
Time-Space Tradeo�s for Undirected Graph Traversal

by Graph Automata �

Paul Beame y Allan Borodin z Prabhakar Raghavan x Walter L. Ruzzo y

Martin Tompa y

May 10, 1997

Abstract

We investigate time-space tradeo�s for traversing undirected graphs, using a variety

of structured models that are all variants of Cook and Racko�'s \Jumping Automata

for Graphs". Our strongest tradeo� is a quadratic lower bound on the product of

time and space for graph traversal. For example, achieving linear time requires linear

space, implying that depth-�rst search is optimal. Since our bound in fact applies

to nondeterministic algorithms for nonconnectivity, it also implies that closure under

complementation of nondeterministic space-bounded complexity classes is achieved only

at the expense of increased time. To demonstrate that these structured models are

realistic, we also investigate their power. In addition to admitting well known algorithms

such as depth-�rst search and random walk, we show that one simple variant of this

model is nearly as powerful as a Turing machine. Speci�cally, for general undirected

graph problems, it can simulate a Turing machine with only a constant factor increase

in space and a polynomial factor increase in time.

�This material is based upon work supported in part by the Natural Sciences and Engineering Research Council

of Canada, by the National Science Foundation under Grants CCR-8703196, CCR-8858799, CCR-8907960, CCR-

9002891, and CCR-9301186, and by IBM under Research Contract 16980043. A portion of this work was performed

while the fourth author was visiting the University of Toronto, whose hospitality is gratefully acknowledged.
yDepartment of Computer Science and Engineering, University of Washington, Box 352350, Seattle, WA, U.S.A.

98195
zDepartment of Computer Science, University of Toronto, Toronto, Ontario, Canada M5S 1A4
xIBM Research Division, Almaden Research Center, 650 Harry Road, San Jose, CA, U.S.A.. 95120

1

1. The Complexity of Graph Traversal

Graph traversal is a fundamental problem in computing, since it is the natural abstraction of many

search processes, with applications as diverse as Internet searching (Mauldin and Leavitt [40],

Selberg and Etzioni [46]) and computer-aided veri�cation (Dill, et al. [25], Kurshan [38]). In com-

putational complexity theory, graph traversal (or more precisely, st-connectivity) is a fundamental

problem for an additional reason: understanding the complexity of directed versus undirected graph

traversal seems to be the key to understanding the relationships among deterministic, probabilis-

tic, and nondeterministic space-bounded algorithms. For instance, although directed graphs can be

traversed nondeterministically in polynomial time and logarithmic space simultaneously, it is not

widely believed that they can be traversed deterministically in polynomial time and small space

simultaneously. (See Tompa [48] and Edmonds and Poon [27] for lower bounds, and Barnes et

al. [5] for an upper bound.) In contrast, undirected graphs can be traversed in polynomial time and

logarithmic space probabilistically by using a random walk (Aleliunas et al. [2], Borodin et al. [17]);

this implies similar resource bounds on (nonuniform) deterministic algorithms (Aleliunas et al. [2]).

More recent work presents uniform deterministic polynomial time algorithms for the undirected

case using sublinear space (Barnes and Ruzzo [8]), and even O(log2 n) space (Nisan [41]), as well

as a deterministic algorithm using O(log1:5 n) space, but more than polynomial time (Nisan et

al. [42]).

In this paper we concentrate on the undirected case. The simultaneous time and space require-

ments of the best known algorithms for undirected graph traversal are as follows. Depth-�rst or

breadth-�rst search can traverse any n vertex, m edge undirected graph in O(m + n) time, but

requires
(n) space. Alternatively, a random walk can traverse an undirected graph using only

O(log n) space, but requires �(mn) expected time (Aleliunas et al. [2]). In fact, Feige [28], based

on earlier work of Broder et al. [20] and Barnes and Feige [7], has shown that there is a spectrum

of compromises between time and space for this problem: any graph can be traversed in space S

and expected time T , where ST � mn(log n)O(1)=dmin and dmin is the minimum degree of any

vertex. This raises the intriguing prospect of proving that logarithmic space and linear time are

not simultaneously achievable or, more generally, proving a time-space tradeo� that closely matches

these upper bounds.

Although it would be desirable to show a tradeo� for a general model of computation such as a

random access machine, obtaining such a tradeo� is beyond the reach of current techniques. Thus

it is natural to consider a \structured" model (Borodin [16]), that is, one whose basic move is based

on the adjacencies of the graph, as opposed to one whose basic move is based on the bits in the

graph's encoding. An appropriate structured model for proving such a tradeo� is some variant of

the JAG (\jumping automaton for graphs") of Cook and Racko� [24]. Such an automaton has a set

of states, and a limited supply of pebbles that it can move from vertex to adjacent vertex (\walk")

or directly to a vertex containing another pebble (\jump"). The purpose of its pebbles is to mark

certain vertices temporarily, so that they are recognizable when some other pebble reaches them.

The pebbles represent vertex names that a structured algorithm might record in its workspace.

Walking represents replacing a vertex name by some adjacent vertex found in the input. Jumping

represents copying a previously recorded vertex name.

Rabin (see [24]), Savitch [45], Blum and Sakoda [13], Blum and Kozen [12], Hemmerling [30] and

others have considered similar models; see Hemmerling's monograph for an extensive bibliography

2

(going back over a century) emphasizing results for \labyrinths" | graphs embedded in two- or

three-dimensional Euclidean space.

The JAG is a structured model, but not a weak one. In particular, it is general enough to

encompass in a natural way most known algorithms for undirected graph traversal. For instance, a

JAG can execute a depth-�rst or breadth-�rst search, provided it has one pebble for each vertex,

by leaving a pebble on each visited vertex in order to avoid revisiting it, and keeping the stack or

queue of pebble names in its state. Furthermore, as Savitch [45] shows, a JAG with the additional

power to move a pebble from vertex i to vertex i + 1 can simulate an arbitrary Turing machine

on directed graphs. Even without this extra feature, we will show in Section 3 that JAGs are

as powerful as Turing machines for the purposes of solving undirected graph problems (our main

focus). In particular, we will show for all space bounds S(n) =
(logn), that JAGs can solve any

graph problem solvable by Turing machines in space S(n), with at most a constant factor loss in

space and a polynomial factor loss in time. Furthermore, the simulation requires only two pebbles

and no jumping.

