,q) — t'. If a € X5 (i.e. T is at an internal node)
then it outputs the tree t' € Ts:({£1,&2} X Q). This tree represents a fragment of
the transducer’s output. The fragment ¢ may have leaves labeled with elements
of the form (&;,¢"), i = 1,2, ¢' € Q. The leaves will be replaced by other output
trees. For that, the transducer spawns a new computation branch for each leaf,
which will compute the tree to replace that leaf. If the leaf was labeled (&1,¢'),
then the corresponding branch starts on the left child of z and in state ¢'; if the
leaf was labeled (£2,q¢'), then the branch starts on the right child of z and in
state ¢'. When a leaf is reached in the input tree, then a transition of the form
(a,q) — t' with ¢’ € T is selected: the transducer outputs ¢’ and halts that
computation branch. The computation halts when all branches halt, and the
current output tree is defined to be T’s output. Since T is nondeterministic, it
may have several (but finitely many) outputs, for a given input tree.

It is easy to see that every top-down transducer can be expressed as a 1-
pebble transducer. The relationship to bottom-up transducers (which work in
reverse to top-down ones, see [34] for a definition) is open and related to an
open problem on tree-walk automata. A tree-walk automaton [16] is a 1-pebble

15

transducer without output transitions and with an accepting state. A tree-walk
automaton starts with the pebble on the root, and walks up and down the
tree. If it ever enters the accepting state, then it accepts the tree. (Tree-walk
automata are equivalent to 1-pebble automata, Section 4, without branching
instructions.) The tree language accepted by a tree-walk automaton is regular
(this also follows from Theorem 4.7 below), but it is an open problem whether
tree-walk automata can express all regular tree languages.

Given a bottom-up transducer T, we may attempt to simulated it with a
1-pebble transducer, by running T in reverse. Starting from the root, at each
node x we guess in which state 7" would end up at x, output the corresponding
symbol a’, then branch to compute the two children of a’. The problem is that,
during its bottom-up computation, 7' may choose to ignore the entire output
it produced for a subtree of x: hower, it still uses the terminating state of the
computation on that subtree. In the top-down simulation, we need to guess
that state, then check on the subtree that the guess was correct. This test is
like checking that the subtree is in a certain regular language: when doing so,
we cannot branch (because whenever we branch, we must output something),
i.e. we are restricted to the behavior of a tree-walk automaton. Thus, 1-pebble
transducers can simulate all bottom-up transducers iff tree-walk automata can
express all regular tree languages. Similarly, k-pebble transducers can simulate
all bottom-up transducers iff k-pebble automata without branching (Section 4)
can express all regular languages: this is open too.

3.2 XML transformation languages and k-pebble trans-
ducers

We state, without proof, that all transformations over unranked trees over a
given finite alphabet expressed in existing XML query languages (XML-QL,
Lorel, StruQL, UnQL, and a fragment of XSLT) can be expressed as k-pebble
transducers. Note that, in particular, this does not extend to queries with joins
on data values, since these require an infinite alphabet. In lieu of a proof, we
illustrate the power of k-pebble transducers by means of several examples.

Example 3.3 A 1-pebble transducer that simply copies the input tree to the
output is T = (%, %,{q, 41,492}, ¢, P), where P is:

(a2,q9) — (a2(q1,q2), output) for all as € Xg
(a2,q1) — (g, down-left)

(a2,q2) — (q, down-right)

(a0,q) — (ao, outputl) for all ag € g

Example 3.4 We show here a useful “subroutine” that moves pebble 1 from
a given node to the next node in pre-order. Start in state gi, stop in state go;
if the tree is exhausted, then enter state gy. Assume that r € X, is the root
symbol:

(a2,q1) — (g2, down-left) // done

16

(a0, q1) — (g3, stay) // we are on a leaf:
prepare to move up

(a,q3) — (g3, up-right) // move up as long as
coming from the right

(ayq3) — (qa, up-left) // one move up left
(a,q1) — (gz2, down-right) // one move down right
and done

(r,q3) — (gy,stay) // tree exhausted
Here ag € g, a2 € I3 and a € ¥ U Xy — {r}.

Example 3.5 This example illustrates why k-pebble transducers can express
pattern matching. As argued in Section 2.2, patterns are the most essential
common denominator of existing XML query languages. Recall that a pattern is
a tree labeled with regular expressions. We illustrate with p = r1(r2,73(r4,75)),
where 7q,...,75 are five regular expressions. We can find all matches of this
pattern in a input tree, using k = 6 pebbles (in general, k is the number of
nodes in the pattern, plus one). The transducer enumerates, in lexicographic
order, all five-tuples of nodes (z1, z2,%3,%4,%5) in the input tree, using five
pebbles advanced with the pre-order traversal “subroutine” from the previous
example. Then, for each 5-tuple, it uses the sixth pebble to check the following
five conditions: z; € eval(r1,t), z2 € eval(ra,z1), x3 € eval(rs,z1), T4 €
eval(ry, x3), x5 € eval(rs,z3). Each condition has the form z; € eval(r;,zy)
(the first condition involves the root node ¢, which we denote with x), and we
can check it by locating first the node x; with the sixth pebble (using a pre-
order tree traversal), then moving up the tree until we reach zy, and checking
the regular expression r;, in reverse, along the way.

We illustrate with p = [a.b*.c]([(al f).g], [b]([c*.d], [d*.c])), a pattern with five
regular expressions. We can find all matches of this pattern in a input tree,
using k = 6 pebbles (in general, k is the number of nodes in the pattern, plus
one). The transducer enumerates, in lexicographic order, all five-tuples of nodes
(z1,22,%3,%4,x5) in the input tree, using five pebbles which are advanced using
the pre-order traversal “subroutine” in the previous example. Then, for each
5-tuple, it uses the sixth pebble to check the following five conditions: (1) the
path from the root to z; matches a.b*.c (the first regular expression), (2) z;
is an ancestor of z» and the path from z; to z2 matches (a|f).g, ..., (5) z3
is an ancestor of x5 and the path between them matches d*.c. Each condition
involves two nodes z;,z;. To check that x; is an ancestor of z; and the path
between them matches a given regular expression, the transducer uses the sixth
pebble to search for z; (using a pre-order tree traversal), from there it moves
the sixth pebble up the tree until it reaches z;, checking the regular expression
in reverse.

