
Dissociation and Propagation for Efficient Query
Evaluation over Probabilistic Databases

Wolfgang Gatterbauer, Abhay K. Jha, Dan Suciu

University of Washington, Seattle WA
{gatter,abhaykj,suciu}@cs.washington.edu

Abstract. Queries over probabilistic databases are either safe, in which
case they can be evaluated entirely in a relational database engine, or
unsafe, in which case they need to be evaluated with a general-purpose
inference engine at a high cost. We propose a new approach by which
every query is evaluated inside the database engine, by using a new
method called dissociation. A dissociated query is obtained by adding
extraneous variables to some atoms until the query becomes safe. We
show that the probability of the original query and that of the dissoci-
ated query correspond to two well-known scoring functions on graphs,
namely graph reliability (which is #P-hard), and the propagation score
(which is related to PageRank and is in PTIME): When restricted to
graphs, standard query probability is graph reliability, while the dissoci-
ated probability is the propagation score. We define a propagation score
for self-join-free conjunctive queries and prove that it is always an up-
per bound for query reliability, and that both scores coincide for all safe
queries. Given the widespread and successful use of graph propagation
methods in practice, we argue for the dissociation method as a highly ef-
ficient way to rank probabilistic query results, especially for those queries
which are highly intractable for exact probabilistic inference.

1 Introduction

Evaluating queries over probabilistic databases (PDBs) is hard in general. De-
spite important recent advances [15,20], today’s approaches to query evaluation
are not practical. Existing techniques either split the queries into safe and un-
safe and compute efficiently only the former [8,19], or work very well on certain
combinations of queries and data instances but can not offer performance guar-
antees in general [15,18], or use general purpose approximation techniques and
are thus generally slow [14,23]. In this paper, we propose a new approach to
evaluate queries over tuple-independent probabilistic databases by which every
query can be evaluated efficiently. We achieve this by replacing the standard
semantics based on reliability, with a related but much more efficient semantics
based on propagation.

The semantics of a query over a PDB is based on reliability [12], which has
roots in network reliability [6]. It is defined as the probability that a source node
remains connected to a target node in a directed graph if edges fail independently

2

4	

Fig_Introduc-onExample	
 3-6-2010

p7

LatexIt	
 font	
 size	
 13	

p6

p5

p4

p3

p2
p1

a
b

c

d

s t

a� c

s t

b
p5

p4
p2

p1

p1

p3

a c

b

s t

p1

p2

p4

p5

p3

a��

(a)

q :−R(s, x), S(x, y), T (y, t)
R C A

p1 s a

S A B

p2 a b
p3 a c

T B C

p4 b t
p5 c t

(b)

4	

Fig_Introduc-onExample	
 3-6-2010

p7

LatexIt	
 font	
 size	
 13	

p6

p5

p4

p3

p2
p1

a
b

c

d

s t

a� c

s t

b
p5

p4
p2

p1

p1

p3

a c

b

s t

p1

p2

p4

p5

p3

a��

(c)

q′ :−R(s, x, y), S(x, y), T (y, t)
R C A B

p1 s a b
p1 s a c

S A B

p2 a b
p3 a c

T B C

p4 b t
p5 c t

(d)

Fig. 1. The propagation score ρ(t) in graph (a) corresponds to the reliability score
r(t) in graph (c) with node a dissociated into a′ and a′′. (b,d): Corresponding
chain queries q and q′ with respective database instances.

with known probabilities. Computing network reliability is #P-hard. However,
many successful practical applications use a semantics different from reliability,
based on a propagation scheme. We illustrate with an example.

Example 1 (Propagation in k-partite digraphs). Consider the 4-partite
graph in Fig. 2a in which each edge i is present with independent probability pi.
The reliability score r(x) of a node x is the probability that the source node s
is connected to the node x in a randomly chosen subgraph with edges directed
left-to-right. The score of interest is the reliability of a target node t:

r(t) = p1(1−(1−p2p4)(1−p3p5))

While reliability can be computed efficiently for series-parallel graphs as in Fig. 2a,
it is #P-hard in general, even on 4-partite graphs [6]. The probability of a query
over a PDB corresponds precisely to network reliability. For example, in the
case of a 4-partite graph, reliability is given by the probability of the chain query
q :−R(s, x), S(x, y), T (y, t) over the PDB shown in Fig. 2b (we use interchange-
ably the terms query reliability and query probability in this paper).

In contrast, the propagation score of a node x is a value that depends on the
scores of its parent nodes and the probabilities of the incoming edges: ρ(x) =
1−
∏
e

(
1−ρ(ye) ·pe

)
, where e is the edge (ye, x). By definition, ρ(s) = 1. In our

example, the propagation score of the target node t is:

ρ(t) = 1− (1− p1p2p4)(1− p1p3p5)

Unlike reliability, the propagation score can always be computed efficiently,
even on very large graphs. The reason is that reliability has an intensional seman-
tics, while propagation is extensional1 [10,21]. Variants of propagation have thus

1
Extensional approaches compute the probability of any formula as a function of the probabilities
of its subformulas according to syntactic rules, regardless of how those were derived. Intensional
approaches reason in terms of possible worlds and keep track of dependencies.

3

been successfully used in a range of applications where an exact probability com-
putation is not necessary. Examples include similarity ranking of proteins [28],
integrating and ranking uncertain scientific data [9], trust propagation in social
networks [13], search in associative networks [7], models of human comprehen-
sion [22], keyword search in databases [2], and computing web page reputation
with the renowned PageRank2 algorithm [5].