Cook and Racko� de�ne the time T used by a JAG to be the number of pebble moves, and the

space to be S = P log2 n+ log2Q, where P is the number of pebbles and Q the number of states

of the automaton. (Keeping track of the location of each pebble requires log2 n bits of memory,

and keeping track of the state requires log2Q.) It is well known that st-connectivity for directed

graphs can be solved by a deterministic Turing machine in O(log2 n) space, by applying Savitch's

Theorem [44] to the obvious O(log n) space nondeterministic algorithm for the problem. Cook and

Racko� show that the same O(log2 n) space upper bound holds for deterministic JAGs by direct

construction of an O(log n) pebble, nO(1) state deterministic JAG for directed st-connectivity. More

interestingly, they also prove a lower bound of
(log2 n= log log n) on the space required by JAGs

solving this problem, nearly matching the upper bound. Standard techniques (Adleman [1], Aleli-

unas et al. [2]) extend this result to any randomized JAG whose time bound is at most exponential

in its space bound. Berman and Simon [11] extend this space lower bound to probabilistic JAGs

with even larger time bounds, namely exponential in (log n)O(1).

In this paper we use variants of the JAG to study the tradeo� between time and space for

the problem of undirected graph traversal. The JAG variants we consider are in some ways more

restricted than the model introduced by Cook and Racko�, but in other ways are sometimes more

powerful. For example, the variant studied in Section 4 is more restricted in its jumping ability,

but is considerably more powerful in another dimension, namely, it is nondeterministic.

Several authors have considered traversal of undirected regular graphs by a JAG with an unlim-

ited number of states but only the minimum number (one) of pebbles, a model better known as a

universal traversal sequence (Aleliunas et al. [2], Alon et al. [3], Bar-Noy et al. [4], Borodin, Ruzzo,

and Tompa [18], Bridgland [19], Buss and Tompa [21], Istrail [34], Karlo� et al. [37], Tompa [49]).

A result of Borodin, Ruzzo, and Tompa [18] shows that such an automaton requires
(m2) time (on

regular graphs with 3n=2 � m � n2=6� n). Thus, for the particularly weak version of logarithmic

space corresponding to the case P = 1, a quadratic lower bound on time is known.

The known algorithms and the lower bounds for universal traversal sequences suggest that

the true time-space product for undirected graph traversal is approximately quadratic, perhaps

�(mn). The main results of this paper are lower bounds for variants of the JAG that provide

progress toward proving this conjecture and, in fact, establish such a lower bound for one variant.

3

These results are outlined below.

The upper bound of ST � mn(logn)O(1)=dmin by Feige [28], and the preceding upper bounds of

Broder et al. [20] and Barnes and Feige [7], are established on a model that is actually a restricted

variant of the JAG. In their algorithms, the JAG initially drops P � 1 pebbles on random vertices,

after which they are never moved. It then uses its last pebble to explore the graph (probabilistically),

with the others as �xed landmarks. In Section 4, using essentially the same variant of the JAG,

we prove lower bounds of PT =
(mn=d) =
(n2) for d-regular graphs (d � 3), and PT =
(mn)

for nonregular graphs, independent of the value of Q, even for nondeterministic JAGs. This nearly

matches the upper bound. The main di�erence between the upper and lower bounds is that they are

for complementary problems. The upper bound is by a one-sided error probabilistic algorithm for

undirected st-connectivity. The lower bound applies to nondeterministic, and hence one-sided error

probabilistic, algorithms for st-nonconnectivity. This result does not imply that Feige's algorithm

is optimal, but does imply, for example, that it cannot be made both errorless (i.e., zero-sided error)

and substantially faster (on this JAG model). It also implies optimality of depth- and breadth-

�rst search, in the following sense. While it is not surprising that linear time is necessary for

deciding connectivity (e.g., see Theorem 3), our quadratic lower bound shows the stronger result

that achieving linear time requires linear space.

This result also bears on the complexity of undirected st-connectivity, versus that of its comple-

ment, st-nonconnectivity. For deterministic, or errorless probabilistic algorithms, of course, the two

problems are of equal complexity. For nondeterministic or one-sided error probabilistic algorithms,

however, the complexities may di�er. In particular, if a problem L is solvable nondeterministi-

cally in O(log n) space, then the complement of L is, too, by the result of Immerman [33] and

Szelepcs�enyi [47]. (For the problem of undirected st-connectivity, this also follows from the result

of Nisan and Ta-Shma [43].) However, their algorithms are rather slow. For example, a logarithmic

space nondeterministic RAM can solve st-connectivity in time O(n), but to solve the complemen-

tary st-nonconnectivity problem by the Immerman or Szelepcs�enyi algorithms requires time
(n4).

Is nonconnectivity intrinsically more di�cult? One of our results shows that this is indeed the case,

at least on one class of structured models we consider. Namely, although both problems are solv-

able by a logarithmic space, polynomial time nondeterministic JAG, st-nonconnectivity is provably

harder. Speci�cally, st-connectivity is solvable in O(n) time by a logarithmic space nondeterminis-

tic JAG with only one pebble, a constant number of states, and no jumping. In contrast, we show

that st-nonconnectivity requires more time, even on a somewhat richer model. Namely, time
(mn)

(
(n2) for regular graphs) is required to solve st-nonconnectivity by a nondeterministic JAG with

one movable pebble and any �xed number of unmovable pebbles, even using exponentially many

states and jumping.