Example 3.6 This example illustrates that the size of the output tree may be
exponentially larger than that of the input tree. The transducer maps a tree ¢

17

| N
AR A

OJOROX0 00020

*

Figure 2: A complex tree transformation: rotating around leaf s. Two new
nodes need to be added, labeled m and n respectively. The order of the children
in the output tree is read counterclockwise.

into f(t), where f is defined recursively:

fla(ti,t2)) = z(a(f(t1), f(t2)),a(f(t1), f(t2))) a € X
@) = =z(a(),a()) a € 5o

Here T = (2,2 U {z},{q1,92,93}, 91, P), where P consists of the following:

(a,q1) — (z(g2, q2), output?2) a € T
(a,q2) — (a, outputl) a €
(a,q2) — (a(q3, qa), output?) a € 3o
(a,q3) — (q1, down-left) a € X
(a,q4) — (q1, down-right) a € I

Example 3.7 This 1-pebble transducer performs a complex rotation of the
input tree. Assume that each symbol ag € ¥y has a corresponding symbol
as € Yo, and let s be some symbol (i.e s9 € ¥g,82 € ¥3). The following
transducer finds the first node labeled sg, and declares it to be the new root.
See Fig. 2 for an illustration. The transducer proceeds as follows. First it
uses a depth-first traversal to place pebble 1 on the leaf labeled s, and enters
state ¢: these transitions are omitted. We show here the other transitions. We
may assume to start in state ¢, on the leaf labeled so. The subscripts in the
states Qup, Qreft, Gright indicate which way we reached the current node, while
the subscripts in gy, g, 74> Grign: indicate which way we should go next. Here r
is the symbol of the root.

(s0,9) — (r2(q', 4y,), output2) new root

(s0,4") — (mo, output()

produces additional node m
(a7 q;;,p) - (qlef'ta Up‘leﬁ) a # T

18

((L, q;p) - (CITight; up—right) a # r
(Ta q;;,p) - (n, OUtpUtO)
produces additional node n

(a2, Giest) — (a2(qrighs> Qup), output?)
(a2, gright) — (a2(qup7qleft) output?)
(a2, qup) — (a2 (Qleftaqmght) output?)
(@0,qup) — (a0, outputl)

(as, QIeft) (Qup, down-left)

(a2, qmght) (Gup, down-right)

In particular, this example illustrates that a 1-pebble transducer can reverse
a string (assuming the string is encoded as a right-linear binary tree).

3.3 Complexity and Expressiveness

Besides their role in typechecking (Section 4), k-pebbles transducers are of in-
dependent interest for expressing tree transformations. We show here that their
data complexity is in PTIME. In the case of a deterministic transducer T this
means that there exists a PTIME algorithm that “computes” T'(¢) for an input
tree t. Note that the generated output T'(¢) can have size exponential in ¢ (Ex-
ample 3.6). Still, the algorithm will produce a polynomial-size encoding of T'(t),
as a DAG. In the case of non-deterministic k-pebbles transducers we need to
be more careful what the PTIME data complexity means. In particular T can
produce an infinite set of outputs for a given ¢: T'(t) = {t1,t2,...}. We show:

Proposition 3.8 Let T be a fized k-pebble transducer. Then for each input tree
t, (1) the set T(t) is a regular tree language, and (2) one can construct in PTIME
(in the size of t) a tree automaton A; that accepts the language T(t).

Proof: (Sketch) For the sequel we fix some k-pebble tree transducer T' =
(£,¥,Q,q0,P) and some input tree t. Recall that T'(¢) is the set of output
trees. We will construct a top-down tree automaton Ay, with silent tran-
sitions, which accepts precisely the language T'(t). A silent transition has
the form (a,q) — ¢', with the meaning that the automaton may change its
state from ¢ to ¢' without advancing the head if the underlying symbol is a

Obviously such transitions do not increase the automaton’s expressive power.

4, (X, TU{gs}, 70, %" x {gs}, P’), where I is the set of configurations of T

on t, g5 is a new symbol denoting the unique final state, and 7y is the initial T-
configuration. We define the productions P’ next. Recall the rewriting v — ¢/,
where v € T' and where t' € Tx/(T") had one of the following three forms: (1) ¢’
is a T-configuration ', (2) t' is an output symbol a € ¥, (3) ¢’ is a tree with
three nodes a'(v1,72), a' € ¥',71,72 € I'. Define P’ to consists of the following:
(a',v) =+ (for every rewriting v — «')
(a',7) — gy (for every rewriting v — a')

19

(@',7) = (71,72) (for every rewriting v — a'(71,72))

The first two are silent transitions, the last is a regular transition in the
top-down automaton A;. If ¢ has n nodes, then there are O(n*) configurations,
hence A; can be computed in PTIME in the size of ¢.

Tt is easy to check that A; accepts some tree t’ iff t' € T'(¢t). We have to prove
that A; accepts some tree t' iff ¢ € T'(t). We start with “if”. Given t' € T(t)
we have:

to="0t =t =>...=>t, =t
where t; € T5:(T'), for i = 0,...,n. Let A be the set of A;-configurations on
t'. For each ¢}, i = 1,...,n, define w; € A* to be the following sequence w;
of A;-configurations. Let z1,...,z, be all the leaf nodes in t; € T/ (T') which
are labeled with elements from I', and let 71, ..., 7, be their labels. Notice that

X1, Z2,... are also nodes in t', since the sequence t{,t5,...,¢, is an increasing

sequence of trees. Then define w; def (71,21) - .- (7p,xp). Notice that wo = o
(the initial A¢-configuration) and wy, = . The following holds:

Wy = W1 = ... = Wy

Indeed, each rewriting ¢;_; = t; determines a rewriting w;—; = w; (this can be
proven by analyzing the three cases which determined the rewriting ¢ _; = t};
details omitted). This proves that A; accepts t'.

Conversely, let t' be accepted by A;. By definition, there exists a rewriting;:

60,A,t:w0:>w1:>...:>wn:s

Consider some w; = (71,%1) --- (Vp,Zp), for i = 0,n. Define t; € T5/(T') to be
obtained as follows. For each j = 1, p, remove from ¢’ the subtree rooted at node
z;; the node x; becomes a leaf, which we label with ;. Obviously wo = 0,714
(the initial T-configuration) and w, = t' (since nothing is removed from ¢'). It
is easy to check the following T-rewritings:

! ! !
th=>th=>...=>1,

Proposition 3.8 can be used to effectively answer several questions abott
T(t). First, consider the problem of constructing T'(t) given a deterministic
transducer 7', and a tree t. This can be answered in PTIME in the size of ¢:
indeed, A; serves as a DAG encoding of the result T'(¢). If required, T'(¢) can be
actually computed from A; in time polynomial in the size of both ¢ and T'(¢).

