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Abstract

Given a sequence of real numbers (“scores”), we present
a practical linear time algorithm to find those nonoverlap-
ping, contiguoussubsequenceshaving greatest total scores.
This improves on the best previously known algorithm,
which requires quadratic time in the worst case. The prob-
lem arises in biological sequence analysis, where the high-
scoring subsequences correspond to regions of unusual
composition in a nucleic acid or protein sequence. For
instance, Altschul, Karlin, and others have used this ap-
proach to identify transmembrane regions, DNA binding
domains, and regions of high charge in proteins.
Keywords: maximal scoring subsequence, locally optimal
subsequence, maximum sum interval, sequence analysis.

1 Introduction

When analyzing long nucleic acid or protein sequences, the
identification of unusual subsequences is an important task,
since such features may be biologically significant. A com-
mon approach is to assign a score to each residue, and then
look for contiguous subsequences with high total scores.
This natural approach was analyzed by Altschul and Er-
ickson (1986a; 1986b), Karlin and Altschul (1990; 1993),
(Dembo & Karlin 1991; Karlin & Dembo 1992), and (Kar-
lin, Dembo, & Kawabata 1990), and applied to a variety of
protein analyses such as the identification of transmembrane
regions, DNA binding domains, and regions of high charge
(Brendel et al. 1992; Karlin & Brendel 1992; Karlin et al.
1991). The method is also applicable to long genomic DNA
sequences, where computation time is of more concern.

As an example of this scoring approach, consider the ap-
plication to identifying transmembrane domains in proteins.
Transmembrane domains are rich in hydrophobic residues,
so Karlin and Brendel (1992) adapted the hydropathy index
of Kyte and Doolittle (1982) to assign scores to the 20 amino
acids ranging from �5 (least hydrophobic) to +3 (most hy-
drophobic). They then looked for those (contiguous and dis-
joint) subsequences of the human β2-adrenergic receptor se-
quence with the highest total residue scores, and observed
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that they correspond to the known transmembrane domains
of the receptor.

Karlin and Brendel went on to propose a scoring scheme
more specific to identifying transmembrane domains than
the simple hydropathy index. They determined the fre-
quency qi of each residue i among the annotated transmem-
brane domains from 980 entries in a protein database, and
the corresponding background frequency pi of each residue
in the same set of 980 proteins. They then assigned a score
of si = ln(qi=pi) (resembling a log likelihood ratio) to each
residue i in the protein sequence to be analyzed, in this in-
stance the human β2-adrenergic receptor. This scoring func-
tion has the property that subsequences of high total score
have amino acid composition more closely resembling that
of the known transmembrane domains than that of the pro-
tein collection overall, and hence are candidate transmem-
brane domains themselves. In fact, Karlin and Altschul
(1990) demonstrated that such log likelihood ratios form the
optimal scores, assuming that the target and background fre-
quencies are accurate. Returning to the human β2-adrenergic
receptor, Karlin and Brendel observed that the highest scor-
ing subsequences were similar to the ones obtained with the
hydropathy scores, but were more pronounced.

Karlin and Altschul (1993) applied the same scoring func-
tion to identify transmembrane domains in the Drosophila
virilis sevenless protein, and in the human serotonin recep-
tor. The authors’ emphasis in that paper was on finding mul-
tiple disjoint high scoring subsequences corresponding, for
instance, to multiple transmembrane domains in a single pro-
tein. Altschul (1997) provided additional analysis of the sta-
tistical significance of multiple disjoint high scoring subse-
quences. Our emphasis in this paper is on the same problem
of identifying multiple high scoring subsequences.