The result above is the desired quadratic lower bound, on a model that is natural but more

restricted than we would like. In particular, it would be nice to extend the result to a model in

which all pebbles are movable. In fact, our proof does extend to give a nonlinear lower bound when

some motion of the pebbles is allowed, but the bound degenerates when the pebbles are allowed to

move with complete freedom. Such models are surprisingly powerful; see Section 3. Nevertheless,

in a companion paper [9] we prove a lower bound on a model with freely moving pebbles, but

without the ability to jump one pebble to another. This nonjumping model is closer to the one

studied by Blum and Sakoda [13], Blum and Kozen [12] and Hemmerling [30]. We will distinguish

this nonjumping variant by referring to it as a WAG | \walking automaton for graphs".

4

Following the preliminary appearance of some of these results [10], Edmonds [26] proved a much

stronger result for traversing undirected graphs than that proved in [9], and Barnes and Edmonds

[6] and Edmonds and Poon [27] proved even more dramatic tradeo�s for traversing directed graphs.

The results described above have the strength that they hold independent of the magnitude of

Q, the number of states. Presumably the bounds can be strengthened by also accounting for Q. It

is tempting to tackle �rst the case in which Q is constant; indeed, Cook and Racko� [24] investigate

JAGs on undirected graphs in this case, showing for example that PQ = O(1) is impossible. For a

nonjumping variant of JAGs, in Section 5 we prove the stronger bound PQ =
(n) for 2-regular

graphs, no matter how much time the automaton is allowed. Thus, for logarithmic space, lower

bounds on time are only interesting when the number of states grows at least linearly with the

size of the graph. As one simple consequence, this makes the lower bounds harder to prove, as

one cannot simply make the graph so large compared to Q that the automaton is guaranteed to

loop forever among some states. As a byproduct, we show that a universal traversal sequence for

2-regular graphs cannot consist solely of the repetition of a short sequence.

Sections 3, 4, and 5 are largely self-contained, and may be read in any order.

2. Graph-Traversing Automata

The problem we will be considering is \undirected st-connectivity": given an undirected graph G

and two distinguished vertices s and t, determine if there is a path from s to t.

Consider the set of all n-vertex, edge-labeled, undirected graphs G = (V;E) with maximum

degree d. For this de�nition, edges are labeled as follows. For every edge fu; vg 2 E there are two

labels �u;v; �v;u 2 f0; 1; : : : ; d � 1g with the property that, for every pair of distinct edges fu; vg

and fu;wg, �u;v 6= �u;w. It will sometimes be convenient to treat an undirected edge as a pair of

directed half edges, each labeled by a single label. For example, the half edge directed from u to v

is labeled �u;v.

We will also consider more restricted labelings, since this technical detail in
uences some of our

results in unexpected ways. The general de�nition above requires that the outgoing labels from

each vertex u be distinct. That is, for all u and all neighbors v 6= v0 of u we require �u;v 6= �u;v0 .

We de�ne a graph to be bijectively labeled if, in addition, the incoming labels are distinct, i.e.,

�v;u 6= �v0;u. Any graph G can be given a bijective labeling as follows. Form a bipartite graph on

two copies of G's vertex set by adding a directed edge from u in the �rst copy to v in the second

for each directed half edge from u to v in G. Any bipartite graph of maximum degree d can be

d-edge-colored using matching techniques (see Bondy and Murty [15, Theorem 6.1]). The color of

the edge (u; v) becomes the label �u;v of the corresponding half edge in G.

A special case of bijective labelings are the symmetric labelings, where all edges have the

same label in each direction, i.e., �u;v = �v;u for all u; v. (Universal traversal sequences for regu-

lar graphs with bijective and symmetric labelings have been considered previously by Hoory and

Wigderson [32] and Istrail [35], respectively, although under di�erent names. Both papers used the

term \consistent" for these two di�erent classes of restricted labelings.)

Not all graphs have symmetric labelings, and while every graph does have a bijective labeling,

such labelings are not known to be computable in logarithmic space. Nevertheless, Lemma 1 below

5

shows that, when considering upper bounds for st-connectivity, there is no loss of generality in

restricting attention to symmetrically (and hence, bijectively) labeled graphs. Of course, lower

bounds are at least as strong if they also hold when restricted to such graphs.

The reduction mentioned in Lemma 1 is not intended to be implemented on a JAG, but rather

on a general model of computation such as a Turing machine.

Lemma 1: There is a simple, connectivity-preserving, logarithmic space reduction from general

labeled graphs to symmetrically labeled graphs of maximum degree at most three.

Proof: Let ru;v be the rank of �u;v in f�u;v0 j v
0 is adjacent to ug. For example, if the graph

is regular, ru;v is simply �u;v. Replace each vertex of degree d by a d-cycle, if d is even, and by a

(d+ 1)-cycle, if d is odd. (For the purposes of this proof, a 2-cycle is simply an edge.) Label these

cycles symmetrically using 0 and 1. Replace edge fu; vg by an edge from the ru;v-th vertex of u's

cycle to the rv;u-th vertex of v's cycle, symmetrically labeled 2. 2

It is not di�cult to extend the proof to make the graph in Lemma 1 both symmetrically labeled

and 3-regular.

Following Cook and Racko� [24], a JAG is an automaton with Q states and P distinguishable

pebbles, where both P and Q may depend on n and d. For the st-connectivity problem, two vertices

s and t of its input graph are distinguished. The P pebbles are initially placed on s. Each move

of the JAG depends on the current state, which pebbles coincide on vertices, which pebbles are

on t, and the edge labels emanating from the pebbled vertices. Based on this information, the

automaton changes state, and selects some pebble p and either some i 2 f0; 1; : : : ; d � 1g or some

j 2 f1; 2; : : : ; Pg. In the former case, i must be an edge label emanating from the vertex currently

pebbled by p, and p is moved to the other endpoint of the edge with label i; in the latter case, p

\jumps" to the vertex occupied by pebble j. (The decision to make t \visible" to the JAG but

s \invisible" was made simply to render 1-pebble JAGs on regular graphs equivalent to universal

traversal sequences.) A deterministic JAG that determines st-connectivity is required to enter

an accepting state if and only if there is a path from s to t. Nondeterministic and probabilistic

generalizations of JAGs are de�ned in the usual way. Note that JAGs are nonuniform models.