Next, consider the decision problem: given t,t', is t' € T'(¢t) ? This obviously
can be answered in PTIME in the size of ¢ and ', by “running” the automaton
A; on t'. Finally, we can enumerate T(t) = {t1,ta,...}: this corresponds to
enumerating all trees generated by a regular tree grammar, and can be done in
amortized PTIME cost in the size of the input and the output.

It easily follows from Proposition 4.6 and Theorem 4.7 below that k-pebble
transducers cannot express all PTIME transformations. For example, transfor-
mations that involve cardinality checking (e.g. ”output ’a’ if the input tree is a
right linear tree labeled with ™.c™) are not expressible by k-pebble transducers.
The exact characterization of their expressive power remains open.

20

4 Typechecking k-pebble Transducers

Now that we have presented our types and transformation language, we are
ready to present the solution for the typechecking problem. We first recall the
typechecking and type inference problems, and the connection between them.

4.1 Typechecking and type inference

Recall that a type is 7 = inst(A) for some tree automaton A. We denote
def
T(1) = Use, T(2)-

Definition 4.1 (Typechecking) A k-pebble tree transducer T typechecks with
respect to an input type 71 and an output type 1o, if T(11) C 7o.

The problem of verifying if T' typechecks with respect to types 71,72 is called
the typechecking problem.

The type inference problem is closely related to typechecking. Given a k-
pebble transducer T' and an input type 71, the type inference problem is to con-
struct, if possible, a type 74 such that T'(r1) = 7. Note that a solution to the
type inference problem immediately yields a solution to the typechecking prob-
lem. To verify that T typechecks with respect to input 7; and output 7, first
infer 75 = T'(71), then check that 753 C 7o, using the fact that inclusion of reg-
ular tree languages is decidable. Unfortunately, as illustrated by Example 4.2,
type inference is not possible even for very simple types and transformations.

Example 4.2 Let Q1 be the following XML-QL query:

<result> WHERE <root> <a> $X <a> $Y
</root>
CONSTRUCT
</result>

Consider the input DTD 7y given by root := a*. Thus, the input XML docu-
ments are of the form:

<root><a/> . . . <a/> </root>

with m occurrences of <a/>, for some n > 0 (in XML <a/> is an abbreviation
for <a>). On such a document, query @1 binds each of the two variables
$X and $Y to some <a/> element, and for each binding emits a output
element. Hence, the query’s outputs have the form:

<result> . . . </result>

with n2 occurrences of . In short, the query maps an input a™ to the output
b Clearly the set 7 of all results is not described by a DTD, since DTDs
can describe only regular languages. In practice one often settles for a DTD
approximating 7, like result := b*. This is definitely not the best approximation:
in fact no best approximation for non-regular tree languages 7 exists, because
for any regular set 7' D 7 and for any tree t € 7' — 7, the set 7' — {t} is still
regular and a better approximation than 7'.

21

Example 4.3 Let)2 be the following XSLT query:

<xsl:template match="root">
<result>

<xsl:apply-patterns/>

<xsl:apply-patterns/>

<xsl:apply-patterns/>
</result>
</xsl:template>
<xsl:template match="a">
<a/>
</xsl:template>

Assuming the same DTD for the input XML documents as in the previous
example, this query writes a b element, then copies the entire input, and repeats
this three times. Hence, it maps an input a™ to the output ba™ba™ba™. Again,
this set cannot be described by a DTD.

Given the failure of type inference, one might consider several alternatives,
such as:

e Use an upper approximation of the output T'(7), like b* above. This
results in some correct transformations being rejected by the typechecker.

e Use a stronger type system to express more sets of the form T'(71): we need
to exercise care, because for too powerful type systems the test T'(m1) C 7
may become undecidable. This approach is pursued in [32], using target
types called specialized context-free DTDs, consisting of extended DTDs
that specify the allowed children of a node as a context-free language. It
is shown in [32] that type inference can be performed for simple XML-
QL selection queries. As a side effect, this provides a typechecking test
for this limited class of queries, since inclusion of context-free languages
into regular languages is decidable. It fails, however, for XML-QL queries
with more complex CONSTRUCT clauses. It remains open whether it can be
extended using even stronger types.

The failure of type inference has a surprising twist: inverse type inference
turns out to be possible. Returning to Example 4.2, consider query ()1 and
assume the output DTD to be (b.b)*: i.e., we require to have an even number
of b’s. It is easy to see that (a.a)* is the DTD describing precisely the input
documents mapped by Q1 into output documents with an even number of b’s.

More precisely, the inverse type inference problem is the following: given a
k-pebble transducer T and an output type 7, construct a type 7' such that
7=t = {t|T(t) C7}: the type 77! is called the inverse type for T and 7. The
solution to the inverse type inference problem immediately yields a solution to

22

the typechecking problem: to typecheck T with respect to input 73 and output
Ty, first compute the inverse type 75 ! for T and 7o, then check that 74 C Ty L
This establishes the main result of the paper:

Theorem 4.4 It is decidable, given a k-pebble transducer T, an input type 11,
and an output type o, whether T typechecks with respect to T and ».

The remainder of the section is dedicated to solving the inverse type inference
problem, thus establishing Theorem 4.4. We do this in three stages:

Step 1 define an acceptor variant of the transducer, called k-pebble automaton;

Step 2 show that for each k-pebble transducer T and type 7, the complement
of {t | T'(t) C 7} is recognized by some k-pebble automaton; and,

Step 3 prove that every k-pebble automaton recognizes a regular tree language.

We develop the three steps next.

Step 1. The k-pebble automaton works similarly to the k-pebble transducer,
but produces no output: its function is simply to accept or reject its input.
Formally:

Definition 4.5 A k-pebble tree automaton is a 4-tuple (X, Q, qo, P), where:
e X.Q,q0 are as in a k-pebble transducer.

e P is a set of transitions. Move transitions are as in a k-pebble transducer.
Output transitions are replaced by the following:
(ag,b,q)) — (branch0)

(az,b,¢¥) — ((qY'), qéi)), branch?)