We present an O(n) time algorithm for finding all maximal
scoring subsequences in a given sequence of length n. There
is a classical O(n) time algorithm for finding the single max-
imum scoring subsequence, from which it follows that all
maximal scoring subsequences can be found in O(n2

) time in
the worst case. Worst case behavior is rare in practice. Run-
ning times of order n logn are perhaps more representative of
the previously best known algorithm’s behavior, and an ex-
pected running time of Θ(n logn) is provable for an unreal-
istic but suggestive model. (See Section 2.) While that algo-
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rithm may be fast enough to be useful in practice, ours is an
order of magnitude faster on problems of realistic size. Fur-
thermore, it is not substantially more complex, and presents
some interesting subtleties in its design and analysis. Finally,
we hope better understanding of this problem will lead to im-
provements in performance of algorithms for more complex
scoring schemes (P. Green (1997)), alternative definitions of
maximal or optimal subsequences (Sellers (1984)), or for
finding certain kinds of maximal subalignments (Altschul
and Erickson (1986a; 1986b), Sellers (1984), Waterman and
Eggert (1987)), for which the best known algorithms are
quadratic or worse. Note that our algorithm immediately
gives a quadratic method quite different from the usual dy-
namic programming methods for finding maximal (gapless)
subalignments; perhaps further improvements are possible.

Section 2 defines the computational problem to be solved,
and describes the best previously known algorithm for it.
Section 3 provides an alternative characterization of the
problem, and gives some basic facts about maximal scor-
ing subsequences. Section 4 presents our algorithm, and dis-
cusses its correctness and analysis. Section 5 outlines some
experimental results.

2 Problem Definition and Previously Known
Algorithms

Problem Definition. The input is a sequence (x1;x2; : : :;xn)

of (not necessarily positive) real numbers, called “scores.”
The goal is to identify those contiguous subsequences hav-
ing the greatest total scores, where the score Si; j of a subse-
quence (xi;xi+1; : : :;x j) is simply the sum of its elements:

Si; j = ∑
i�k� j

xk:

Throughout the paper, the term “subsequence” will be
taken to mean “contiguous subsequence”, and likewise for
“supersequence”. Contiguous subsequences are sometimes
called substrings, segments, intervals, or regions. Likewise,
maximal scoring subsequences (defined below) are some-
times called locally optimal subsequences or maximum sum
intervals.

There is a subtlety in defining exactly what constitutes a
maximal scoring subsequence. Temporarily setting aside the
handling of tied scores, the highest scoring subsequence is
simply the subsequence (xi;xi+1; : : :;x j) that maximizes Si; j.
It is not so clear, however, what the second best subsequence
should be. The subsequence with the second highest numer-
ical score very likely will overlap the highest scoring subse-
quence except for the addition or deletion of a few scores at
one end. Given the motivating application, this conveys no
useful information. Instead, the kth best subsequence will be
defined to be the one that maximizes Si; j among those sub-
sequences disjoint from the k� 1 best subsequences. Ad-
ditionally, to avoid trivialities, we stop the process when
the next best score is nonpositive. Returning to the mat-
ter of tied scores, a zero-scoring subsequence adjacent to a
positive-scoring one creates overlapping subsequences with

tied scores. We resolve these ties by disallowing nonempty,
zero-scoring prefixes or suffixes in maximal scoring subse-
quences.

We define a maximal scoring subsequence (or maximal
subsequence for short) to be any of the (positive scoring)
subsequences found by the process described in the previ-
ous paragraph, and the desired output is a list of all these
subsequences. In practice, of course, scores below a certain
threshold might be discarded. Karlin and Altschul (1993) de-
scribe how such a threshold should be chosen to correspond
to a desired level of statistical significance.

As an example, consider the input sequence
(4;�5;3;�3;1;2;�2;2;�2;1;5). The highest scoring
subsequence is M = (1;2;�2;2;�2;1;5), with a total score
of 7. (There is another subsequence tied for this score by
appending (3;�3) to the left end of M, but this subsequence
is not maximal, since it has a nonempty zero-scoring prefix.)
Thus, the maximal subsequences are (4), (3), and M.