With this paper, we introduce a propagation score for queries over PDBs,
describe the connection to the reliability score, and give a method to compute
the propagation score for every conjunctive query without self-joins efficiently
with a standard relational database engine. We propose the propagation score
as an alternative semantics to the reliability score. While the propagation score
differs from the reliability score, we prove several properties showing that it
is a reasonable substitute: (i) the propagation score is always greater than or
equal to the reliability score, (ii) the two are guaranteed to coincide for all safe
queries, and (iii) the propagation score is very close to the reliability score in
our experimental validation.

To the best of our knowledge, no definition of a propagation score on hy-
pergraphs exists, and it is not obvious how to define such a score for queries
which are not represented by graphs but by hypergraphs. Also, when restricted
to k-partite graphs, the propagation score depends on the directionality of the
graph. In Fig. 2a the propagation score from s to t is different from that from
t to s. In fact, the latter coincides with the reliability score. It is unclear what
this directionality corresponds to for arbitrary queries.

Main contributions. Our first main contribution is defining the propaga-
tion score for any self-join-free conjunctive query in terms of a dissociation. A
dissociation is a rewriting of both the data and the query. On the data, a disso-
ciation is obtained by making multiple, independent copies of some of the tuples
in the database. Technically, this is achieved by extending the relational schema
with additional attributes. On a query, a dissociation extends atoms with addi-
tional variables. We prove that a dissociation can only increase the probability of
a query, and define the propagation score of a query as the minimum reliability
of all dissociated queries that are safe. This is justified by the fact that, in a
k-partite graph, the propagation score is precisely the probability of one disso-
ciated safe query. Thus, in our definition, choosing a direction for the network
flow in order to define the propagation score corresponds to choosing a partic-
ular dissociation that makes the query safe. Safe queries [8] can be evaluated
efficiently on any probabilistic database, and we show that every query (safe or
not) admits at least one safe dissociation. Therefore, the propagation score can
be computed efficiently.

Our second main contribution is establishing a one-to-one correspondence
between safe dissociations and traditional query plans. This result leads to an
efficient algorithm for computing the propagation score of a query: iterate over all
query plans, retain only those that are minimal in the dissociation order, evaluate
2

Note that the propagation score is not the same as PageRank. However, both share the common
principle that the score of a node is defined only in terms of the scores of its neighbors, and not
in terms of the entire topology of the graph.

4

those on the original data, and return the minimum probability. Importantly,
there is no need to dissociate the actual data, which is an expensive step. We
give a system R-style algorithm that enumerates all plans that correspond to
minimal safe dissociated queries. A so far unknown corollary of our work is that
every query plan gives an upper bound on query reliability.

Example 2 (Dissociation). We have seen that the propagation score differs
from the reliability score on the DAG in Fig. 2a. By inspecting the expressions
of the two scores, one can see that they differ in how they treat p1: reliability
treats it as a single event, while propagation treats it as two independent events.
In fact, the propagation score is precisely the reliability score of the DAG in
Fig. 2c, which has two copies of p1. We call this DAG the dissociation of the
DAG in Fig. 2a. At the level of the database instance, dissociation can be obtained
by adding a new attribute B to the first relation R (Fig. 2d). The dissociated
query is qB :−R(s, x, y), S(x, y), T (y, t), and one can check that its probability is
indeed the same as the propagation score for the data in Fig. 2a. The important
observation here is that, while the evaluation problem for q is #P-hard because
it is an unsafe query [8], the query qB is safe and can therefore be computed
efficiently.

A query q usually has more than one dissociation: q has a second dissocia-
tion qA :−R(s, x), S(x, y), T (x, y, t) obtained by adding the attribute A to T (not
shown in the figure). Its probability corresponds to the propagation score from t
to s, i.e. from right to left. And there is a third dissociation, qBA :−R(s, x, y),
S(x, y), T (x, y, t). We prove that each dissociation step can only increase the
probability, hence r(q) ≤ r(qB) ≤ r(qBA) and r(q) ≤ r(qA) ≤ r(qBA). We define
the propagation score of q as the smallest probability of all dissociations. The
database system has to compute r(qB) and r(qA) and return the smallest score:
on the graph in Fig. 2a this is r(qA), since r(q) = r(qA).

Outline. We review basic definitions (Sect. 2), then formally introduce query
dissociation and the propagation score (Sect. 3). We prove its strong connection
to query plans (Sect. 4), describe our experimental evaluation (Sect. 5), review
related work (Sect. 6), before we conclude (Sect. 7). Details, all proofs, more
experiments and several optimizations are covered in the technical report [11].

2 Preliminaries

We consider PDBs where each tuple t has a probability p(t) ∈ [0, 1]. We denote
with D the database instance, i.e. the collection of tuples and their probabilities.
A possible world is generated by independently including each tuple t in the world
with probability p(t). Thus, the database D is tuple-independent. Consider a
Boolean conjunctive query q

q :− g1, . . . , gm

where g1, . . . , gm are relational atoms, sometimes called subgoals, over a vocabu-
lary R1, . . . , Rk. The focus of probabilistic query evaluation is to compute P [q],

5

which is the probability that the query is true in a randomly chosen world, and
which we refer to as the query reliability r(q) [12].