The branch0 and branch2 transitions are analogous to the transitions of tree
automata. The branch0 transition stops the current computation branch and
accepts. The branch2 transition spawns two independent computations, in states
q%i) and qgi) respectively; the input head is not moved. We define now formally
the set of trees inst(A) accepted by A. We consider configurations y of A on ¢ as
for k-pebble transducers, and denote I' and ~yy the set of all configurations, and
the initial configuration respectively. The partial computation of an automaton
A on a tree t is described by a word in I'™*, denoting the configurations reached
so far by the different branches. We define now the A-rewriting — from IT" to
T, similar to the T-rewriting for transducers. Each transition in P contributes
to —. For every move transitions we define v — 4’ as for transducers. For
every transition (a,b,q(®) — (branch0) that applies to v, we define v — ¢. For
every transition (a,b, ¢()) — ((q%i),qéi)), branch?) that applies to v = (i, ¢), 7)
we define v — 7172, where v; = (i,qy),i),w = (i,qéi),iz). We next define the
A-rewriting = from I'™* to I'* to be the congruential closure of —. (1) if v — w,
then v = w, and (2) if w; = ws then w.wy = w.ws and we.w = wa.w. A treet
is accepted by A, iff 79 = €. The tree language inst(A) accepted (or recognized)
by A consists of all trees accepted by A.
Step 2. Inverse type inference can be achieved using k-pebble automata.

23

Proposition 4.6 For each k-pebble transducer T and type T there exists a k-
pebble automaton A such that inst(A) = {t | T(t) C 7}. Here the bar denotes
the complement of the set.

Proof: Notice that {t |T(t) C7} = T 1(7) = {t | T(¢)N7T # 0}, hence A
can be obtained by composing T" with the top-down automaton B describing
the type 7. This is possible since B consumes the tree top-down, exactly in
the order in which T produces it. Formally, let T = (3,%,Q7,¢f, PT), and
let B = (%,Q%7,¢8,QZ, PB) be some top-down automaton accepting 7 (the
complement of a regular set is also regular). A will be the “product automaton”
of T and B, more precisely A = (£,Q7 x Q&, (¢, ¢®), P). We define next the
transitions P. Recall that T has move and output transitions, while A will have
move and branch transitions.

e For every move transition in PT:

(a,,41) = (g3 ,d)
and for every state ¢® € QF, A has a move transition
(a,b, (a1 ,4")) — ((az,4"),d) (3)
e For every output transition in P7T:
(a,b,q") — (af), output0)

and for every state ¢® € QP for which (a),q®) € Q2 we have in A a
branch0 transition:

(a0,b,(q7,q%)) — (branch0) (4)
e For every output transition in P7T:
(a,b,4") — (d'(qf a3), output2)
and for every branch transition in PB:
(a',q") = (a7, 45)
we have in A a branch?2 transition:

(a,b,(¢",4%) — ((¢f,a]), (a3 ,43), branch?) (5)

To conclude the proof we need to show that for every tree ¢, T'(t)Ninst(B) # 0
iff t € inst(A). This is intuitively obvious, since A simulates T' in parallel with
the computation of B on T’s output. A formal proof requires us to resort to
the definitions of T'(t), inst(B), and inst(A), and the details are more intricate.

24

We start with the “if” part, i.e. we are given t € inst(A). Then there exists
an A-rewriting:
Y0,At = Wo = W1 = ... = Wy =€

where, for each i = 0,n, w; € A} ,, i.e. w; is a sequence of A-configurations on
t; here 7y, 4,4 is the initial A-configuration. For every i = 0,n we will construct
a tree t; € Tx/(T'r;) such that the following rewritings hold in T':

Yot =ty =t =>...=>t =t

and t' € Tss. Furthermore, we also construct for each ¢ = 0,n a sequence of
B-configurations v; € Ap ; such that the following rewriting holds in B:

* * *
6O,B,t’:'U0:>'U1:>---:>'Un:5

This proves the claim that there exists ¢’ such that ¢’ € T'(¢t) and t' € inst(B).

We show how to construct ¢ and v;, inductively on ¢ = 0,n. Each B-
configuration in v; refers to a node in t', so apparently we cannot construct
v; before having ¢’ = ¢,. We could either construct tg,t},...,t, first, before
V9, V1,...,Un, Or notice that v; only needs the nodes in # which are already
present in t;. Also, we rely on a tight connection between w;, t}, and v;: namely
if we replace each A-configuration v = (4, (¢7, ¢?),2) in w; with ¥ = (4,47,),
then we obtain precisely the sequence of T-configurations on the leaves of .
Moreover, if we replace each A-configuration (j, (g7, ¢?),Z) in w; with (4, ¢%,z)
where z is the corresponding leaf node in ¢}, then we obtain precisely the se-
quence of B-configurations v;.

For ¢ = 0 define t; def vo,1,+ (the initial T-configuration) and v def 80,8,
(the initial B-configuration). For ¢ > 0 consider the A-rewriting w; 1 = w;. By
definition w;—1 = w'y.w”, w; = w'.u.w”, and v — u. We construct ¢}, v; from
t:_,,vi—1 by cases on the type of the rewriting v — u. Case 1: the rewriting
was generated by a move transition (equation (3)), hence u = ' € Ay ;. Define

v & vi—1, and t}; is obtained from t; , by replacing the label ¥ with 5'. Case
2: the rewriting was generated by a branch0 transition (equation (4)), hence
4 = €. Then v; is obtained from v;_; by erasing the configuration correspond-
ing to 7, and ¢t} is obtained from t;_, by replacing the leaf label v with a € X
(where a' is the output symbol of the transition in T', see notations in the defi-
nition of A’s transitions, P). Case 3: the rewriting was generated by a branch?2
transition (equation (5)), hence u = 7;72. Recall that v = (j,(¢7,q?), Z).
Then, using the notations in the definition of A’s transitions, t; is obtained
from t;_; by replacing the leaf node x labeled ¥ with a'(51,%2): i.e. we labeled
x with o', and introduced two new leaf nodes x1,x2, labeled ¥; = (j,¢f ,Z) and
¥2 = (4,47 , %) respectively. Similarly, v; is obtained from v;_; by replacing the
configuration § = (j,¢®, z) corresponding to vy with &,82, where §; = (j, ¢F, z1),
82 = (j,q#,22). On can check in each of these cases that #,_, = #!, and that

. *
either v;_; = v; or v;_; = v;, hence v;_1 = v;.