Previously Known Algorithm. Although the defini-
tion of the single highest scoring subsequence suggests that
quadratic time would be needed to search over all combi-
nations of i and j, there is a well known linear time algo-
rithm for finding the single maximum scoring subsequence;
cf. Bates and Constable (1985), Bentley (1986, Column 7),
or Manber (1989, Section 5.8). (It can also be found by a
specialization of the Smith-Waterman algorithm (Smith &
Waterman 1981).) The disjointness property immediately
suggests a simple divide-and-conquer algorithm for finding
all maximal subsequences: find the highest scoring subse-
quence, remove it, and then apply the algorithm recursively
to the remainder of the sequence to the left of the removed
portion, and then to the remainder to the right.

Analysis of this algorithm is similar to that for Quick-
sort. (For an analysis of Quicksort see, for example, Man-
ber (1989).) In the worst case, it will require quadratic time,
since the next highest scoring subsequence may be a short
subsequence near one end of the remaining sequence in ev-
ery recursive call. However, if the input is appropriately
random, the expected running time will be Θ(n logn), since
the highest scoring subsequence will usually fall nearer to
the middle. This result holds if (i) the residues in the se-
quence are chosen independently at random, and (ii) the ex-
pected score of a single random residue is negative. As-
sumption (ii) is a reasonable one (Karlin & Altschul 1990;
1993). Note in particular that if the expected score were pos-
itive, then the highest scoring subsequence would likely in-
clude most of the sequence, an uninterestingsituation. More-
over, if log likelihood ratios are used as scores, as described
in Section 1, then the expected score is the negative of a rel-
ative entropy, and is thus provably nonpositive. However,
assumption (i) is decidedly unreasonable in practice: we are
not interested in regions of unusual composition in random
sequences. Nevertheless, the n logn result is suggestive, and
in accord with the performance observed in practice. (See
Section 5.)
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3 Alternative Characterization

The procedural definition of maximal scoring subsequences
presented above, while well motivated, is somewhat diffi-
cult to use for many purposes, and a more direct definition is
preferable. Intuitively, the desired subsequences are “max-
imal” in the sense that they cannot be lengthened or short-
ened without reducing their scores. This simple intuition,
however, is too simple. For example, in the score sequence
(5;�4:9;1;3), both (5) and (1, 3) are maximal: (5) is the
highest scoring subsequence, and (1, 3) is the highest scor-
ing subsequence disjoint from (5). Under the naive defini-
tion suggested above, however, (5) would be the only max-
imal scoring subsequence: although subsequence (1, 3) has
nearly as high a score, it would be excluded because it can be
extended to form a higher scoring sequence (5;�4:9;1;3),
which in turn can be contracted to form the still higher scor-
ing sequence (5). The following alternative characterization
of the maximal scoring subsequences, due to Green (1997),
corrects this problem.

Proposition 1 Let K be any nonempty score sequence. A
subsequence I is maximal scoring in K if and only if

P1. all proper subsequences of I have lower score, and

P2. no proper supersequence of I contained in K satisfies P1.

For the remainder of the paper, we will take this as the
definition of a maximal scoring subsequence, proving its
equivalence to the original procedural definition at the end
of this section. We first develop a variety of useful conse-
quences of the new definition. For example, we show that
every nonempty prefix and suffix of a maximal scoring sub-
sequence has positive score, and that every subsequence sat-
isfying P1 (and hence every individual positive score) is con-
tained in some maximal scoring subsequence. Some of these
properties are needed for the proof of Proposition 1, and
some for the correctness of the algorithm in Section 4.

Let jKj denote the length of a sequence K.

Lemma 2 Let K be any nonempty score sequence. For
any subsequence I of K the following are equivalent:

1. I satisfies property P1.

2. For 0 � i � jIj; let Si denote the cumulative total of all
scores in K up to and including the ith score of I. Then S0
is the unique minimum and S

jIj is the unique maximum of
the Si’s.

3. All nonempty prefixes and all nonempty suffixes of I have
positive total score.

Proof: 1 ) 2: If for some 0 � i < jIj we have Si � S
jIj,

then the proper prefix of I with length i has total score at least
that of I. Similarly, if Si � S0 for some 0 < i� jIj, then the
length (jIj� i) suffix of I has total score at least that of I.