It is known that the data complexity of a conjunctive query q is either PTIME
or #P-hard [8]. The class of PTIME queries, sometimes called safe queries,
is best understood in the case of Boolean queries without self-joins, keys and
deterministic relations. We will focus on this important case in this paper. With
this restriction, the safe queries are precisely the hierarchical queries:

Definition 1 (Hierarchical queries [8]). For every variable x in q, denote
sg(x) the set of subgoals that contain x. Then q is called hierarchical if for any
two variables x, y, one of the following three conditions hold: sg(x) ⊆ sg(y),
sg(x) ∩ sg(y) = ∅, or sg(x) ⊇ sg(y).

For example, the query q :−R(x, y), S(y, z), T (y, z, u) is hierarchical, while
q :−R(x, y), S(y, z), T (z, u) is not. It is known that every hierarchical query can
be computed in PTIME, and every non-hierarchical query is #P-hard.

We next introduce a query plan for a conjunctive query:

Definition 2 (Query plan P). Let R1, . . . , Rm be a relational vocabulary. A
query plan, or simply plan, is given by the grammar

P ::=Ri(x̄) | πx̄P | 1
[
P1, . . . , Pk

]
where Ri(x̄) is a relational atom containing the variables x̄ and constants, πx̄ is
the project operator with duplicate elimination, and 1

[
. . .
]

is the natural join,
which we allow to be k-ary, for k ≥ 2. We require that joins and projections
alternate in a plan. We do not distinguish between join orders, i.e. 1

[
P1, P2

]
is

the same as 1
[
P2, P1

]
.

Denote qP the query consisting of all atoms mentioned in (sub-)plan P . We
define the head variables HVar(P) inductively as

HVar(Ri(x̄)) = x̄

HVar(πx̄(P)) = x̄

HVar(1
[
P1, . . . , Pk

]
) =

⋃k
i=1 HVar(Pi)

A plan is called Boolean if HVar(P) = ∅. We assume the usual sanity conditions
on plans to be satisfied: in a project operator πx̄(P) we assume x̄ ⊆ HVar(P),
and each variable y is projected away in at most one project operator, i.e. there
exists at most one operator πx̄(P) s.t. y ∈ HVar(P)− x̄.

A plan P is evaluated on a probabilistic database D using an extensional
semantics [10], [21, p. 3]: Each subplan P returns an intermediate relation of
arity |HVar(P)|+ 1. The extra attribute stores the probability of each tuple. To
compute the probability, each operator assumes the input tuples to be indepen-
dent, i.e. the probabilistic join operator 1p

[
. . .
]

multiplies the tuple probabilities
Πipi, and the probabilistic project operator with duplicate elimination πp com-
putes the probability as 1−Πi(1− pi). For a Boolean plan P , this results in a

6

single probability value, which we denote score(P). In general, this is not the cor-
rect query reliability r(qP), which, recall, is defined in terms of possible worlds:
score(P) 6= r(qp).

Definition 3 (Safe plan). A plan P is called safe if for any join operator
1p
[
P1, . . . , Pk

]
the following holds: HVar(Pi) = HVar(Pj), for all 1 ≤ i, j ≤ k.

The following are well known facts about safe queries and safe plans.

Proposition 1 (Safety). (1) Let P be a plan for the conjunctive query without
self-joins qP . Then P is safe iff for any probabilistic database, score(P) = r(qp).
(2) Let q be a conjunctive query. Then the following are equivalent: q is safe; q
is hierarchical; q admits a safe plan. Moreover, the safe plan is unique (up to
reordering of the operands in join operators).

Example 3 (Safe plan). An example safe query and its unique safe plan:

q :−R(x, y), S(y, z), T (y, z, u)

P = πp∅ 1p
[
πpyR(x, y), πpy 1p

[
S(y, z), πpy,zT (y, z, u)

]]
3 Dissociation and Propagation

In this section, we define the technique of query dissociation and the semantics of
propagation score. We first define the approach formally, then describe in Sect. 4
an efficient method to evaluate propagation and illustrate with examples. All
proofs and more details are provided in the appendix.

In the following, we write Var(q) for set of variables in the body of a query
q, Var(gi) for the variables in a subgoal gi, and A for the active domain of a
database D. We use the bar sign (e.g. x̄) to denote both sets or tuples.

Definition 4 (Query dissociation). A dissociation of a conjunctive query
q :− g1, . . . , gm is a collection of sets of variables ∆ = {ȳ1, . . . , ȳm} with ȳi ⊆
Var(q)− Var(gi).

Definition 5 (Table dissociation). Given a query q :− g1, . . . , gm with gi =
Ri(x̄i), the active domain A, and a query dissociation ∆ = {ȳ1, . . . , ȳm}. The
dissociation of table Ri on ȳi = (yi1, . . . , yik) is the relation given by query

Rȳi

i (x̄i, ȳi) :−Ri(x̄i), A(yi1), . . . , A(yik)

Conceptually, a dissociation of a table is the multi-cross product with the ac-
tive domain so that each tuple in the original table is copied to multiple tuples
in the dissociated table. Recall that each tuple in the original table represents
an independent probabilistic event. The dissociated table now contains multiple
copies of each tuple, all with the same probability, yet considered to represent
independent events. Thus, the dissociated table has a different probabilistic se-
mantics than the original table.

7

x y

R ◦ •
S ◦
T ◦ ◦
U ◦

x y

R ◦ •
S ◦ •
T ◦ ◦
U ◦

x y

R ◦ •
S ◦ •
T ◦ ◦
U • ◦

x y

R ◦
S ◦ •
T ◦ ◦
U • ◦

x y

R ◦
S ◦
T ◦ ◦
U • ◦

x y

R ◦
S ◦
T ◦ ◦
U ◦

x y

R ◦
S ◦ •
T ◦ ◦
U ◦

7

5

2

0

4

1

6

3

x y

R ◦ •
S ◦
T ◦ ◦
U • ◦

(a)

6!7 !

