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In this paper we derive a method for evaluating and improving techniques for selecting 
informative genes from microarray data. Genes of interest are typically selected by ranking 
genes according to a test-statistic and then choosing the top k genes. A problem with this 
approach is that many of these genes are highly correlated. For classification purposes it would 
be ideal to have distinct but still highly informative genes. We propose three different pre-filter 
methods — two based on clustering and one based on correlation — to retrieve groups of 
similar genes. For these groups we apply a test-statistic to finally select genes of interest. We 
show that this filtered set of genes can be used to significantly improve existing classifiers. 

1 Introduction 

Even though the human genome sequencing project is almost finished the analysis 
has just begun. Besides sequence information, microarrays are constantly 
delivering large amounts of data about the inner life of a cell. The new challenge 
is now to evaluate these gigantic data streams and extract useful information.  

Many genes are strongly regulated and only transcribed at certain times, in 
certain environmental conditions, and in certain cell types. Microarrays 
simultaneously measure the mRNA expression level of thousands of genes in a 
cell mixture. By comparing the expression profiles of different tissue types we 
might find the genes that best explain a perturbation or might even help clarify 
how cancer is developing.  

Given a series of microarray experiments for a specific tissue under different 
conditions we want to find the genes most likely differentially expressed under 
these conditions. In other words, we want to find the genes that best explain the 
effects of these conditions. This task is also called feature selection, a commonly 
addressed problem in machine learning, where one has class-labeled data and 
wants to figure out which features best discriminate among the classes.  If the 
genes are the features describing the cell, the problem is to select the features that 
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have the biggest impact on describing the results and to drop the features with 
little or no effect. These features can then be used to classify unknown data. Noisy 
or irrelevant attributes make the classification task more complicated, as they can 
contain random correlation. Therefore we want to filter out these features. 

Typically, informative genes are selected according to a test statistic or p-
value rank according to a statistical test such as the t-test. The problem here is that 
we might end up with many highly correlated genes. Besides being an additional 
computational burden, it also can skew the results and lead to misclassifications. 
Additionally, if there is a limit on the number of genes to choose we might not be 
able to include all informative genes. Our approach is to first find similar genes, 
group them and then select informative genes from these groups to avoid 
redundancy. 

Besides t-like-statistics, there are many different techniques applicable. There 
are non-parametric tests like TNoM1 (which calculates a minimal error decision 
boundary and counts the number of misclassifications done with this boundary) or 
Wilcoxon rank sum/Mann-Whitney2 (which test statistic is identical3 to the Park4 
score). It creates a minimal decision boundary too, but incorporates the distance 
from the boundary into the score. T-like statistics such as Fisher5 and Golub6 put 
different weights in the variance and number of samples. The Mutual Information 
score results from entropy and information theory, and the B-score7 comes from 
Bayesian decision theory. Vapnik8 describes an interesting method to optimize 
feature selection while generating support vector boundaries for SVMs. 

In this paper we will compare classification done with five different test 
statistics: Fisher,5 Golub,6 Wilcoxon,2 TNoM,1 and t-test2 on three different 
publicly available datasets, Golub,6 Notterman16 and Alon9. We will propose two 
algorithms based on clustering and one based on correlated groups to find similar 
genes. We then show that these prefiltering methods yield consistently better 
classification performance than standard methods using similar numbers of genes. 

The rest of the paper is organized as follows: Section 2 will review important 
methods needed for our proposed approach. Section 2.1 will introduce 
Microarrays. Section 2.2 describes a method for evaluating different feature 
selection sets using support vector machines and a technique called leave-one-out 
cross-validation. In section 2.3 we will review clustering techniques used in this 
paper. In section 2.4 we will discuss how reducing redundancy in a dataset can 
help with the final classification process and elucidate why redundancy can cause 
problems for classification tasks. In section 2.5 we propose new methods to select 
genes from clusters using correlation, clustering and statistical information about 
the genes. In section 3 we will present results using our proposed approach on 
three publicly available data sets. Section 4 contains conclusions and future 
research directions. 
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2 Methods and Approach 

2.1 Microarrays 

A typical microarray holds spots representing several thousand to several tens of 
thousands of genes or ESTs (expressed sequence tags). After hybridization the 
microarray will be scanned and converted into numerical data. Finally the data 
should be normalized. The purpose of this step is to counter systematic variation 
(e.g. difference in labeling efficiency for different dyes, compensation for signal 
spill over from neighboring spots10) and to allow a comparison between different 
microarrays11. The data we work with is already background-corrected and 
normalized, and we do not address these problems in this paper. 