2) 3: The total score of the length i prefix of I is Si�S0,
which is positive since S0 is the unique minimum. Similarly,
a suffix will have score S

jIj� Si, which is positive since S
jIj

is the unique maximum.

3) 1: The score of any proper subsequence J of I will be
the total score of I minus the scores of the prefix of I to the
left of J and the suffix of I to the right of J. Since nonempty
prefixes and suffixes all have positive scores, J will have a
strictly lower score than I. 2

Lemma 3 Let K be any nonempty score sequence. The
maximal subsequences of K are pairwise disjoint (neither
overlapping nor abutting).

Proof: Suppose I and J are maximal and nondisjoint, with
I’s left end at least as far left as J’s. Let L be the union of
the intervals I and J. By Lemma 2, the minimum cumulative
scores within I and J occur uniquely at their respective left
ends, and the left end of J falls within (or at the right end of)
I, so the minimum cumulative score withinL occurs uniquely
at its left end. Similarly, L’s maximum cumulative score oc-
curs uniquely at its right end. Thus by Lemma 2, L satisfies
property P1, contradicting the P2 property of either I or J. 2

Lemma 4 Let K be any nonempty score sequence. Every
subsequence I of K satisfying property P1 is contained in a
maximal subsequence of K. In particular, every positive sin-
gle score is contained in a maximal subsequence.

Proof: Suppose not. Let I be a counterexample of max-
imum length. I satisfies property P1, but is not itself maxi-
mal, so it must be properly contained in some supersequence
J satisfying P1. J cannot be contained in any maximal sub-
sequence, for otherwise I would be contained in a maximal
subsequence. Thus J is also a counterexample to the lemma,
contradicting the choice of I as a longest counterexample. 2

Corollary 5 Within any subsequence that does not over-
lap any maximal subsequence, the cumulative scores are
monotonically nonincreasing.

Lemma 6 Let K be any nonempty score sequence.
Among consecutive occurrences of the minimum (maxi-
mum) cumulative total of all scores in any prefix of K, the
rightmost (leftmost, respectively) is either at the left (right,
respectively) end of one of its maximal subsequences, or at
the right (left, respectively) end of K.

Proof: If a minimum cumulative score occurs in a subse-
quence H that does not overlap any maximal subsequence,
by Corollary 5 the rightmost of consecutive occurrences of
this minimum must occur at the right end of H, which is ei-
ther the right end of K or the left end of some maximal sub-
sequence. If the minimum cumulative score occurs within
some maximal subsequence, it must occur at its left end, by
Lemma 2. Arguments for the maximum cumulative score are
dual. 2

Suppose J is a subsequence of a score sequence K. The
key issue in our inductive correctness arguments turns out
to be relating the maximal subsequences of J to those of
K. The following three lemmas give some of these relation-
ships. Lemma 7 establishes the easy direction, and Lem-
mas 8 and 9 give useful partial converses. We sometimes
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say that a sequence is I-maximal as a shorthand for “maxi-
mal scoring subsequence of I.”

Lemma 7 Let K be any nonempty score sequence. If I is
a subsequence of J, which in turn is a subsequence of K, and
I is K-maximal, then I is J-maximal.

Proof: Since I is K-maximal, it satisfies property P1, and
no proper supersequence of I in K satisfies P1. Then cer-
tainly there is no proper supersequence of I in J satisfying
P1. 2

Lemma 8 Let K be any nonempty score sequence. Sup-
pose J is a prefix of K, and suppose all scores in the suffix
of K following J are nonpositive. Then the maximal subse-
quences of K are exactly the same as those of J.

Proof: If I is K-maximal, then I is J-maximal by
Lemma 7. Conversely, if I is J-maximal, then no proper su-
persequence of I satisfying property P1 exists in J, and every
supersequence extending outside of J fails to satisfy property
P1 by Lemma 2, since it has a nonempty nonpositive suffix.
Thus, I is K-maximal. 2

Lemma 9 Let K be any nonempty score sequence. Sup-
pose M is a maximal subsequence of K, and let L and R be the
two (possibly empty) subsequences of K formed by deletion
of M. Then a subsequence I of L is L-maximal if and only if
I is K-maximal. Similarly, a subsequence of R is R-maximal
if and only if it is K-maximal.