There are a number of interesting variants of JAGs. For instance, in Section 4 we will consider

a strengthened form of jumping, called \strong jumping," where the automaton's move may also

be to select some v 2 f1; : : : ; ng and jump pebble p to vertex v. On the other hand, in Section 5 we

will disallow jumping by studying WAGs. We will also distinguish among three types of pebbles:

\active", \passive", and \unmovable". The automaton as described in the previous paragraph has

active pebbles, in the sense that any pebble can move. A weaker notion is that of the passive

pebble, which cannot move unless accompanied by an active pebble. In this case, we allow one

active pebble accompanied by any number of passive pebbles to walk or jump each move. Of

particular interest is the case of one active pebble and P � 1 passive pebbles, in which case it is

natural to think of the automaton itself as the active pebble moving about the graph, picking up

and dropping pebbles. This is the model used in Section 5.

Closely related to the passive pebble is the unmovable pebble, which, once placed on the graph,

cannot be moved at all. This is the model discussed in Section 4. We will mainly consider unmovable

pebbles as a special case of passive pebbles. That is, the automaton starts with a supply of pebbles

6

that are carried and dropped at will (but never picked up). In Section 4.2, however, we will also

consider a less uniform placement method where some of the pebbles are placed on the graph before

the JAG begins its computation. Detailed de�nitions of this version are deferred to Section 4.2.

We have de�ned JAGs running on arbitrary graphs, but JAGs that are guaranteed to operate

correctly only on regular graphs are also of interest, and sometimes may be substantially more

e�cient than in the general case; see Theorem 12, for example. Our lower bounds generally

apply even to JAGs operating on regular graphs. The restriction to regular graphs, in addition to

strengthening the lower bound results, provides comparability to the known results about universal

traversal sequences. A technicality that must be considered in the case of regular graphs is that

they do not exist for all choices of degree d and number of vertices n, as is seen from the following

proposition.

Proposition 2: d-regular, n vertex graphs exist if and only if dn is even and d � n� 1.

(See [18, Proposition 1], for example, for a proof.) To allow use of
-notation in expressing our

lower bounds, however, the \time" used by a JAG must be de�ned for all su�ciently large n. To

this end, we consider the time used by a JAG on d-regular, n-vertex graphs where dn is odd to be

the same as its running time on d-regular, (n + 1)-vertex graphs. We adopt a similar convention

for d-regular symmetrically labeled graphs, which exist if and only if, in addition to the restrictions

above, either d = 0 or n is even.

It is not di�cult to show that st-nonconnectivity requires time
(m) on any of the JAG variants

described above, independent of the number of pebbles and states. This result is not surprising,

but we will sketch it because of its generality, and also because the proof introduces some ideas we

will use subsequently.

Theorem 3: Let n be a multiple of 4, d < n=2, and m = dn=2. Any JAG, even a nondetermin-

istic one with strong jumping, solving st-nonconnectivity for all symmetrically labeled, d-regular,

n-vertex, m-edge graphs requires time
(m) in the worst case.

Proof: With the given constraints on n and d, there is a d-regular, n-vertex, symmetrically

labeled graph having its vertices and edges evenly divided between two connected components,

one containing s, the other containing t (see [15, Exercise 6.2.1]). Fix a minimal length accepting

computation of JAG J on this disconnected graph. Suppose for some a 2 f0; 1; : : : ; d � 1g that

pebbles in this computation walk across fewer than bm=(2d)c edges labeled a. Then there must be

at least one edge labeled a in each component that is not crossed during this computation. These

two edges can be cut and rejoined so that the resulting graph is an st-connected graph also accepted

by this computation. Hence, J requires at least m=2 steps. 2

See Theorem 15 for a matching upper bound, which is in fact achieved by a deterministic WAG,

even on general graphs.

3. JAGs Have Turing Machine Power

In this section we will show that, although JAGs are structured computational models, they are as

\powerful" as Turing machines for the purposes of solving problems about undirected graphs. That

7

is, we will show that any undirected graph problem solvable by a Turing machine is also solvable

by a JAG in roughly the same space and time. This holds even on relatively weak variants such as

WAGs with one passive and one active pebble. Thus, su�ciently strong lower bounds on JAGs or

WAGs will have direct implications for Turing machine complexity.

Since the input conventions for JAGs and Turing machines are quite di�erent, we must specify

the correspondence between the two models carefully. For technical reasons, we will focus initially

on problems about connected, regular graphs with no distinguished vertices. More general problems,

including st-connectivity, will be discussed later. Let G be the set of all edge-labeled, connected,

regular graphs, where edges are labeled as described in Section 2. A graph problem is simply a

subset H � G. For example, H might be the set of (connected, regular, edge-labeled) bipartite

graphs, or the set of Hamiltonian graphs. To say that a graph problem H is solvable by a JAG J

has the obvious meaning | J , when started with all its pebbles on an arbitrary vertex of G 2 G,

accepts if and only if G 2 H.

Turing machines, of course, work not on graphs, but rather on encodings of graphs. Thus, to

say that H is solvable by a Turing machine M means that M accepts a \reasonable" encoding of

a graph G 2 G if and only if G 2 H. To be precise, an encoding is reasonable if and only if it is

interreducible with the \adjacency matrix" representation by a deterministic Turing machine using

O(log n) space. In the adjacency matrix representation, an n-vertex d-regular graph is represented

by a string l of n2 symbols from the alphabet f?; 0; 1; : : : ; d� 1g. Let l(i; j) denote the (n � i+ j)th

symbol of l; 0 � i; j � n � 1. Then l(i; j) = l(j; i) = ? if and only if vertices i and j are not

adjacent, and otherwise l(i; j) is the label on the half edge from vertex i to vertex j. Note that

reasonable encodings of graphs (at least implicitly) specify a numbering of the vertices, a feature

not present in G. Thus, there may be many di�erent encodings of each graph, corresponding to

di�erent vertex numberings. M , of course, must accept all or none of these equivalent encodings.