4 ! 5 ! 3 !

U(y)T (x, y)S(x)R(x)

��p

πp
∅

U(y)

S(x)

T (x, y)R(x)

πp
∅

πp
x

��p

��p

T (x, y)

R(x)

S(x) U(y)

πp
∅

��p

��p

πp
x

S(x)R(x)

T (x, y) U(y)

πp
∅

πp
x

��p

��p

U(y)

T (x, y)S(x)R(x)

πp
y

��p

��p

πp
∅

R(x), S(x), T(x,y), Ũ(̃x,y)R̃(x,ỹ), S̃(x,ỹ), T(x,y), U(y) R̃(x,ỹ), S(x), T(x,y), Ũ(̃x,y)

R(x), S̃(x,ỹ), T(x,y), Ũ(̃x,y)R̃(x,ỹ), S̃(x,ỹ), T(x,y), Ũ(̃x,y)

(b)

Fig. 2. (a): Partial dissociation order of q :−R(x), S(x), T (x, y), U(y). Safe dis-
sociations are shaded (3, 4, 5, 6, 7), minimal safe dissociations are shaded in red
and double-lined (3, 4). (b): All 5 possible query plans, their partial order and
correspondence to safe dissociations in the partial dissociation order of q.

Definition 6 (Query dissociation semantics). Let q :−R1(x̄1), . . . , Rm(x̄m)
be a query and ∆ = {ȳ1, . . . , ȳm} a dissociation for q. The dissociated query is:

q∆ :−Rȳ11 (x̄1, ȳ1), . . . , Rȳm
m (x̄m, ȳm)

Thus, query dissociation works as follows: Add some variables to some atoms
in the query. This results in the dissociated query over a new schema3. Transform
the probabilistic database by replicating some of their tuples and by adding new
attributes to match the new schema. This is the dissociated database. Finally,
compute the probability of the dissociated query on the dissociated database4.

Our first major technical result in this paper shows that query dissociation
can only increase the probability. We state it in a slightly more general form, by
noting that the set of dissociations forms a partial order.

Definition 7 (Partial dissociation order). We define the partial order on
the dissociations of a query as:

∆ � ∆′ ⇔ ∀i : ȳi ⊇ ȳ′i
Theorem 2 (Partial dissociation order). For every two dissociations ∆ and
∆′ of a query q, the following holds over every database instance:

∆ � ∆′ ⇔ r(q∆) ≥ r(q∆
′
)

3
Note that several alternative dissociations are possible, in general.

4
Note that this is the semantics of a dissociated query, and not the way we actually evaluate
queries. In Sect. 4 we give a method that evaluates the dissociated query without actually modi-
fying the tables in the database.

8

Corollary 3 (Upper query bounds). For every database and every dissoci-
ation ∆ of a query q: r(q∆) ≥ r(q).

Corollary 3 immediately follows from Theorem 2 as every query is a dissoci-
ation of itself. The total number of dissociations corresponds to the cardinality
of the power set of variables that can be added to tables. Hence, for every query
with n non-head variables and m clauses, there are 2K possible dissociations
with K = mn − k and k =

∑m
i=1 |Var(gi)| forming a partial order in the shape

of a power set (see Fig. 3a).
We next define the propagation score of a query as the minimum probability

of all those dissociations in the partial dissociation order that are safe.

Definition 8 (Safe dissociation). A dissociation ∆s of a query q is called
safe if the dissociated query q∆s is safe.

Definition 9 (Propagation score). The propagation score ρ(q) for a query
q is the minimum of the scores of all safe dissociations: ρ(q) = min∆s

r(q∆s).

We propose to adopt the propagation score as an alternative semantics to
reliability. While computing the reliability r(q) is #P-hard in general, computing
the propagation score ρ(q) is always in PTIME in the size of the database.
Further, ρ(q) ≥ r(q) and, if q is safe, then ρ(q) = r(q) (both claims follow
immediately from Corollary 3).

We now justify our definitions of dissociation and query propagation: When
a graph is k-partite, then its reliability can be expressed by a conjunctive chain
query q. Further, the propagation score over this graph corresponds to exactly
one of several possible dissociations of this query q. Query dissociation is thus
a strict generalization of graph propagation on k-partite graphs. And we define
query propagation as corresponding to the dissociation with minimum reliability.

Proposition 4 (Connection propagation score). Let G = (V,E) be a k+1-
partite digraph with a source node s and a target node t, where each edge has a
probability. The nodes are partitioned into V = {s} ∪ V2 ∪ . . . ∪ Vk ∪ {t}, and
the edges are E =

⋃
iRi, where Ri denotes the set of edges from Vi to Vi+1 with

i ∈ {1, . . . , k}. Then:
(a) The network reliability of the graph is r(q), where:

q :−R1(s, x1), R2(x1, x2), . . . , Rk(xk−1, t)

(b) Using x̄[i,j] as short form for xi, . . . , xj, the propagation score (as defined in
Example 1) is r(q∆), where:

q∆ :−R1(s, x̄[1,k−1]), R2(x[2,k−1]), . . . , Rk(xk−1, t)

4 Dissociations and Plans

Thus, in order to compute the propagation score of a query q, we need to compute
several dissociated safe queries q∆. For that, we will not apply naively Def. 6,

9

because the table dissociation part (Def. 5) computes several cartesian products,
and is very inefficient. Instead, we describe here an approach for computing r(q∆)
without dissociating either the query or the tables. The second major technical
result of our paper allows us to perform dissociation very efficiently.