Proof: We will only give the argument for L, the argument
for R being identical.

The “if” direction is immediate from Lemma 7.

For the “only if” direction, suppose I is L-maximal but
not K-maximal. I satisfies property P1, so by Lemma 4, I is
contained in some J that is K-maximal. J properly contains
I, since I is not K-maximal. Furthermore, J cannot be con-
tained in L, for otherwise I is not L-maximal. But neither can
J extend past the end of L, because then it would overlap M,
violating disjointness of K-maximal sequences (Lemma 3).

2

Finally we prove Proposition 1, establishing the equiva-
lence of the two alternative definitions of “maximal scor-
ing subsequence” considered above. That is, we show that
a subsequence is maximal according to the original proce-
dural definition given in Section 2 if and only if it satisfies
properties P1 and P2 of Proposition 1.

Proof (of Proposition 1): Let MAX(K) be the complete
list of subsequences satisfying P1 and P2 in K. Any positive-
scoring subsequence M having a globally maximum score
and no zero-scoring prefix or suffix clearly satisfies proper-
ties P1 and P2. Hence, MAX(K) is the empty list if K consists
only of nonpositive scores (by Lemma 2), and otherwise is
hMAX(L);M;MAX(R)i (easily shown by Lemma 9 and in-
duction on jKj), which is exactly the list produced by the re-
cursive algorithm in Section 2. 2

4 New Algorithm

We now present an algorithm that finds all maximal scoring
subsequences in time O(n). We first describe the algorithm,
and then discuss its correctness and performance.

Algorithm. The algorithm reads the scores from left
to right, and maintains the cumulative total of the scores
read so far. Additionally, it maintains a certain ordered list
I1; I2; : : :; Ik�1 of disjoint subsequences. For each such sub-
sequence I j, it records the cumulative total L j of all scores
up to but not including the leftmost score of I j, and the total
R j up to and including the rightmost score of I j.

The list is initially empty. Input scores are processed as
follows. A nonpositive score requires no special processing
when read. A positive score is incorporated into a new sub-
sequence Ik of length one1 that is then integrated into the list
by the following process.

1. The list is searched from right to left for the maximum
value of j satisfying L j < Lk.

2. If there is no such j, then add Ik to the end of the list.

3. If there is such a j, and R j � Rk, then add Ik to the end of
the list.

4. Otherwise (i.e., there is such a j, but R j < Rk), extend
the subsequence Ik to the left to encompass everything
up to and including the leftmost score in I j. Delete sub-
sequences I j; I j+1; : : :; Ik�1 from the list (none of them
is maximal) and reconsider the newly extended subse-
quence Ik (now renumbered I j) as in step 1.

After the end of the input is reached, all subsequences re-
maining on the list are maximal; output them.

As an example of the execution of the algorithm, con-
sider the sample input from Section 2. After reading the
scores (4;�5;3;�3;1;2;�2;2), suppose the list of disjoint
subsequences is I1 = (4); I2 = (3); I3 = (1;2); I4 = (2), with
(L1;R1) = (0;4), (L2;R2) = (�1;2), (L3;R3) = (�1;2), and
(L4;R4) = (0;2). (See Figure 1.) At this point, the cumu-
lative score is 2. If the ninth input is �2, the list of sub-
sequences is unchanged, but the cumulative score becomes
0. If the tenth input is 1, Step 1 produces j = 3, because I3
is the rightmost subsequence with L3 < 0. Now Step 3 ap-
plies, since R3 � 1. Thus I5 = (1) is added to the list with
(L5;R5) = (0;1), and the cumulative score becomes 1. If the
eleventh input is 5, Step 1 produces j = 5, and Step 4 ap-
plies, replacing I5 by (1;5) with (L5;R5) = (0;6). The al-
gorithm returns to Step 1 without reading further input, this
time producing j = 3. Step 4 again applies, this time merg-
ing I3, I4, and I5 into a new I3 = (1;2;�2;2;�2;1;5) with
(L3;R3) = (�1;6). The algorithm again returns to Step 1,
but this time Step 2 applies. If there are no further input
scores, the complete list of maximal subsequences is then
I1 = (4); I2 = (3); I3 = (1;2;�2;2;�2;1;5), as in Section 2.