Consider the following \edge list encoding", which will be used throughout this section. The

vertex names are distinct, but not necessarily consecutive, O(log n) bit integers. An edge is encoded

as a triple (i; j; a), where i and j are vertex names and a is the label on the half edge from i to

j. The edge list encoding consists of a sequence of such triples, in any order, and possibly with

repetitions. It is straightforward to show that this is a reasonable encoding.

The main technical result of this section is that a simple JAG can construct an edge list encoding

of its input graph in polynomial time and logarithmic space. This is embodied in Lemma 5 below.

One key idea in the proof of Lemma 5 is that a WAG can use a universal traversal sequence

(Aleliunas et al. [2]) to explore its input. Recall that a universal traversal sequence is guaranteed

to visit all vertices of a graph. The following simple extension is more useful for our purposes.

A sequence V 2 f0; 1; : : : ; d � 1g� is said to be a half edge universal traversal sequence for

d-regular, n-vertex graphs if it has the property that a walk according to V from any start vertex

of any d-regular, n-vertex graph G will cross every edge of G at least once in each direction. An

analogous de�nition can be made for nonregular n-vertex graphs of maximum degree d. In this case

we de�ne the \walk according to V " so that, at a vertex u of less than maximum degree, the next

letter of V selects among u's neighbors evenly. To be precise, when at a vertex u of degree d(u) = d,

with the next letter of V being � 2 f0; 1; : : : ; d�1g, the walk proceeds to the neighbor v of u having

�u;v = �, just as in the d-regular case. When d(u) < d, the walk remains at u if � � bd=d(u)c d(u),

and otherwise proceeds to the vertex v having �u;v = �i, where �i is the i
th smallest label on a half

8

edge leaving u, and i = � mod d(u). (A simpler de�nition of \walk according to V " for nonregular

labeled graphs would be to remain at u unless � = �u;v for some v. Under this convention, the

bound below would be increased by a factor of O(n).)

Lemma 4: Half edge universal traversal sequences of polynomial length exist for n vertex

graphs. In particular, length O(dn3 log n) = O(mn2 log n) su�ces for d-regular graphs, and length

O(m2n log n) su�ces for all m-edge graphs.

Proof: (Sketch.) The vertex (half edge) cover time of a graph G, CV (G) (CE(G)), is the

maximum, over all vertices u, of the expected number of steps required for a random walk starting

at u to reach all vertices (cross all half edges, respectively) of G. The vertex (half edge) hitting

time of G, HV (G) (HE(G)), is the maximum, over all pairs u; x, of the expected number of steps

required for a random walk starting at vertex u to reach vertex x (respectively, to cross half edge

x). Clearly hitting time is never greater than cover time, either for vertices or edges. Let F be a

family of edge-labeled graphs, and de�ne CV (F) to be the maximum cover time of any graph in

F , and similarly for HV (F). A basic result of Aleliunas et al. [2] is that any family F of d-regular

graphs has a (vertex) universal traversal sequence of length O(CV (F) log(n
2jFj)). Alon et al. [3]

and Chandra et al. [22] observe that CV (F) can be replaced by HV (F) in this expression.

These results extend easily to universal traversal sequences for nonregular graphs of maximum

degree d (as de�ned above) by observing that cover- and hitting times are at most doubled when

the random walk is modi�ed so as to remain at a vertex u of degree d(u) with probability (d �

bd=d(u)c d(u))=d � 1=2. Furthermore, for both regular and nonregular graphs, the technique yields

an analogous expression bounding the length of half edge universal traversal sequences, using HE

in place of HV . Zuckerman [50] observes that HE(G) � HV (G) + 2m for all graphs G. Aleliunas

et al. [2] show that HV (G) � 2m�, where � is the diameter of G (maximum distance between two

vertices). It is well known (cf. Lemma 13) that the diameter of d-regular graphs is O(n=d). The

Lemma follows, since there are at most ndn labeled d-regular n-vertex graphs, and at most n4m

labeled nonregular m-edge, n-vertex graphs. 2

We remark that Lemma 4 implies the same bounds for lengths of vertex universal traversal se-

quences, asymptotically matching the best known upper bounds for both regular (Aleliunas et

al. [2], Kahn et al. [36]) and nonregular graphs.

The main technical result of this section is the following lemma. For the purposes of this lemma,

it is convenient to think of the JAG as a \transducer," i.e., as a machine equipped with a one-way,

write-only output tape, excluded from the space bound, on which it writes the string encoding the

graph given to it as input.

Lemma 5: A deterministic WAG with two pebbles, one of them passive, can output an edge

list encoding of its (connected, regular) input graph in time nO(1) and space O(log n).

Proof: The idea of the proof is for the WAG to use a universal traversal sequence to system-

atically explore its input G, generating an encoding of the edges it explores as it goes. The key

point is to be able to devise a numbering for the vertices, and to determine a vertex's number when

needed.

9

Call the WAG E, and let s be the vertex on which the pebbles of E start. Suppose G is d-

regular, with n vertices. Let V be a half edge universal traversal sequence for d-regular, n-vertex

graphs. (Cf. Lemma 4.)

Call E's passive pebble p. Initially, E leaves p on s, then determines the shortest pre�x U of

V V such that jU j � jV j, and a walk from s according to U ends at s. U has the property that a

walk from s according to U returns to s after crossing each edge at least once in each direction.

Recall that s is not specially marked in our model. The construction of U allows us to retain s as

a landmark without permanently marking it with a pebble.

The vertex number #w that E assigns to an arbitrary vertex w 2 G is the length of the shortest

pre�x Uw of U such that the walk from s according to Uw ends at w. For instance, #s = 0.