25

We now sketch the “only if” direction. Let ¢’ € T'(¢) such that t' € inst(B).
We have a T rewriting;:

Yort =ty =t = ...=>t, =t
with t,...,t,, € Tx/(I'r4). We also have a B rewriting:

00,Br =Vo = V1 = ... = Uy =€
Out of these two construct a A-rewriting:

V0,44 =Wo = W1 => ... = Wy =€

proving that ¢ € inst(A). For that we first need to “align” the second derivation
to the first derivation, then we apply the construction from the “if” case in
reversed.

For each v; € A%, denote v(v;) the set of nodes in ¢ occurring in the
configurations of v;. The sets v(v;) — v(vi—1), ¢ = 1,m are a disjoint cover of
the set nodes(t'), and each has exactly one element, which implies that ¢’ has m
nodes. This defines a certain order in which the nodes in ¢' are visited by the
B-rewriting: x1,22,. .., Ty, with {z;} = v(v;) —v(v;_1), i =1, m.

Considering the T-rewriting, let u(t;) be the set of nodes in ¢ labeled with
elements in I'r;. The sets p(t]) — pn(t;_,), ¢ = 1,n form a disjoint cover of
nodes(t') and each has 0 or 1 elements. It follows that the T-rewriting also
defines an order on the nodes in t', corresponding to the order in which they
were introduced. Since both = rewritings are confluent, we may assume that
this is the same order x4, ...,z as above.

Next we expand the B rewriting to:

* * *
60=Uj0=>1)j1=>...=>’0jn=€

such that 0 = jo < j1 < ... < j, = m, and for every ¢ = 1,m, j; = j;—1 if
p(th) —pti_y) =0, and j; = ji—1 + Lif p(t}) — p(ti_,) # 0. It follows now that
v(vj;) = p(t;) for every ¢ = 0,n. This gives us the required alignment.

Finally, we construct w; from ¢} and vj; as follows. For a T-configuration v =
(p,q",Z) and a B-configuration § = (¢P,z), denote (v, 6) the A-configuration
(p, (¢7,qP),%). Let 41.72...7, be the T-configurations on the leaves of ;. Let
vj; be 61.82...6p (must be the same number p because p(t;) = v(vj;)). Then
define w; = (1,61)...(Vp,6p). The proof of the fact that w;—1 = w; in A is
done by a straightforward case analysis. a

Step 3. Finally, we can show the following result, which is the cornerstone
of our approach to inverse type inference, and technically the most interesting.

Theorem 4.7 k-pebble tree automata accept precisely the regular tree languages.

Proof: Clearly, k-pebble automata can simulate classical non-deterministic top-
down tree automata using a single pebble, so each regular tree language is

26

accepted by some k-pebble automaton. The converse is considerably harder.
To prove it, we show how to construct for each k-pebble tree automaton A an
MSO (Monadic Second-Order logic) formula ¢ 4 s.t. for every tree t, A accepts ¢
iff t = 4. Since MSO formulas define precisely the regular tree languages [34],
the theorem follows.

The classic result that MSO on trees defines precisely the regular tree lan-
guages assumes a certain representation of trees as first-order structures. A tree
t is represented by a structure (D, succl, succ2, (Rgy)qex), where D is the set of
nodes, succl(z,y) and succ2(x,y) denote the fact that y is the left (right) child
of z, and R,(z) holds if node = has label a. As a warm-up, consider a simple
example: the descendant relation among nodes of ¢. This is defined by the MSO
formula:

p(z,y) =VS. (S(z) A closed(S) = S(y))

where

closed(S) = (Yu Yv (S(u) A sucey(u,v) = S(v)))
A (VYu Yo (S(u) A sucea(u,v) = S(v)))

Clearly, ¢(z,y) holds iff y is a descendant of z in ¢. Indeed, z’s descendants
can be described as the smallest set S containing z and closed under succ; and
succy. Note the universal quantification of S.

Also by way of warm-up, consider an and/or tree whose internal nodes are
labeled A,V and whose leaves are labeled 0,1. It is easy to see that there is
a l-pebble automaton accepting precisely those trees that evaluate to 1 when
viewed as Boolean circuits. An MSO formula ¢ defining the same set of trees is
obtained by “traversing” the tree bottom-up, from leaves to root, and defining
the set of nodes whose subtrees evaluate to 1 using a unary relation S:

p =VS. ((Vz.Ry(z) = S(x)) A reverse-closed(S)) = S(root)

where

reverse-closed(S) = VaVy .(Ry(z) A (succi(z,y) V succa(z,y)) A S(y)) =
S(z) A VaVyVz .(Ra(x) A sucer(z,y) A sucea(z,2) A S(y) A S(2)) = S(x)

We reduce the simulation problem of a k-pebble automaton to the Alternat-
ing Graph Accessibility Problem, AGAP [22]. An alternating graph (or and/or)
graph is a graph G = (V, E) whose nodes V' are partitioned into end-nodes and
or-nodes: V = V,UV,. The problem consists in deciding whether a node z € V
is accessible, where accessibility is defined as follows: an and-node is accessible
if all its successors are accessible; an or-node is accessible if at least one of its
successors is accessible. The set of accessible nodes z is defined in MSO by:

p(x) = VS.(reverse-closed(S) = S(x)) (6)

27

where reverse-closed(S) is:

Vy.(Dv(y) A 32.(E(y, 2) A S(2)) = S(y))
A Vy.(DA(y) AVz.(E(y, 2) = 5(2)) = S(y)) (7)

Given a k-pebble automaton A and a tree t, construct the following and/or
graph Ga: = (V,E). Its ornodes are all configurations of A on ¢, Vi, = T}
its set of and-nodes consists of a unique node ¢ plus all pairs of configurations
(71,72) sharing the same Z component: Va = {e}U{(v1,72) [11 = (1,4, %), 72 =
(i,¢',%),i = 1,k,q,q¢' € Qi,T € (nodes(t))*}. The set of edges E contains two
kinds of edges: first all edges of the form (y,w) for which v — u where — is the
A-rewriting from T' to I™* (recall that u is either a configuration 4/, or a pair of
configurations 7,2, or €); second all edges of the form ((y1,72),7:), fori =1,2.
It follows directly from the definitions of inst(A) and of AGAP that a tree ¢ is in
inst(A) iff the initial configuration 7y is accessible in the graph G 4. Hence it
only remains to show that we can express the AGAP problem on G 4+ in MSO.