Theorem 5 (Safe dissociation). Let q be a conjunctive query without self-
joins. There exists an isomorphism between safe dissociations ∆s of q and query
plans P for q. Moreover, the reliability of the dissociated query is equal to the
score of the plan, r(q∆s) = score(P).

We describe this isomorphism briefly. Consider a safe dissociation q∆, and
denote its unique safe plan P∆. This plan uses dissociated relations, hence each
relation Rȳi

i has some extraneous variables ȳi. Drop all the variables ȳi from
the relations, and from all operators that use them: this transforms P∆ into
a regular (unsafe) plan P for q. Conversely, consider a plan P for q (P is not
necessarily safe; in fact if q is unsafe then there is no safe plan at all). We
define its corresponding safe dissociation ∆ as follows. For each join operation
1p
[
P1, . . . , Pk

]
, let the join variables be JVar =

⋃
j HVar[Pj]: for every relation

Ri occurring in Pj , add the variables JVar−HVar[Pj] to ȳi. For example, consider
the lower join in Fig. 3b box (5): 1p

[
R(x), T (x, y), U(y)

]
. Here JVar = {x, y} and

the dissociation of this subplan is R̃(x, ỹ), T (x, y), Ũ(x̃, y), where the tilde (˜)
indicates dissociated relations and variables. The complete safe query is shown
at the top of the box (5). Note that while there is a one-to-one mapping between
safe dissociations and query plans, unsafe dissociations do not correspond to
plans (see Fig. 3a).

We have seen (right after Def. 2) that the extensional semantics of an unsafe
plan P differs from the true reliability, score(P) 6= r(q). Since we have shown
that score(P) = r(q∆) for some dissociation ∆, we derive the following important
corollary:

Corollary 6 (Query plans as bounds). Let P be any plan for a query q.
Then score(P) ≥ r(q). In other words, any query plan for evaluating a query
inside a database gives an upper bound to the actual query reliability r(q).

To summarize, we have now a much more efficient way to compute min∆(r(q∆)):
iterate over all plans P , and compute minP score(P). Thus, there no need to
dissociate the input tables which is very inefficient: each plan P is evaluated
directly on the original probabilistic database. However, this approach is inef-
ficient in that it computes some redundant plans: for example, in Fig. 2 plans
5, 6, 7 are redundant, since, in the dissociation order, they are all greater than
plan 3. It suffices to evaluate only the minimal query plans, i.e. those for which
the corresponding dissociation is minimal among all safe dissociations: in our
example, these are plans 3 and 4.

Example 4 (Safe dissociations). Take the query q :−R(x), S(x), T (x, y), U(y).
It is unsafe and K = 4 · 2− 5 = 3. Figure 3a shows its partial dissociation order

10

23, and Fig. 3b shows all 5 possible query plans. Two of those plans are minimal
in the partial order of plans:

q(3) :−R(x), S(x), T (x, y), Ũ(x̃, y)

q(4) :− R̃(x, ỹ), S̃(x, ỹ), T (x, y), U(y)

The corresponding query plans over the original tables (and safe derivations over
dissociated tables) are:

P (3) = πp∅ 1p
[
R(x), S(x), πpx 1p

[
T (x, y), U(y)

]]
P (4) = πp∅ 1p

[
U(y), πpy 1p

[
R(x), S(x), T (x, y)

]]
The propagation score is the minimum of the scores of all minimal plans: ρ(q) =
mini∈{3,4}

[
score

(
P (i)

)]
.

Note that “safetyzation by dissociation” is not monotone, and dissociation
can also make a safe query unsafe. For example, the queryR(x), S(x, y), T (x, y, z)
is safe, but its dissociation R̃(x, z̃), S(x, y), T (x, y, z) is not.

We now describe an algorithm for enumerating all plans that correspond
to minimal dissociations. Let q :− g1, . . . , gm. For each nonempty subset s̄ ⊆
{1, . . . ,m}, denote HVar[s̄] ⊆ Var(q) to be the following set of variables:

HVar[s̄] =
⋃
i∈s̄

Var(gi) ∩
⋃
j 6∈s̄

Var(gj)

For any subplan P of some plan for q, denote s̄P = {i | gi ∈ P}. One can easily
check that, for any subplan P , HVar[s̄P] ⊆ HVar(P). In other words, HVar[s̄]
represents the minimal set of head variables of any subplan over the atoms in
s̄. In a minimal plan, we must have equality at each node that corresponds to a
projection.

Proposition 7 (Minimal plans). A plan corresponds to a minimal dissocia-
tion of a query iff:
(a) for every projection subplan P : HVar(P) = HVar[s̄P]
(b) for every join subplan P = 1p

[
P1, . . . , Pk

]
: if x is a variable s.t. ∃i.x ∈

HVar(Pi) − HVar[s̄P] then ∀j ∈ {1, . . . , k}, x ∈ HVar(Pj) . In other words:⋃
i HVar(Pi)−

⋂
i HVar(Pi) = HVar[s̄p].

The second condition says this. Suppose we have a variable x that appears in
some, but not all of the operands Pi of a join. Then we could have projected it
earlier, resulting in a smaller dissociation. The only case when we cannot do it
is when x is needed later, i.e. x ∈ HVar[s̄P].