2.2 Validation, Classification 

As we are proposing new gene selection schemes we want to measure their 
performance and allow a comparison. All schemes provide us with a set of 
informative genes that will be used for future classification. Assume we have n 
samples. Leave-one-out cross-validation (LOOCV) is a technique where the 
classifier is successively learned on n-1 samples and tested on the remaining one. 
This is repeated n times so that every sample was left out once. To build a 
classifier for the  n-1 samples, we extract the most revealing genes for these 
samples, and use a machine learner. With this classifier we try to classify the 
remaining (left out) sample. Repeating this procedure n times gives us n classifiers 
in the end. Our error score is the number of mispredictions. We use support vector 
machines (SVMs12) as the classification method as these are very robust with 
sparse and noisy data. 

2.3 Support Vector Machines 

Supports Vector machines (SVMs) expect a training data set with positive and 
negative examples as input (i.e., a binary labeled training data set). Then they 
create a decision boundary (the maximal-margin separating hyperplane) between 
the two groups and select the most relevant examples involved in the decision 
process (the so-called support vectors). The construction of the hyperplane is 
always possible as long as the data is linearly separable. If this is not the case, 
SVMs can use ‘kernels’, which provide a nonlinear mapping into a higher 
dimensional feature space. If a separating hyperplane in this feature space is 
found, it can correspond to a nonlinear decision boundary in the input space. If 
there is noise or inconsistent data a perfectly separating hyperplane may not exist. 
Soft-margin SVMs12 attempt to separate the training set with a minimal number of 
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errors. In this paper we used Bill Noble’s SVM implementation 1.3 beta now 
called gist13. 

2.4 Clustering 

Cluster analysis is a technique for automatically grouping and finding 
structures in a dataset. Clustering methods partition the dataset into clusters, where 
similar data are assigned to the same cluster whereas dissimilar data should belong 
to different clusters. Fuzzy clustering14 deals with the problem that there is often 
no sharp boundary between clusters in real applications. Instead of assigning an 
element to one specific cluster there is a membership probability for each cluster. 
In doing so an element can be a member of several clusters. Fuzzy clustering can 
be seen as a generalization of k-means15 clustering. We used the FCMeans 
Clustering MATLAB Toolbox V2-0.  

2.5 Reducing Redundancy 

Now that we have reviewed all the methods we need, we will return to the 
problem of feature selection. Table 1 shows a list of 7 genes from Notterman’s 
Adenoma16 dataset sorted by increasing p-value. For gene M18000 the expression 
value is generally higher in Adenoma than in Normals with the exception of 
Adenoma 1 and Normal 2. Looking at X62691 the same is true. Both genes have a 
very low p-value and would be pulled out by conventional methods, which focus 
on genes with the lowest p-values. Biologists are often interested in a small set of 
genes (for financial, personal workload or experimental reasons) that describes the 
perturbation as well as possible. Therefore we are limited in the number of genes 
to extract and e.g. assuming we could only extract 2 genes we would pull out the 
first two genes as they have the lowest p-value. However we would not get much 
additional information using the second gene as it shows the same overall pattern. 
It would be better to include a gene that provides us with extra information.  
Table 1: Expression values for 7 selected genes of Adenoma and normal tissues, sorted by p-value.  

Adenoma Normal Accession 
Number 1 2 3 4 1 2 3 4 

t-test   
p-value 

M18000 705.41 1227.27 959.35 951.56 359.83 711.08 485.33 431.19 0.014
X62691 387.91 577.57 578.45 546.54 227.26 436.65 306.94 239.33 0.016
M82962 91.85 16.27 12.61 61.62 187.44 76.90 181.38 186.53 0.017
U37426 0.47 7.05 6.30 3.40 -3.88 1.58 -2.99 -2.91 0.018
HG2564 2.33 0.54 1.58 3.82 -2.91 -2.11 1.00 -2.91 0.019
Z50853 35.43 26.03 51.49 41.22 27.68 15.80 12.46 15.99 0.022
M32373 -48.02 -28.20 -64.62 -56.95 -15.05 -16.86 -7.97 -34.88 0.022
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Table 2:  Correlation between Adenoma genes from table 1 