The difficulty lies in the fact that the nodes in G 4,; are tuples of nodes from
the input structure ¢ (a configuration v = (i, ¢, Z) is represented by the i-tuple
(z1,...,2;); g does not depend on the tree ¢t and will be encoded separately;
a pair (v1,72) is also represented by an i-tuple, since 1,72 have the same).
Hence the set S in Eq. (6) is no longer unary. To circumvent that, we rely
on a special property of G4,;. Namely if two nodes described by an i-tuple
(1,...,2;) and a j-tuple (y1,...,y;) are connected by an edge, then either
i1=j,ori=7+1,0or¢=7—1, and the tuples agree on all but the last position.
This follows from the stack discipline on pebbles in A (only the last pebble can
be moved) and allows us to quantify independently, on different portions of the
graph. The construction of the MSO formula below relies on this observation,
and we outline this construction next.

We denote A = (2,Q,90,P), @ = Q1 UQ2U ... U @ and we enumerate
the states in @ such that @ = {go,q1,---,an}, and: @1 = {qo,---,qn, }, @2 =
{@ni+1s--sqnats -+ Q@ = {Gnp_y+15--->qn, - We show first the case when
k =1, so A uses a single pebble, to illustrate how one encodes the state in a
configuration and how to encode the transitions. In this case configurations can
be assimilated with pairs (g;,z), and the MSO formula ¢ defining acceptance
by A uses a different unary relation S; for each state g; €). Namely ¢4 is:

pa =VS5.VS; ...VSy,, (reverse-closed = Sy (root)) (8)

where reverse-closed is a sentence stating that Sp, S1,...,Sn, are closed under
reverse transitions of A according to the end/or semantics. Thus, @4 states
that the initial configuration of A (pebble at the root in state gp) is accessible
in the and/or graph G4 4. It follows that ¢4 holds iff A accepts the tree.

The formula reverse-closed is a direct representation of the transitions in A
(and edges in G4,) in MSO. For each of A’s transitions reverse-closed includes
a corresponding conjunct:

reverse-closed = /\ Up
peP

28

We illustrate v, for some transitions:

o for p = ((a,qu) = (g0, stay)),
Yp =V 2.(Ra(x) A Su()) =5 Su(a)

L4 fOI’ b= ((0,, qu) - (q’va down'left))a
Yp = Va. Vy.(Re(z) A sucer(z,y) A Sy(y)) = Su(z)

e for p = ((a,qu) — (qu, qu, branch2)),
VYp = Vo.(Ro () A Su(x) A Sw(z)) = Su(x)

o for p = ((a,qu) — (branch0)),
Yy = Va.Ra(z)=> Su(z) (9)

To see that ¢4 holds iff A accepts the tree, it suffices to notice the similarity
between Eq. (6) and Eq. (8). For that, one needs to observe how the formula
for reverse-closed in a general graph (Eq. (7)) becomes the formula above when
instantiated to G 4,;. For example notice that each and-node in G 4,; has exactly
two successors (hence the universal quantifier in (7) becomes an A in branch2).

We now extend Equation (8) to the case when k is arbitrary. We will define
a predicate reverse—closed(i), for each ¢ = 1, k, stating that S,,_,+1,---, S, are
closed under reverse transitions of A. Then, the MSO formula equivalent to A
will be ¢4 in Equation (8), with reverse-closed replaced with reverse-closed).
The predicate reverse-closed'?) assumes that pebbles 1,2,...,4 — 1 are fixed,
and their positions described by the free variables x1,...,z;_1; it also has free
variables Sy, S1, ..., Sn,_,- The predicate only considers moves affecting pebbles
1,5+ 1,..., k. Partition A’s transitions into P = P; U...U Py, where P; is the
set of transitions of the form (a,b,q(¥) — Then:

reversed-closed®) = /\ Up

pEP;

For move transitions p, 9, is the same as for reverse-closed above, except that
now it also inspect the presence/absence of the previous ¢ — 1 pebbles. For
example, for ¢ = 3 and p = ((a, 01, ¢,) — (gv, stay)) corresponding v, is

Yp =V .(Ro(z) Az # 21 ANz = 22) A Sy(z)) = Syu(2).

In general, given b € {0,1} we write £ =, y to mean z = y when b = 1 and

z # y when b = 0; given b € {0,1}* !, we write pebbles;(z) for the formula
Aje1i1 @ =b; ©j. Then, for p = ((a,b,¢\") — (1", stay)),
p =V z.(Ry(z) A pebblesz(z) A Sy(z)) = Su(z).

The other move and branch transitions are similar.
The new transitions are the pick and place transitions. These determine the
following conjuncts in reverse-closed " :

29

o for p=((a,,¢%) = (¢S, place)),

Vp = Vi (Ro(;) A pebblesg(x) A oY) = S, (x;))
where

e =S, 4. .. ‘V’Sniﬂ(reverse—closeduﬂ) = Sy(root))

Note the resemblance of p(it1) to Equation (8): here ¢, acts as an initial
state for pebble ¢ + 1.

o for p = ((a,,qi") — (¢ ", pick)),
p = Va;.(Ro(z;) A pebblesy(xi) A Sy(xi_1) = Su(zi))

Note the resemblance to Equation (9): here g, acts as a terminal state
(branch0) for pebble i.

This completes the proof of the translation of A into MSO. The resulting formula
@4 has size exponential in k (due to the replication of the ¢(¥ subformulas),
but the quantifier depth is k (for first-order variables z;) and | @ | (for second
order variables S;). Note that the stack discipline imposed on the use of pebbles
is essential to the construction in the proof. m|

The algorithm resulting from our typechecking technique for k-pebble trans-
ducers is hyperexponential in k (so non-elementary). In fact, this is also a lower
bound, as stated next. Note that the lower bound holds even under rather
stringent assumptions.

Theorem 4.8 [35] The typechecking problem for deterministic k-pebble trans-
ducers is non-elementary, even for fized input and output types.