Example 5 (Minimal plans). We illustrate for the non-minimal plan P (5)

from Fig. 2 and its subplan P = 1p
[
R(x), T (x, y), U(y)

]
. P includes subgoals

R, T , and U . Here, HVar(P) = {x, y}, whereas HVar[{R, T, U}] = {x}. The
difference is {y}, which should appear in any subplan of P according to Propo-
sition 7(b). However, it does not appear in R(x). Moving R(x) to the later join
with S(x) makes the condition fulfilled and results in the minimal plan P (3).

11

Algorithm 1: (Minimal Plans) generates all plans that correspond to a minimal
safe dissociation
Input: Query q :− g1, . . . , gm

Output: All minimal plans P(s̄) for s̄ = {1, . . . ,m}
foreach i ∈ {1, . . . ,m} do

if HVar[{i}] = Var(gi) then P[{i}] = {gi}
else P[{i}] = {πp

HVar[{i}](gi)}
foreach s̄ ⊆ {1, . . . ,m} for increasing size of |s̄| do

Set P[s̄] = ∅
foreach k ≥ 2 and every partition of s̄ = s̄1 ∪ . . . ∪ s̄k do

if
S

i HVar(Pi)−Ti HVar(Pi) = HVar[s̄] then
forall P1 ∈ P[s̄1], . . . , Pk ∈ P[s̄k] do
P[s̄] = P[s̄] ∪ {πp

HVar[s̄] 1p
ˆ
P1, . . . , Pk

˜}

This proposition gives us immediately Algorithm 1 for enumerating all min-
imal plans, bottom up. It computes, for each non-empty subset s̄ ⊆ {1, . . . ,m},
the set P[s̄] of all minimal plans over the atoms gi, with i ∈ s̄, and can use any
Systems R style optimizer.

We end this section by commenting on the number of minimal safe dissocia-
tions. Not surprisingly, this number is exponential in the size of the query. To see
this, consider the following query: q :−R1(x1), . . . , Rn(xn), U(x1, . . . , xn). There
are exactly n! minimal safe dissociations: Take any consistent preorder � on the
variables. It must be a total preorder, i.e. for any i, j, either xi � xj or xj � xi,
because xi, xj occur together in U . Since it is minimal, � must be an order,
i.e. we can’t have both xi � xj and xj � xi for i 6= j. Therefore, � is a total
order, and there are n! such. Note that while the number of safe dissociations is
exponential in the size of the query (we do not address query complexity in this
paper), the number of query plans is independent of the size of the database,
and hence our approach has PTIME data complexity for all queries [26].

In summary, our evaluation approach allows to rank answers to every query
(safe or unsafe) in polynomial time in the size of the database, and is conservative
w.r.t. the ranking according to the possible world semantics for both safe queries.

5 Experiments on Synthetic Data

We next illustrate both the the (i) efficiency and (ii) quality of the dissociation
method for increasingly intractable queries and datasets. For timing, we compare
against MayBMS [1], an existing state-of-the-art PDB system, to calculate exact
probabilities. For quality, we take the results of MayBMS as ground truth for
query reliability and report the relative difference between the propagation and
reliability scores.

Experimental setup. I Queries: We consider two canonical unsafe ‘chain
queries’ q1 :−R(x), S(x, y), T (y) and q2 :−R(x), S1(x, y), S2(y, z), T (z). As will

12

0.01	

0.1	

1	

10	

0	
 10	
 20	
 30	
 40	
 50	

Fig_NewExpTiming	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 Fig_NewExpAccuracy	
 	
 	
 	
 	
 	
 	
 	
 	
 	

10	
 20	
 30	
 40	
 50	
 0	

Ev
al
ua

7
on

	
 7
m
e	

[s
ec
]	

Frac7on	
 f	
 of	
 tuples	
 dissociated	
 [%]	

q1	
 MayBMS	

q2	
 MayBMS	

q1	
 Propaga7on	

q2	
 Propaga7on	

0.001	

0.01	

0.1	

1	

10	

0	
 10	
 20	
 30	
 40	
 50	

10	
 20	
 30	
 40	
 50	
 0	

Frac7on	
 f	
 of	
 tuples	
 dissociated	
 [%]	

q2	
 median	

q2	
 worst	

q1	
 median	

q1	
 worst	

Re
la
7
ve
	
 p
er
ce
nt
ag
e	

er
ro
r	

(ρ
-­‐r
)/
r	
 [
%
]	

9-1-2010

(a)

0.01	

0.1	

1	

10	

0	
 10	
 20	
 30	
 40	
 50	

Fig_NewExpTiming	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 Fig_NewExpAccuracy	
 	
 	
 	
 	
 	
 	
 	
 	
 	

10	
 20	
 30	
 40	
 50	
 0	

Ev
al
ua

7
on

	
 7
m
e	

[s
ec
]	

Frac7on	
 f	
 of	
 tuples	
 dissociated	
 [%]	

q1	
 MayBMS	

q2	
 MayBMS	

q1	
 Propaga7on	

q2	
 Propaga7on	

0.001	

0.01	

0.1	

1	

10	

0	
 10	
 20	
 30	
 40	
 50	

10	
 20	
 30	
 40	
 50	
 0	

Frac7on	
 f	
 of	
 tuples	
 dissociated	
 [%]	

q2	
 median	

q2	
 worst	

q1	
 median	

q1	
 worst	

Re
la
7
ve
	
 p
er
ce
nt
ag
e	

er
ro
r	

(ρ
-­‐r
)/
r	
 [
%
]	

9-1-2010

(b)