For 1 � i � jU j + 1, let vi be the vertex reached from s by walking according to the length

i � 1 pre�x of U . Let ai be the i
th symbol of U . Then, for 1 � i � jU j, the half edge crossed

during the ith step of the walk according to U from s will be the half edge fvi; vi+1g, which has

label �vi;vi+1
= ai. During the i

th phase of the algorithm, 1 � i � jU j, E will determine and write

onto its output tape the triple (#vi;#vi+1; ai) de�ning this labeled half edge.

Suppose at the start of the ith phase that both E and p are on vi, and that E has stored in

its state the values i and #vi. (Initially, this holds with E and p on s = v1, i = 1, and #v1 = 0.)

During the ith phase, E operates as follows.

1. Carry p across the half edge labeled ai from vi, then drop p on the vertex reached (vi+1, by

de�nition).

2. Walk from vi+1 according to the last jU j � i symbols of U , thus returning to s.

3. Walk from s according to U until p is encountered. The length of this walk is #vi+1.

4. Output the triple (#vi;#vi+1; ai) de�ning this labeled half edge.

Note that, at the completion of this process, E is in the con�guration desired for the start of phase

i+ 1.

The running time of E is O(jU j2) = nO(1), and E has nO(1) states. 2

On bijectively labeled graphs, it su�ces to have only one movable pebble.

Lemma 6: A deterministic WAG with one active pebble, and one arbitrarily placed unmovable

pebble can construct a binary string encoding its (connected, regular) bijectively labeled input graph

in time nO(1) and space O(logn).

Proof: The proof is similar to that of Lemma 5. Let U be a half edge universal traversal

sequence, and for a vertex w, de�ne #w to be the length of the shortest pre�x of U that walks from

w to the �xed pebble. Since the graph is bijectively labeled, these vertex numbers will be unique.

(This idea is used by Hoory and Wigderson [32].) For 1 � i � jU j+ 1, let vi be the vertex reached

from the �xed pebble by walking according to the length i� 1 pre�x of U . Suppose again that the

values i and #vi are stored in the state, the movable pebble is on vi, and ai is the i
th symbol of U .

Then, for the neighbor vi+1 of vi reached via label ai, #vi+1 can be determined by walking from

10

vi+1 to the �xed pebble according to U . After writing (#vi;#vi+1; ai), the movable pebble can be

returned to vi+1 by walking from the �xed pebble according to the length i pre�x of U . Again, the

running time of this algorithm is O(jU j2) = nO(1). 2

Theorem 7 below is the main result of this section. It establishes the equivalence between WAGs

and \general machines", which include nonuniform Turing machines as a special case. A general

machine consists of an input x1x2 � � � xn and a set of states. The state set may depend on the

length n of the input and, in particular, the number of states may be a function of n. Included in

each state is the input index, which speci�es the index of the next input character to be read. In

one move, based on its current state q, input index i, and the input symbol xi, the machine enters

a new state q0 with a new input index i0, as dictated by a transition function that may also depend

on n. This transition may be deterministic, nondeterministic, or probabilistic, depending on the

type of the general machine. Acceptance is de�ned as it is for the corresponding types of Turing

machines. Time is de�ned as the number of moves, and space as log2Q, where Q is the number of

states.

General machines are almost identical to the \recognition machines" de�ned by Cobham [23],

except that recognition machines require the input to be accessed sequentially, whereas general

machines allow completely random access to the input. It is also easy to see that Turing machines

are a special case, by including the worktape contents and head positions as part of the state of

the general machine.

Theorem 7: Let H be an undirected graph problem as de�ned above, and let S(n) =
(log n).

H is solvable using space O(S(n)) and time nO(1) � T (n) by a deterministic (nondeterministic,

probabilistic) general machine if and only if it is solvable in space O(S(n)) and time nO(1) �T (n) by

a deterministic (nondeterministic, probabilistic, respectively) JAG. Moreover, the JAG simulating

a general machine requires no jumping and only two pebbles, one of them passive. On bijectively

labeled graphs, the WAG requires only one active and one unmovable pebble.

Proof: Let M be a general machine accepting H in space S(n) and time T (n). By Lemma 5

or 6 above, there is a two pebble deterministic WAG E that can construct a binary string encoding

its input graph G. Because of logarithmic space reducibility among reasonable encodings, assume

without loss of generality thatM operates on the same encoding output by E. We build a WAG W

accepting H by simulating both M and E. Speci�cally, W maintainsM 's state as part of its state.

If M 's input index is i, W simulates E until it generates its ith output bit, and then simulates

one step of M (deterministically, nondeterministically, or probabilistically, as appropriate). W

continues in this manner until M halts. W 's state set must be large enough to encode a state of

M and a state of E. This requires 2O(S(n)) states, or O(S(n)) space. Note that it is not necessary

to store the string constructed by E; its bits are reconstructed as needed. The simulation by W of

each ofM 's steps requires rerunning the entire computation of E, soW 's time bound is nO(1) �T (n).

In the other direction, let J be a JAG that accepts H using P (n) pebbles Q(n) states, and T (n)

time. J is simulated by a general machineM , whose state encodes J 's state plus the vertex names on

which pebbles currently reside. This requires Q(n) � nP (n) states, or space P (n) log2 n+ log2Q(n),

which is, by de�nition, J 's space bound. M can then simulate a move of J , using its input to

determine the vertex name to which a given pebble walks by following a given edge label, which

increases the time and number of states by only a polynomial factor. 2

11

Note that a general machine can solve any graph problem in linear space and time (nonuni-

formly), hence by Theorem 7, a WAG can do so in linear space and polynomial time. Theorems 12

and 15 in Section 4.3 give faster WAG algorithms at this space extreme.

Corollary 8: A JAG solving an undirected graph problem in space
(logn) can be simulated

by a WAG, at the expense of a constant factor loss in space and a polynomial factor loss in time.

Corollary 9: A JAG or WAG solving an undirected graph problem using P pebbles and space

(log n) can be simulated by one with only two pebbles, at the expense of a polynomial factor loss

in time and a constant factor loss in space (more precisely, a factor of nP+O(1) in the number of

states).