Proof: We use a reduction of the emptiness problem for star-free generalized
regular expressions (formed using alphabet symbols, union, concatenation, and
complement) which is known to be non-elementary [36]. We use a fixed input
type 71 that allows encoding a string w # € over ¥ as a binary tree enc(w)
over ¥ U {—} as follows: enc(a) = a(),enc(av) = a(—,enc(v)). It is easily
seen that for every star-free generalized regular expression 7 one can construct
in PTIME a deterministic k-pebble automaton A, without branching accepting
{enc(w) | w € lang(r)}. Thus, r is empty iff inst(A,) is empty. Now construct
a deterministic k-pebble transducer 7, that given an input ¢ € 71 outputs b()
if A, rejects t and b(e()e()) if A, accepts t. Consider the fixed output type
defining the singleton {b()}. It follows that T, typechecks iff lang(r) =0. O

As a useful side-effect of the above proof, we can state:

Corollary 4.9 The emptiness problem for deterministic k-pebble automata with-
out branching is non-elementary.

30

The number of pebbles in the pebble transducer is the main source of com-
plexity in the typechecking procedure. This is not unexpected. Indeed, as
noted by [21] for the case of strings, automata with & pebbles (more restricted
than ours) are extremely concise: their equivalent automata without pebbles
are larger by a tower of exponentials of height k. Automata with pebbles are
convenient and very economical, but the complexity of usual decision problems
can be expected to be harder in proportion to their conciseness.

5 Extensions

The main limitations of our typechecking approach are the high complexity and
the lack of data values. Both can be dealt with in restricted cases: of special
interest are transformations expressed in the usual XML query languages. A
full treatment is beyond the scope of this paper; here we mention some initial
results indicating that both limitations can be overcome in significant practical
cases.

Complexity of typechecking As discussed earlier, typechecking k-pebble
transducers is non-elementary. Thus, typechecking in its full generality appears
to be prohibitively expensive. However, our approach can be used in restricted
cases of practical interest for which typechecking can be reduced to emptiness
of automata with very few pebbles. Fortunately, even one or two pebbles can be
quite powerful. For example, typechecking selection XML-QL queries without
joins (i.e., queries that extract the list of bindings of a variable occurring in a
tree pattern such as described in Section 2.2 and Example 3.5) can be reduced
to emptiness of a 1-pebble automaton with exponentially many states (yielding
a total complexity of 2-EXPTIME). Another interesting special case consists
of XML-QL queries with tree patterns and constructed answers restricted so
that grouping is done one variable at a time. For such queries, the automaton
uses two pebbles and exponentially many states, if the output type is a DTD.
(If grouping is done at most m variables at a time, the automaton uses 2m
pebbles.)

Data Values To model #PCDATA in XML we assume an infinite alphabet
D of data values in addition to X. Trees are now in Tx(D), while types are
regular tree languages over Tx({d}), i.e. where all data values are treated as a
distinguished leaf symbol d. The k-pebble transducers are extended with three
new kinds of transitions (see also Section 1): a comparison predicate x = y
that takes two data values z,y and enters either some state ¢; (when z = y) or
g> (when z # y), unary comparisons on data values, and an output transition
which copies a data value from the input tree to the output tree. All XML-
QL queries, including those with selections and joins on data values, can be
expressed with the extended transducers. The last two kinds of transitions do
not affect typechecking. For example, to handle unary predicates we apply the
technique in [1]: if the machine uses m predicates, then replace the infinite set
of data values with 2™ new constants. The comparison predicate x = y however
renders typechecking undecidable in general, because of a reduction from the

31

finite satisfiability problem for first-order logic: the equality predicate allows to
evaluate any first-order formula on standard encodings of first-order structures
as labeled trees with data values.

However, the typechecking techniques in this paper can be extended to an
important class of queries with data value joins. Intuitively, these are queries
where all equality tests performed are independent of each other. Consequently,
all truth assignments to the equality tests are consistent. As far as typechecking
is concerned, the actual equality tests can therefore be replaced by nondeter-
ministic guesses of their truth value, without the risk of inconsistent guesses.
In practice, some queries expressed in languages such as XML-QL can be im-
plemented in this manner. To illustrate, assume a relational schema consisting
of three relations Person(pid, name),Worksin(pid, did),Dept(did, name),
with pid, did keysin Person, Dept respectively, and consider a three way join
() = Person X Worksin X Dept. Such joins are typical in XML-QL queries
exporting a relational database to an XML view [19]. The following extended
k-pebble transducer T implements) and performs only independent compar-
isons. In an outermost loop T iterates w over Worksin. At each step it iterates p
over Person checking w.pid = p.pid: T stops the inner loop when an equality
is found. Next it iterates over Dept and stops when an equality is found. Each
comparison done by T is independent on all previous comparisons, i.e. both
outcomes x = y or x # y are consistent with all previous comparisons. Notice
that other implementations of the three way join may not have the indepen-
dence property. Thus, T can be simulated by a non-deterministic transducer T"
with inputs in Tx({d}) by replacing every predicate z = y with output states
q1,q2 with a non-deterministic choice between ¢; and ¢». Every nondeterminis-
tic choice of T" corresponds to a possible run of 7' (on certain data values) and
we can apply the typechecking techniques from this paper to T".

6 Conclusions

We have developed a general, robust framework for typechecking XML trans-
formers. The k-pebble transducer provides an abstraction that can express ex-
isting XML transformation languages such as XML-QL and a subset of XSLT.
The regular tree languages capture current DTDs and several proposed exten-
sions. Thus, our framework for typechecking is likely to remain relevant as the
XML standards evolve.

Future work has to address the complexity of typechecking, and the treat-
ment of data values, in the context of restricted classes of XML transformations.
Restrictions are often acceptable in practice, and may lead to efficient typecheck-
ing algorithms. We believe that k-pebble transducers provide a good framework
for such a study, as suggested by our preliminary results in this direction.

Acknowledgment We would like to thank Nils Klarlund for his comments.

Thanks also to Thomas Schwentick for pointing out the connection between
k-pebble automata and star-free generalized regular expressions, yielding the

32

lower bound in Theorem 4.8.

References

[1]

2]

3]

[4]

[5]

[6]

[7]

(8]

[9]

[10]

[11]

[12]

[13]

S. Abiteboul and V. Vianu. Regular path queries with constraints. In
Proceedings of ACM Symposium on Principles of Database Systems, pages
122-133, 1997.