Fig. 3. Results for timing (a) and quality (b) experiments. See text for details.

become clear from the experiments, it is increasingly hard to get the true query
reliability scores for more complex queries and datasets, and already with these
two simple queries, we quickly enter the area of intractable queries and datasets.
I Datasets: Given a fraction f ∈ [0, 1], we generate the dataset as follows:
Both relations R and T contain 500 tuples each. For every tuple x in R, the
functional dependency x → y on S holds with probability 1 − f . For those x
that satisfy the FD, we randomly choose a y from T and create one tuple (x, y)
in S; for those x that violate the FD, we randomly choose 2 or 3 y from T
to create 2 or 3 tuples in S. Hence, the parameter f is the fraction of tuples
that are dissociated, and also serves as measure of the intractability of the query
for MayBMS. Relations S1 and S2 are generated analogously according to FDs
x → y and y → z. We limit the fanout for each x to be maximum 2 or 3,
as otherwise, the treewidth increases rapidly and, even for small fraction f , the
query quickly becomes intractable for MayBMS, thus limiting the range of f we
can get the ground truth for. The probability of each tuple is sampled uniformly
from an interval [0, u], with u chosen to create a query reliability of around
0.5. I Equipment : The experiments are run on a Windows Server 2008 machine
with Quad Core 2 GHz and 8 GB RAM. Our implementation is done in Java,
wherein the program sends an SQL query to a SQL Server 2008 database. The
competitor, MayBMS, is implemented in C as an extension of the PostgreSQL
8.3 backend. I Evaluation: For each parameter f in steps of 2%, we generate 20
datasets and evaluate both MayBMS and propagation on each. For timing, we
take the sum over all 20 datasets. For quality, we report both the median and
worst percentage error over the 20 datasets, where percentage error is ρ−r

r ·100%,
with ρ and r being propagation and reliability scores, respectively. To compute
the propagation score, we execute the query using a left-right plan. It is easy
to see that, using this plan, the tuples dissociated are exactly those that violate
the FDs discussed above. Hence f indeed controls the fraction of tuples that are
dissociated to those that could have been dissociated.

13

Timing experiments. Figure 4a demonstrates that the two simple queries
are indeed not trivial, and evaluation with an exact solver like MayBMS quickly
becomes intractable. In contrast, propagation evaluates independent of f . The
results also reaffirm why we need an approach like this: exact probabilistic in-
ference is expensive, and to scale up we need to go from intensional approaches
to effective extensional approaches like the one proposed in this paper.

Quality experiments. Figure 4b shows the percentage error for varying
fractions of dissociations. We only report data points for which MayBMS finished
within 1 min, and we could get the ground truth. The error is very low for
q1 and one could argue this is because each dissociation was small; since each
x is connected to at most 3 y in S. But even then, this graph demonstrates
that the error doesn’t go up steeply for increasing fraction f . In fact, the slope
seems to decrease and it looks like the error converges. For q2, we could not
get enough data points to see the behavior as MayBMS did not finish in time.
But one can see, there is an order of difference between the error rate. This isn’t
surprising, because here dissociation happens twice and the error is compounded.
In summary, while we don’t have a concrete bound of how much propagation
deviates from reliability in the general case, our experiments suggest that if each
tuple is dissociated only a few times, then the error rate does not increase steeply
as the number of dissociations increases. The error rate may even converge.
But this analysis of the exact relationship between query reliability and query
propagation requires future theoretical and experimental work.

6 Related Work

Current approaches of probabilistic query evaluation either use exact methods
or sampling approaches. Exact approaches [1,15,18,25] work well on queries with
simple lineage expressions, but perform very poorly on database instances with
high tree-width or long lineage expressions. Sampling approaches [14,16,23], on
the other hand, may not be efficient even on simple queries. Some determinis-
tic approximation algorithms [20,24] have been proposed that can approximate
the query probability within any error bound, but they have no guarantee over
running time. These approaches decompose a formulae recursively into indepen-
dent/disjoint components via some heuristic until the approximation guarantee
is within the error bound. In contrast, our approach is the only fully extensional
approach to approximating query probabilities in probabilistic databases and
therefore scales independent of the database size.

Our approach of focusing on the extensional evaluation of probabilistic data-
bases seems vaguely related to work on possibilistic databases [3,4]. This body of
work suggests, as foundation for quantifying uncertainty, a completely different
theory, namely that of possibility theory instead of probability theory. However,
we are not aware of any experimental evaluation of a possibilistic database, nor
of a characterization of the exact data complexity of this model. Hence, it is
difficult to compare in terms of theoretical or practical performance.

14

While our work is motivated by ranking query answers, it is conceptually very
different from a recent number of proposals of alternative ranking semantics (see
e.g. [17]). While those works are all based on the standard reliability semantics
and vary in alternative ranking methods, our goal with this paper is to propose
an efficient way to evaluate those scores that can be used for ranking.

Query dissociation is also related to recent work in graphical models that
tries to give upper bounds on the partition function of a Markov random field.
Wainwright et al. [27] develop a method to obtain optimal upper bounds by
replacing the original distribution using a collection of tractable distributions, i.e.
such for which the partition function can be calculated efficiently by a recursive
algorithm. In our work, efficient approximations of distributions at the schema
level are those that allow a safe query plan, and thus can be evaluated in a
relational database engine. One up to now unknown corollary of our theory is
that every query plan is an upper bound on query reliability. We further give an
algorithm to find the minimum of all instance-independent upper bounds.