Correctness. The key to proving the correctness of the
algorithm is the following lemma.

1In practice, one could optimize this slightly by processing a
consecutive series of positive scores as Ik .
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Figure 1: An example of the algorithm. Bold segments indicate score sequences currently in the algorithm’s list. The left figure
shows the state prior to adding the last three scores, and the right figure shows the state after.

Lemma 10 Let Q be a score sequence. Suppose that a
suffix Ik of Q satisfies property P1. Let P be the prefix of Q
preceding Ik. Further suppose that I1; : : :; Ik�1 is the com-
plete ordered list of the P-maximal subsequences. Then the
subsequences I01; I

0

2; : : :constructed from I1; : : :; Ik by Steps 1–
4 above form the complete ordered list of the Q-maximal se-
quences.

The correctness of the algorithm follows from Lemma 10.
Given an input sequence T , let Qi; 0� i� jT j; be the length
i prefix of T . We show by induction on i that after process-
ing the ith score, the list I1; I2; : : :constructed by the algorithm
above is the complete ordered list of Qi-maximal sequences.
The basis, i = 0, is immediate. For the induction step, sup-
pose the list consists of I1; : : :; Ik�1 when the ith score is read.
If the ith score is nonpositive, then the maximal subsequences
of Qi are exactly the same as the maximal subsequences of
Qi�1, by Lemma 8. If the ith score is positive, then it com-
prises the entire subsequence Ik constructed by the algorithm,
which clearly satisfies property P1. Furthermore, by the in-
duction hypothesis, I1; : : :; Ik�1 is the complete ordered list of
the Qi�1-maximal subsequences, and so Lemma 10 implies
that the algorithm correctly constructs the complete ordered
list of Qi-maximal sequences.

We now prove the Lemma.

Proof (of Lemma 10): There are three cases, paralleling
Steps 2–4 of the algorithm.

CASE 1: Suppose Step 1 locates no j such that L j < Lk.
Applying Lemma 6 to P and Lemma 2 to Ik, Lk is a minimum
cumulative score in Q. Then applying Lemma 6 to Q and
Lemma 2 to Ik, some prefix J of Ik is Q-maximal. In order
for J to have property P2, J = Ik, so Ik is Q-maximal. The
fact that each I j; 0 < j < k; is Q-maximal then follows from
Lemma 9, by choosing M = Ik.

CASE 2: Suppose there is a j such that L j < Lk , and sup-
pose for the greatest such j that R j � Rk . We claim that I j is
Q-maximal. Suppose not. From the definition of maximal-
ity there must be some proper supersequence J of I j satis-
fying property P1. Furthermore, this supersequence cannot

lie totally within P (otherwise I j would not be P-maximal).
Consequently, J must overlap Ik. The (nonempty) suffix of
J that begins at the right end of I j must have a nonpositive
score (since Rk , and hence by Lemma 2 every cumulative to-
tal within Ik, is at most R j). But this contradicts Lemma 2,
which means I j is Q-maximal.

Let S be the suffix of Q that begins at the right end of I j.
Applying Lemma 6 as in Case 1, Ik is S-maximal, since Lk
is a minimum cumulative score in S. By choosing M = I j in
Lemma 9, Ik is also Q-maximal. Then one more application
of Lemma 9 with M = Ik shows that I1; I2; : : :; Ik�1 are all Q-
maximal.