A. Aho and J. Ullman. Translations on a context free grammar. Information
and Control, 19(19):439-475, 1971.

D. Beech, S. Lawrence, M. Maloney, N. Mendelsohn, and
H. Thompson. Xml schema part 1: Structures, May 1999.
http://www.w3.org/TR/xmlschema-1/.

C. Beeri and T. Milo. Schemas for integration and translation of structured
and semi-structured data. In Proceedings of the International Conference
on Database Theory, pages 296-313, 1999.

C. Beeri and Y. Tzaban. SAL: an algebra for semistructured data and
XML. In Proceedings of WebDB, Philadelphia, PA, June 1999.

G. J. Bex, S. Maneth, and F. Neven. A formal model for an expressive
fragment of XSLT. In L. et al., editor, Computational Logic — CL 2000,
volume 1861 of Lecture Notes in Artificial Intelligence, pages 1137-1151.
Springer, 2000.

P. Biron and A. Malhotra. Xml schema part 2: Datatypes, May 1999.
http://wuw.w3.org/TR/xmlschema-2/.

A. Bruggemann-Klein, M. Murata, and D. Wood. Regular
tree languages over non-ranked alphabets, 1998. Available at
ftp://ftpll.informatik.tu-muenchen.de/pub/misc/caterpillars/.

P. Buneman, S. Davidson, G. Hillebrand, and D. Suciu. A query language
and optimization techniques for unstructured data. In Proceedings of ACM-
SIGMOD International Conference on Management of Data, pages 505—
516, 1996.

A. Chandra, D. Kozen, and L. Stockmeyer. Alternation. Journal of the
ACM, 28:114-133, 1981.

J. Clark. XML path language (XPath), 1999. available from the W3C,
http://www.w3.org/TR/xpath.

J. Clark. XSL transformations (XSLT) specification, 1999. available from
the W3C, http://www.w3.org/TR/WD-xslt.

J. Clark and M. Makoto. Relax ng specification, 2001. available from
http://www.oasis-open.org/committees/relax-ng/.

33

[14] S. Cluet, C. Delobel, J. Simeon, and K. Smaga. Your mediators need data
conversion ! In Proceedings ACM-SIGMOD International Conference on
Management of Data, pages 177-188, 1998.

[15] A. Deutsch, M. Fernandez, D. Florescu, A. Levy, and D. Suciu. A query
language for XML. In Proceedings of the Eights International World Wide
Web Conference (WWW8), pages 77-91, Toronto, 1999.

[16] J. Engelfriet, H. Hoogenboom, and J. V. Best. Trips on trees. Acta Cyber-
netica, 14:51-64, 1999.

[17] P. Fankhauser, M. Fernandez, A. Malhotra, M. Rys, J. Simeon, and
P. Wadler. XQuery 1.0 formal semantics, 2001. available from the W3C,
http://www.w3.org/TR/query-semantics.

[18] M. Fernandez, D. Florescu, J. Kang, A. Levy, and D. Suciu. Catching the
boat with Strudel: experience with a Web-site management system. In
Proceedings of ACM-SIGMOD International Conference on Management
of Data, pages 414-425, 1998.

[19] M. Fernandez, D. Suciu, and W. Tan. SilkRoute: trading between relations
and XML. In Proceedings of the WW W9, pages 723-746, Amsterdam, 2000.

[20] H. Garcia-Molina, Y. Papakonstantinou, D. Quass, A. Rajaraman, Y. Sa-
giv, J. Ullman, and J. Widom. The TSIMMIS project: Integration of
heterogeneous information sources. Journal of Intelligent Information Sys-
tems, 8(2):117-132, March 1997.

[21] N. Globerman and D. Harel. Complexity results for multi-pebble automata
and their logics. In Proceedings of ICALP, pages 73-82, Jerusalem, Israel,
1994.

[22] R. Greenlaw, H. Hoover, and W. L. Ruzzo. Limits to Parallel Computation.
P-Completeness Theory. Oxford University Press, New York, Oxford, 1995.

[23] H. Hosoya and B. C. Pierce. =~ XDuce: An XML processing lan-
guage (preliminary report). In WebDB’2000, pages 226-244, 2000.
http://www.research.att.com/conf/webdb2000/.

[24] H. Hosoya, J. Vouillon, and B. C. Pierce. Regular expression types for
XML. In Proceedings of ICFP, pages 11-22, 2000.

[25] B. Ludaescher, Y. Papakonstantinou, P. Velikhov, and V. Vianu. View
definition and dtd inference for xml. In Workshop on Semistructured Data
and Nonstandard Data Formats, January 1999.

[26] S. Maneth and F. Neven. Structured document transformations based on
xsl. In In Proc. Eighth Int’l. Workshop on Database Programming Lan-
guages, Scotland, 1999.

34

[27] J. McHugh and J. Widom. Query optimization for XML. In Proceedings
of VLDB, pages 315-326, Edinburgh, UK, September 1999.

[28] T. Milo and D. Suciu. Type inference for queries on semistructured data.
In Proceedings of the ACM Symposium on Principles of Database Systems,
pages 215-226, 1999.

[29] F. Neven and T. Schwentick. Query automata. In Symposium on Principles
of Database Systems, pages 205-214, Philadelphia, PA, 1999.

[30] Y. Papakonstantinou, H. Garcia-Molina, and J. Widom. Object exchange
across heterogeneous information sources. In IEEE International Confer-
ence on Data Engineering, pages 251-260, March 1995.

[31] Y. Papakonstantinou and P. Velikhov. Enhancing semistructured data me-
diators with document type definitions. In Int’l Conf. on Data Engineering,
1999.

[32] Y. Papakonstantinou and V. Vianu. DTD inference for views of XML data.
In Proceedings of PODS, pages 35-46, Dallas, TX, 2000.

[33] J. Robie. The design of xql, 1999.
http://www.texcel.no/whitepapers/xql-design.html.

[34] G. Rozenberg and A. Salomaa. Handbook of Formal Languages. Springer
Verlag, 1997.

[35] T. Schwentick. Personal communication, 2000.

[36] L. Stockmeier. The complezity of decision problems in automata theory and
logic. PhD thesis, Thesis, Massachusetts Institute of Technology, 1974.

[37] W. Thomas. Automata on infinite objects. In Formal Models and Seman-
tics, volume B of Handbook of Theoretical Computer Science, chapter 4,
pages 133-192. Elsevier, Amsterdam, 1990.

35