The polynomial factor loss in time implicit in Corollaries 8 and 9 is O(U2(n)), where U(n) is

the length of a half edge universal traversal sequence (Lemma 4). This factor can be improved to

O(U(n)) by directly using the proof techniques from Lemmas 5 and 6.

As another illustration of Theorem 7, consider the problem of deciding bipartiteness of a con-

nected graph. It is easy to see that a nondeterministic two pebble WAG can recognize nonbipartite

graphs (guess and verify an odd cycle), but not so easy to see a direct way to recognize bipartite

graphs. In fact this is also possible, by the following corollary to Theorem 7 and Immerman and

Szelepcs�enyi's Theorem [33, 47].

Corollary 10: LetH be an undirected graph problem, and let S(n) =
(logn). IfH is solvable

using space O(S(n)) by a nondeterministic JAG or WAG J , then so is its complement G �H.

Proof: Simulate J by a nondeterministic, S(n) space-bounded general machine M . By a

straightforward adaptation of Immerman and Szelepcs�enyi's Theorem [33, 47], there is a nondeter-

ministic, S(n) space-bounded general machine M 0 that accepts the complement G � H. Simulate

M 0 by a nondeterministic, S(n) space-bounded WAG. 2

We know no substantially simpler method for recognizing bipartite graphs. Implementation of

the Immerman/Szelepcs�enyi method on a JAG seems to require construction of a vertex numbering,

which is the key idea in Lemmas 5 and 6.

Algorithmic problems about graphs often have input parameters other than the graph itself. For

example, consider the shortest path problem: given a connected undirected graph G, two designated

vertices s and t in G, and an integer k, is there a path from s to t of length at most k? The results

above are easily extended to encompass such problems by incorporating integers such as k into

the WAG's initial state, and marking \designated" vertices or edges with pebbles, or making them

\visible" to the WAG as we did for st-connectivity. Thus, for example, the shortest path problem

is solvable in (deterministic) logarithmic space by a WAG if and only it is so solvable by a general

machine. This problem is of particular interest since it is a problem about undirected graphs that

is known to be complete for nondeterministic logarithmic space (Ladner, personal communication).

Hence, it is plausible that complexity results for WAGs will solve a long-standing open problem in

Turing machine complexity.

Finally, we mention that the restriction to regular graphs in the above results is only a techni-

cality. Lemmas 5 and 6 are modi�ed easily to accommodate nonregular graphs, since by Lemma 4

12

there are universal traversal sequences of polynomial length for such graphs. The restriction to

connected graphs is only slightly more problematic. Obviously a WAG with only one active pebble

cannot explore more of its input graph than the connected component initially holding that peb-

ble. With strong jumping, or with an active pebble in each connected component, or some other

mechanism for accessing all components, the results could be extended easily to nonconnected

graphs.

4. JAGs with Unmovable Pebbles

A plausible paradigm for an st-connectivity algorithm is to choose and mark a small number of

\landmark" vertices in the graph, based perhaps on local properties like proximity to low or high

degree vertices or certain small subgraphs, then to explore the graph with these landmarks �xed.

This paradigm motivates our study of JAGs with unmovable pebbles.

Depth- and breadth-�rst search are examples of algorithms where vertices are permanently

marked. The undirected st-connectivity algorithms of Broder et al. [20], Barnes and Feige [7], and

Feige [28] are more complex examples of this paradigm. In outline they operate as follows. First,

s and t are marked by pebbles. Then P � 3 other pebbles are placed on the graph at random.

(The random distribution used to place the pebbles is what distinguishes the three algorithms.)

These P � 1 pebbles are not subsequently moved. The one remaining pebble then executes a

small number of short random walks from each of the P � 1 �xed pebbles. At the end of each

walk, the movable pebble jumps to one of the �xed pebbles. Connectivity information is inferred

from the pebbles encountered during these short walks. For example, if the algorithm has learned

that pebbles 1 and 2 are in the same connected component, and similarly for pebbles 3 and 4,

and during a walk from pebble 1 the algorithm reaches pebble 4, then it can infer that all four

pebbles are in the same component. The authors show that, if s and t are in the same connected

component, the algorithm will discover this quickly with high probability. Note that this algorithm

can be executed on a model that is essentially a probabilistic JAG, except that the unmovable

pebbles are \preplaced" probabilistically without walking to their locations. On a regular graph,

the algorithm could be implemented by a probabilistic JAG with strong jumping. On nonregular

graphs, the model would have to be extended to allow the dependence of pebble preplacement on

vertex degree. In Section 4.2 we will discuss and prove a lower bound for such a model that allows

preplacement of pebbles. Prior to that, Section 4.1 gives the lower bound for the simpler basic

model, i.e., without preplacement. Section 4.3 shows that this lower bound is tight for the model

we consider.

Note that these lower bounds apply to models that are su�ciently rich to admit depth- and

breadth-�rst search, and the algorithms of Broder et al., Barnes and Feige, and Feige. Thus, as

corollaries we establish three facts claimed in the introduction | that depth-�rst search is space-

optimal among linear time algorithms, that Feige's algorithm cannot be made both errorless and

substantially faster, and that closure under complementation is intrinsically slow (all with respect

to this class of models, of course).

13

4.1. A Lower Bound for Unmovable Pebbles

In this section, we prove an
(n2=P) lower bound on the time for a nondeterministic P -pebble

JAG to solve st-nonconnectivity. We �rst prove a basic lower bound for regular graphs of degree

d = 3. Several generalizations are sketched later.

Theorem 11: Let M be any nondeterministic JAG with strong jumping that has 1 active

pebble and P � 1 unmovable pebbles. If M determines st-nonconnectivity for all 3-regular sym-

metrically labeled graphs, then M requires time
(n2=P).

Proof: The proof generalizes the main lower bound technique introduced by Borodin et al. [18].