CASE 3: Suppose there is a j such that L j < Lk, and for
the greatest such j we have R j < Rk . This is perhaps the
most interesting case, in which several P-maximal subse-
quences are merged into one sequence having a greater to-
tal score. The merged sequence may not be Q-maximal, but
will be shown to satisfy property P1, and so Lemma 10 may
be applied inductively. Let k0 be the least index in the range
j < k0 � k such that R j < Rk0 . (Such a k0 exists since k sat-
isfies this property.) Let J be the interval extending from the
left end of I j to the right end of Ik0 . By construction, all in-
tervals I j0; j < j0 < k0; have L j < L j0 and R j0 < Rk0 , so by
Lemma 6 (and Lemma 7), L j is the unique minimum and Rk0

the unique maximum among the cumulative totals within J.
By Lemma 2, then, J satisfies property P1. If k0 < k, then J
lies wholly within P, contradicting the P-maximality of I j,
say. Hence we have k0 = k, and J is a suffix of Q satisfy-
ing property P1. Let P0 be the prefix of P to the left of J,
and note that, by choosing K = P and M = I j in Lemma 9,
the complete list of P0-maximal subsequences is I1; : : :; I j�1.
Furthermore, j < k, so by induction on k, returning to Step 1
(as the algorithm does in Step 4) will correctly compute the
maximal subsequences of Q. (The basis follows from Cases
1 and 2.) 2

Analysis. There is an important optimization that may be
made to the algorithm. In the case that Step 2 applies, not
only are subsequences I1; : : :; Ik�1 maximal in Q, they are
maximal in every sequence R of which Q is a prefix, and so
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may be output before reading any more of the input. (This is
true since Lk is a minimum cumulative score in Q, so any su-
persequence of I j, 1� j � k�1, extending past the left end
of Ik will have a nonpositive prefix, hence is not R-maximal
by Lemma 2.) Thus, Step 2 of the algorithm may be replaced
by the following, which substantially reduces the memory re-
quirements of the algorithm.

2:0 If there is no such j, all subsequences I1; I2; : : :; Ik�1 are
maximal. Output them, delete them from the list, and
reinitialize the list to contain only Ik (now renumbered
I1).

The algorithm as given does not run in linear time, because
several successive executions of Step 1 might re-examine a
number of list items. This problem is avoided by storing
with each subsequence Ik added during Step 3 a pointer to
the subsequence I j that was discovered in Step 1. The re-
sulting linked list of subsequences will have monotonically
decreasing L j values, and can be searched in Step 1 in lieu
of searching the full list. Once a list element has been by-
passed by this chain, it will be examined again only if it is be-
ing deleted from the list, either in Step 20 or Step 4. The work
done in the “reconsider” loop of Step 4 can be amortized over
the list item(s) being deleted. Hence, in effect, each list item
is examined a bounded number of times, and the total run-
ning time is linear.

The worst case space complexity is also linear, although
one would expect on average that the subsequence list would
remain fairly short in the optimized version incorporating
Step 20: since the expected value of an individual score is
negative, Step 20 should occur fairly frequently. Empirically,
a few hundred stack entries suffice for processing sequences
of a few million residues, for either synthetic or real genomic
data.

5 Experimental Results

We have implemented both our linear time algorithm and the
previously known divide and conquer algorithm and com-
pared their performances.

Our linear time algorithm is a factor of five faster even
on sequences as short as 100 residues, and is 15 to 20
times faster on megabase sequences. It can process a one
megabase score sequence in less than 100 milliseconds on
a midrange PC. Obviously, saving a few seconds or tens of
seconds on one analysis will not be critical in many circum-
stances, but may be more significant when analyzing long se-
quences, repeatedly analyzing sequences under varying scor-
ing schemes, searching data bases, or when offered on a busy
Web server, for example.

As noted in the introduction, the code for the linear time
algorithm is somewhat more complex than that for the divide
and conquer algorithm, but not substantially more complex.
The core of the algorithm is well under 100 lines of C code.