  M18000 X62691 M82962 U37426 HG2564 Z50853 M32373 
M18000 1.000       
X62691 0.961 1.000      
M82962 -0.944 -0.971 1.000     
U37426 0.973 0.975 -0.983 1.000    
HG2564 0.592 0.653 -0.553 0.529 1.000   
Z50853 0.514 0.616 -0.633 0.597 0.614 1.000  
M32373 -0.509 -0.590 0.602 -0.580 -0.619 -0.874 1.000 

 
Looking at the correlation values in table 2 we can see that the first four genes 

have an absolute correlation greater than 0.94. Not surprisingly highly correlated 
genes show the same misclassification pattern and in fact we find that the first four 
genes also have the same pattern of consistent outliers in Adenoma 1 and Normal 
2. In order to increase the classification performance we propose to use more 
uncorrelated genes instead of just the top genes. We expect the phenomenon 
illustrated by this example to be a general one. By just using the k best ranking 
genes according to a test-statistic we would select highly correlated genes. 
Correlation can be a hint that the two genes belong to the same pathway, are 
coexpressed or are coming from the same chromosome. In general we expect high 
correlation to have a meaningful biological explanation. If, e.g., genes A and B are 
in the same pathway it could be that they have similar regulation and therefore 
similar expression profiles. If gene A has a good test score it is highly likely that 
gene B will, as well. Hence a typical feature selection scheme is likely to include 
both genes in a classifier, yet the pair of genes provides little additional 
information than either gene alone. Of course we could just select more genes in 
order to capture all relevant genes. But not only would more genes involve higher 
computational complexity for classification but it also can skew the result if we 
have a lot more genes from one pathway. Furthermore if there are several 
pathways involved in the perturbation but one pathway has the main influence, we 
will probably select all genes from this pathway. If we then have a limit for the 
number of genes we might end up with genes only from this pathway. If many 
genes are highly correlated we could describe this pathway with fewer genes and 
reach the same precision. Additionally, we could replace correlated genes from 
this pathway by genes from other pathways and possibly increase the prediction 
accuracy. The same issue might be true when selecting a lot of genes as well, but 
it is more compelling when we have a limited budget of genes and can only select 
a few genes. 

Our method for gene selection will therefore be to prefilter the gene set and 
drop genes that are very similar. For the remaining genes we will apply a common 
test statistic and pull out the highest-ranking genes. One way to find correlated 
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genes would be to calculate the correlation between all genes. In our first method 
we selected from the best genes (best according to a test statistic) those that have a 
pair-wise correlation below a certain threshold. A simple greedy algorithm 
accomplishes this selection – the k-th gene selected is the gene with highest p-
value among all genes whose correlation to each of the first k-1 is below the 
specified threshold. This method is called “Correlation” in the figures below. 
Greedy algorithms are of course simple, but often give results of poor overall 
quality due to their myopic decision-making. As an alternative allowing a more 
global view of the data, we also consider clustering algorithms. Clustering is very 
versatile as it can use different distance functions (Euclidean, Lk, Mahalanobis, 
and correlation), and different underlying models, shapes and densities, which are 
not captured by just correlation. In this paper we compared clustering and 
correlation methods. We used a fuzzy clustering algorithm because it assigns a 
membership probability for a cluster for each gene and may therefore capture the 
fact that some genes are involved in several pathways. Although a cluster does not 
automatically correspond to a pathway it is a reasonable approximation that genes 
in the same cluster have something to do with each other or are directly or 
indirectly involved in the same pathway. Our basic approach is to cluster the 
genes, and then to select one or more representative genes from each cluster. The 
details how many genes from which cluster depend on the “quality” of each 
cluster and will be discussed below. 

2.6 Assigning quality to cluster 

Once we have done the clustering we know that genes in a cluster show similar 
expression profiles and might be involved in the same pathway. Since we want to 
have as many pathways as possible involved in our list of significant genes, we 
would like to sample from each cluster/pathway. But it would not be fair to treat 
each cluster and gene equally. The size of the clusters as well as the quality of a 
cluster play a role, i.e. how close together are the genes, how far away are they 
from the cluster center. If a cluster is very tight and dense it can be assumed that 
the members are very similar. On the other hand if a cluster has wide dispersion 
the members of the cluster are more heterogeneous. To capture the biggest 
possible variety of genes, it would therefore be favorable to take more genes from 
a cluster of bad quality than from a cluster with good quality. To determine the 
quality for the fuzzy clustering algorithm we used the membership probability for 
a gene. We said that an element belongs to the cluster to which it has the highest 
membership probability. The cluster quality is then assessed by looking at the 
average membership probability of its elements. 