7 Conclusion

In this paper, we developed a new scoring function called propagation for ranking
query results over probabilistic databases. Our semantics is based on a sound
and principled theory of query dissociation, and can be evaluated efficiently in an
off-the-shelf relational database engine for any type of self-join-free conjunctive
query. We proved that query propagation is an upper bound to query reliability,
that both scores coincide for safe queries, and that propagation naturally extends
the case of safe queries to unsafe queries. Finally, our experiments validated that
propagation is a viable alternative for evaluating intractable queries, i.e. cases
of queries and database instances that cannot be handled by the current state-
of-the-art in probabilistic query evaluation.

Acknowledgement. This work was supported in part by NSF grants IIS-
0513877, IIS-0713576, and IIS-0915054. We thank the anonymous reviewers for
helpful comments that improved the quality of presentation of this paper.

References

1. L. Antova, T. Jansen, C. Koch, and D. Olteanu. Fast and simple relational pro-
cessing of uncertain data. In ICDE, 2008.

2. G. Bhalotia, A. Hulgeri, C. Nakhe, S. Chakrabarti, and S. Sudarshan. Keyword
searching and browsing in databases using BANKS. In ICDE, 2002.

3. P. Bosc and O. Pivert. About projection-selection-join queries addressed to possi-
bilistic relational databases. IEEE T. Fuzzy Systems, 13(1):124–139, 2005.

4. P. Bosc, O. Pivert, and H. Prade. A model based on possibilistic certainty levels
for incomplete databases. In SUM, 2009.

5. S. Brin and L. Page. The anatomy of a large-scale hypertextual web search engine.
Computer Networks, 30(1-7):107–117, 1998.

15

6. C. J. Colbourn. The combinatorics of network reliability. Oxford University Press,
New York, 1987.

7. F. Crestani. Application of spreading activation techniques in information retrieval.
Artif. Intell. Rev., 11(6):453–482, 1997.

8. N. N. Dalvi and D. Suciu. Management of probabilistic data: foundations and
challenges. In PODS, 2007.

9. L. Detwiler, W. Gatterbauer, B. Louie, D. Suciu, and P. Tarczy-Hornoch. Inte-
grating and ranking uncertain scientific data. In ICDE, 2009.
(see http://db.cs.washington.edu/propagation).

10. N. Fuhr and T. Rölleke. A probabilistic relational algebra for the integration of
information retrieval and database systems. ACM Trans. Inf. Syst., 15(1):32–66,
1997.

11. W. Gatterbauer, A. K. Jha, and D. Suciu. Dissociation and propagation for efficient
query evaluation over probabilistic databases. Technical report, UW-CSE-10-04-
01, 2010. (see http://db.cs.washington.edu/propagation).

12. E. Grädel, Y. Gurevich, and C. Hirsch. The complexity of query reliability. In
PODS, 1998.

13. R. V. Guha, R. Kumar, P. Raghavan, and A. Tomkins. Propagation of trust and
distrust. In WWW, 2004.

14. R. Jampani, F. Xu, M. Wu, L. L. Perez, C. M. Jermaine, and P. J. Haas. MCDB:
a Monte Carlo approach to managing uncertain data. In SIGMOD, 2008.

15. A. Jha, D. Olteanu, and D. Suciu. Bridging the gap between intensional and
extensional query evaluation in probabilistic databases. In EDBT, 2010.

16. S. Joshi and C. M. Jermaine. Sampling-based estimators for subset-based queries.
VLDB J., 18(1):181–202, 2009.

17. J. Li, B. Saha, and A. Deshpande. A unified approach to ranking in probabilistic
databases. PVLDB, 2(1):502–513, 2009.

18. D. Olteanu and J. Huang. Using OBDDs for efficient query evaluation on proba-
bilistic databases. In SUM, 2008.

19. D. Olteanu, J. Huang, and C. Koch. Sprout: Lazy vs. eager query plans for tuple-
independent probabilistic databases. In ICDE, 2009.

20. D. Olteanu, J. Huang, and C. Koch. Approximate confidence computation in
probabilistic databases. In ICDE, 2010.

21. J. Pearl. Probabilistic reasoning in intelligent systems: networks of plausible infer-
ence. Morgan Kaufmann Publishers, San Mateo, Calif., 1988.

22. M. R. Quillian. Semantic memory. In Semantic Information Processing, pages
227–270. MIT Press, 1968.

23. C. Ré, N. N. Dalvi, and D. Suciu. Efficient top-k query evaluation on probabilistic
data. In ICDE, 2007.

24. C. Ré and D. Suciu. Approximate lineage for probabilistic databases. PVLDB,
1(1):797–808, 2008.

25. P. Sen and A. Deshpande. Representing and querying correlated tuples in proba-
bilistic databases. In ICDE, 2007.

26. M. Y. Vardi. The complexity of relational query languages (extended abstract).
In STOC, 1982.

27. M. J. Wainwright, T. Jaakkola, and A. S. Willsky. A new class of upper bounds on
the log partition function. IEEE Transactions on Information Theory, 51(7):2313–
2335, 2005.

28. J. Weston, A. Elisseeff, D. Zhou, C. S. Leslie, and W. S. Noble. Protein ranking:
from local to global structure in the protein similarity network. Proc Natl Acad
Sci USA, 101(17):6559–63, Apr 2004.

http://db.cs.washington.edu/propagation
http://db.cs.washington.edu/propagation

	Dissociation and Propagation for Efficient Query Evaluation over Probabilistic Databases
	Wolfgang Gatterbauer, Abhay K. Jha, Dan Suciu