Figure 2 gives comparative timing information for the two
algorithms in one set of experiments. The figure plots T=n
versus n (on a logarithmic scale), where T is the running time

of either algorithm and n is the length of the input score se-
quence. As expected, the running time of the divide and con-
quer algorithm appears to be growing as n logn, as evidenced
by the linear growth of T=n when plotted against logn in
Figure 2. Also as expected, the running time of our algo-
rithm is growing linearly with n, i.e., T=n is nearly constant
over the full range of lengths considered, from n = 128 to
n = 1;048;576, with a mean of 80 nanoseconds per score.

The tests plotted in Figure 2 were performed on a Macin-
tosh 9600/300, (300 MHz PowerPC 604e processor, 1MB in-
line cache, 64 MB RAM). The input length varied by factors
of 2 from 27 to 220. Ten trials were run at each length, with
integer scores drawn independently and uniformly from -5 to
+4 (expectation -0.5). Each algorithm was run repeatedly on
each random score sequence to compensate for limited res-
olution of the system clock, but we did not carefully control
for cache effects. Each of the ten trials for each algorithm is
plotted in Figure 2. It is interesting to note that the running
time of our linear time algorithm is much less variable than
that of the divide and conquer algorithm, and in fact most of
its variation in these tests may be due to clock granularity.

The same tests using synthetic data were run on several
platforms (Pentium II, SPARC, Alpha). Additionally, we ran
tests using real genomic sequences (yeast and bacterial) of
up to a few megabases in length. Relative performance of
the two algorithms was similar for all these data sets on all
platforms. The performance of neither algorithm appears to
be particularly sensitive to the source of the data.

In the course of our timing tests, we ran a few simple ex-
periments such as the following. In the Haemophilus influen-
zae genome, the dinucleotide CpG appears on average once
every 25 bases. Karlin, Mrázek, and Campbell (1997) have
reported that the CpG dinucleotide is rather uniformly dis-
tributed throughout the H. influenzae genome, and its fre-
quency is generally explainable in terms of the underlying
frequencies of the mononucleotides C and G. Specifically,
they defined the quantity ρCG to be fCG= fC fG, where fCG is
the frequency of CpG dinucleotides in a given region, and
fC; fG are the corresponding mononucleotide frequencies in
that region. They observed that ρCG is near 1 and nearly
constant across successive 50kb contigs of the genome, in
contrast to certain other dinucleotides. We ran our maximal
subsequence algorithm on the complete genome, assigning a
score of 20 to each CpG dinucleotide and a score of -1 to all
others. As expected, since an “average” 25 residue sequence
will have a net score of -4, most of the nineteen thousand
maximal subsequences identified by the algorithm are quite
short and have low scores. However, about 20 subsequences
were found with lengths of two to twenty kilobases and (sta-
tistically significant (Karlin & Altschul 1990)) scores of sev-
eral hundred to several thousand. A third of these are eas-
ily explained away as regions of unusually high C/G content,
which can be expected to have more CpG dinucleotides (i.e.,
these regions also have ρCG near 1). However, two thirds
of the subsequences show a substantial enrichment in CpG
dinucleotides as compared to the frequency of C/G mononu-
cleotides in the same subsequence (high ρCG). Existence of
these CpG-rich regions does not contradict the observations

7th Intl. Conf. Intelligent Systems for Molecular Biology, Heidelberg, Germany, Aug. '99 239



Timing Comparison

0

200

400

600

800

1000

1200

1400

1600

100 1000 10000 100000 1000000 10000000

Sequence Length

T
im

e 
pe

r 
S

co
re

 (
ns

)

D&C

Linear

Figure 2: Timing comparison of the divide and conquer and linear time algorithms. See text for details.

of Karlin, Mrázek, and Campbell (1997) since they are only
visible on a variable length scale shorter than 50kb. We do
not claim that identificationof these regions is novel, nor that
they are biologically significant, but we do hope that avail-
abilityof the fast algorithm for the very general scoring prob-
lem presented in this paper will help researchers identify fea-
tures that are both novel and biologically significant.
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