A high cluster quality means low dispersion, and the closer the quality gets to 
0 the more scattered the cluster becomes. In our first clustering algorithm we 
decided that no matter how bad the quality and how small the size of the cluster 
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we should get at least one element from each cluster. Our reasoning is as follows. 
First, if the cluster size is very small but there is a very good gene in it, we do not 
want to miss that cluster. Second, by eliminating a cluster we lose all the 
information of that pathway, so getting at least one representative plays a role like 
pseudocounts. Third, if we have a cluster that is extremely correlated, we would 
have a very high quality score and therefore may not pick any gene from that 
cluster. But this one gene from that cluster might have had a very good 
contribution to the discrimination process.  

The drawback is that a cluster might represent a pathway that is totally 
unrelated to the discrimination we look for. If the cluster then has a bad quality we 
might pick a lot of genes from that cluster even though they are not informative. 
To counteract this problem we implemented the possibility to mask out and 
exclude clusters that have an average bad test statistic p-value (this method is 
called “Masked out Clustering” in the figures, whereas “Clustering” refers to the 
method where we look at all clusters and do not mask out any). Lastly we want to 
have genes that have a high discriminatory power, i.e. can explain the symptoms. 
This can be achieved by using an appropriate test statistic. 

3 Results and Discussion 

For our experiments we selected three different publicly available microarray 
datasets, Alon9(40 Adenocarcinoma and 22 normal samples), Golub6(47 ALL and 
25 AML leukemia samples) and Notterman16(18 tumor and 18 normal samples). 
We compared five different test statistics: Fisher5, Golub6, Park4, TNoM1, and t-test 
and ran our three different filtering algorithms described above: Correlation, 
Clustering, Masked out Clustering. The performance of the feature selection was 
calculated using SVM and LOOCV scores. 

For each possible combination of test statistic and clustering algorithm we 
evaluated the performance varying the number of clusters between 1 and 30 and 
the number of selected features between 2 and 100. We used the Euclidean 
distance metric and a fuzzy clustering softness of 1.2 (where 1 would be hard 
clustering and infinity is everything belonging to all clusters). For SVM we chose 
an RBF kernel function and used data normalization in the feature space. 

We also calculated the LOOCV performance using all available data (i.e. not 
reducing the number of genes but using all of them). The result was that LOOCV 
produced 6 false classifications in the Alon’s colon dataset, resulting in an error of 
9.7%. In Golub’s leukemia dataset LOOCV produced 2 false classifications, 
resulting in an error of 2.8% and in Notterman’s carcinoma dataset LOOCV made 
1 false classification, resulting in an error of 2.8%.  

Figure 1 shows a 3d plot of the LOOCV performance varying the number of 
clusters selected between 1 and 10 and the number of features chosen between 10 
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and 100 in steps of 10. The plot shows the clustering algorithm without masking 
out. 

Figure 1: LOOCV performance for Alon’s data set using clustering and conventional methods 

 

There are no values for 10 features and more than 10 clusters, as well as 20 
features and more than 20 clusters, as one of our constraints is that each cluster 
has at least one member in the feature set. So we can never have more clusters 
than features selected. 

In the leftmost ribbon (starting in the lower left corner and going up to the top 
left corner) we can see the performance varying the number of features and using 
just one cluster (i.e. this is our standard comparison line, as this reflects just 
selecting features by test-statistic). The whole plot seems very flat once we have 
more than 30 features. But notice the darker spots in the middle (between 10 and 
20 clusters), that reflect very low LOOCV scores. One reason that there is a high 
peak for less than 30 features is that the t-test selects highly correlated and 
therefore redundant genes, which makes it hard for the underlying SVM to learn a 
good classifier. The average correlation of the top 10 genes selected with the t-test 
is 0.85. 

Figure 2 compares different test statistics on a given data set using the first 
clustering algorithm. Notice that Fisher and Golub behave very similarly as do 
Park and TNoM, but t-test has (besides the big bulk at only a few features) a very 
flat and robust behavior. Fisher and Golub seem to have a higher variance in class- 
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Figure 2: Comparison of different test statistics 
 

ification but their best classification performance is similar to t-test. They achieve 
their best results with 6-25 clusters. TNoM and Park achieve their best results for 
fewer clusters (in the range of 1-6) and in fact they seem not to benefit from the 
clustering as much as t-test, Fisher or Golub do. 

For Notterman’s carcinoma dataset the standard classification process already 
achieves 0% error when using more than 10 features but we can still improve the 
classification when using 10 features or less. Using only that few features we still 
manage to have a 0% error with most of the test statistics. Due to space 
restrictions figures are not shown here but can be accessed online17. 

Now consider how the LOOCV performance of our clustered result compares 
to the conventional methods (depicted as normal). In figure 3 we plot the normal 
score, the clustered scores (the minimum error score over all trials with cluster 
size from 2 to 30), the clustered scores with masking out and the correlation scores 
for the LOOCV performance for each of the five test-statistics. Here we did not 
plot the number of errors (plots for this are available online17), that reflect the 
efficiency of the classification but a ROC18 (receiver operator curves) score (i.e., 
the area under the ROC graph, which takes both false negative and false positive 
errors into account and reflects the robustness of the classification). We can see 
that almost always the filtered performance is better than the conventional 
method. Another noticeable fact is that without clustering, TNoM would have on 
average the best LOOCV performance of the five scores for Alon’s colon dataset. 
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An explanation might be that TNoM, as a nonparametric test, extracts less 
correlated genes and therefore already does a good job in selecting different genes. 

 

Figure 3: Comparison of test-statistics and different prefilter methods for Alon’s data set 

 
In the top 30 t-test genes in Alon’s dataset, we have an average correlation of 

0.79, whereas in the top 30 TNoM genes, we have only an average correlation of 
0.56. Wilcoxon (also a nonparametric test) achieves the best result of all the tests 
(when comparing 30 features) and can reduce the absolute LOOCV error to 5.17 
The average correlation of the top 30 Wilcoxon genes is 0.43. 

Doing the same comparison on Golub’s dataset yields figure 4. In Alon’s 
dataset it seemed that TNoM was on average the best test statistic whereas in 
Golub’s leukemia dataset Wilcoxon performs best. We still see that clustering can 
lower the error in most of the cases. A remarkable fact is that with clustering we 
achieve 0% error with the t-test when using more than 50 features. Notice that we 
had 2 errors when using all the data. Here, not only can feature selection reduce 
the number of genes to find, but it can also decrease the error. 

Although clustering for feature selection generally seems to improve the 
LOOCV error, the least improvements were obtained using it in conjunction with 
the Wilcoxon rank sum test and the best performance improvement was achieved 
using it together with t-tests. As illustrated above the reason for that could be that 
the t-test generally finds more correlated genes. The nonparametric tests do not 



Pac Symp Biocomput.  2003 11 

take values into account and calculate their scores purely based on rank 
information what seems to have a positive effect on selecting fewer correlated 
genes. 
 

Figure 4: Comparison of different prefilter methods for Golub’s data set 

4 Conclusion and further research 

In this paper we presented three novel prefilter methods to increase 
classification performance with microarray data. There is no clear winner between 
the three proposed methods and it depends largely on the dataset and parameters 
used.  All the proposed feature selection methods find a subset that has better 
LOOCV performance than the currently used approaches. One question not 
addressed here is how to find the correct number of clusters. It is pretty expensive 
to try all possible numbers for clusters to find a setting that provides us with a 
good LOOCV performance. One direction for future work would be to estimate 
the number of clusters using a BIC19 (Bayesian Information Criterion) score or 
switching over to model based clustering20.  

We addressed the problem of feature selection and outlined why feature 
selection has to be done and how it can be done without losing crucial 
information. The question not answered here is how many features/genes should 
be chosen in the end. One could argue to choose exactly that many genes as 
necessary to achieve the lowest LOOCV error. But in the end it comes down to a 
tradeoff between false positives and false negatives. The more genes we have in 
our set of interest (the feature set) the more genes might also be real candidates. 
The extreme would be to take all genes. Then we definitely have all candidates 
but also a very high percentage of false positives. The other extreme would be to 
take no gene at all. Then we would not mispredict anything to be a real gene but 
would have a very high false negative rate. The final answer on how many genes 
to select can only be answered by the biologists who must judge how much time 
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they can invest in examining these genes further and which false positive/negative 
rate they will accept. 

We feel, however, that for any fixed size the methods outlined here are likely 
to identify sets of genes that are stronger predictors than sets found by standard 
methods, which should be of significant value for diagnostic purposes as well as 
for guiding further exploration of the underlying biology. 
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