Assume without loss of generality that n is a multiple of 4. (If not, set aside 6 vertices in a 3-

regular connected component containing neither s nor t.) We de�ne a family of n vertex graphs,

each formed by joining two copies of an n=2 vertex graph H by \switching" some combination of

edge pairs. We will show thatM must frequently walk from one pebble to another via some distant

switchable edge.

Many graphs H would work for our purposes; for de�niteness, we use the n=2 vertex \squirrel

cage": two n=4 vertex cycles, with each vertex on one cycle joined by an edge, called a \rung," to

the corresponding vertex on the other cycle. Fix any numbering of the vertices and any symmetric

labeling of the edges of H. Take as the set of \switchable" edges any r = n=4 � 1 of the rungs.

As in Borodin et al. [18], for each x 2 f0; 1gr the graph Gx is formed from two copies H0 and

H1 of H by \switching" the edges corresponding to the 1's in x. That is, if fu0; v0g is the ith

switchable edge in H0 and fu1; v1g is the corresponding edge in H1, then Gx has the pair of

edges fub; vb�xig; b 2 f0; 1g, with labeling �ub;vb�xi
= �u;v = �v;u = �vb�xi ;ub , where � denotes

the exclusive or operation. Choose s to be any vertex in H0 and t any vertex in H1. Let

G = fGx j x 2 f0; 1grg. Notice that the only graph in G with no path from s to t is G0r , and that

all graphs in G are symmetrically labeled.

The key property of the family G of graphs is that a walk on Gx is identical to such a walk

on G0r , except that the walk switches from one copy of H to the other when a switched edge is

crossed. After any sequence of edge crossings starting from a vertex v, M 's active pebble will be

in the same copy of H as v exactly when the net parity with respect to x of all edge crossings is

even, where the parity with respect to x of an individual edge e is de�ned to be xi if e is the ith

switchable edge, for any 1 � i � r, and 0 for all unswitchable edges.

Intuitively, M gains information about connectivity only by walking to a pebble; nothing is

learned (directly) about the existence or nonexistence of a path from u to v by jumping from u to

v. We exploit this fact, together with the fact that pebbles on average are far apart, to argue that

M must execute many walking steps.

Note that s and t are not connected in G0r , hence M must have at least one accepting compu-

tation on G0r . Fix one such computation
 of minimal length. Assume that two extra unmovable

pebbles are placed on the distinguished vertices s and t. Now in G0r \mark" both copies of each

vertex that received an unmovable pebble during the computation
. Break
 into sequences of

walk moves that (1) begin with a walk move from a vertex that either is marked or was the target

of a jump in the immediately preceding step, and (2) end with the next walk move into a vertex

that either is marked, is the source of a jump move in the immediately following step, or is the last

14

move of
. Discard any such sequence that does not end at a marked vertex. Suppose there are

w sequences remaining. Each of these sequences naturally corresponds to a connected sequence of

edges in G0r . Notice that if, for some x, one of the w sequences is of odd parity with respect to

x, then the computations of M on G0r and on Gx may diverge at the end of this sequence, since a

pebble encountered on one may not be encountered on the other. This cannot occur if all sequences

have even parity with respect to x:

Claim: For every x 2 f0; 1gr , if each of these w edge sequences is of even parity with respect

to x, then
 is also an accepting computation for Gx.

To see this, we show by an induction on i, that after making the moves dictated by
 up to the

end of the ith sequence (including the discarded sequences), the con�gurations of M on G0r and on

Gx are identical, with the exception that the movable pebble will be on opposite copies of a vertex

if the net parity with respect to x of the ith sequence is odd. (This can happen only if this is a

discarded sequence.) Basically, this is true since all the \interesting" events in the computation

, i.e., dropping or encountering pebbles, occur at marked vertices, and we've taken care that all

walks between these interesting points are of even parity in Gx just as they were in G0r . The base

case (i = 0) is vacuous. For the induction step, �rst note that the con�gurations at the start of

the ith sequence are the same on both graphs, since if they di�ered at the end of the (i� 1)st, then

all intervening steps were jumps. All steps within the ith sequence are walk steps into unmarked

vertices, hence no pebbles are encountered during those steps in either G0r or Gx. Since both

graphs are 3-regular, all unpebbled vertices \look alike", so the ith sequence of walk moves of
 in

G0r is also a legal sequence of moves in Gx, and carries the movable pebble to the same place in

both graphs, up to the parity of the sequence with respect to x. This completes the proof of the

claim.

As noted earlier, Gx is connected for all x 6= 0r, hence must not be accepted by M . Thus it

must be that there is no x 6= 0r for which the w sequences all have even parity. Equivalently, it

must be that the corresponding homogeneous system of w linear equations in r unknowns over

GF (2) has no nonzero solution.

Let S be the set of r switchable edges. For each e 2 S, let dist(e) be the distance from e to the

closest marked vertex, where the distance from an edge to a vertex is de�ned to be the length of a

shortest path containing both. Let m be the maximum integer such that some switchable edge e

has dist(e) = m. For any nonnegative integer d, let Sd = fe 2 S j dist(e) � dg, and let rd be the

number of switchable edges e with dist(e) = d, so that rd = jSdj � jSd+1j.

Now it must be the case that, for all d � m, at least jSdj of the w walks each have length at

least d. If this were not the case, then the edges in Sd would appear collectively on fewer than jSdj

walks or, equivalently, the variables corresponding to these edges would occur in fewer than jSdj of

the homogeneous equations. Set the variables corresponding to the other r� jSdj switchable edges

to 0, and these jSdj to some nonzero solution, which must exist in a homogeneous system with

fewer equations than unknowns (Herstein [31, Corollary to Theorem 4.3.3]). Since such a nonzero

solution cannot occur, we have a contradiction.

15

Thus, at least rm of the w walks each have length at least m, an additional rm�1 each have

length at least m� 1, etc. In other words, M makes at least

mX

d=1

d � rd =
X

e2S

dist(e)

moves. This last sum is minimized when the O(P) marks are equidistantly distributed around the

cycle, in which case the sum is
(rn=P) =
(n2=P). 2

Using Hall's Theorem [29], one can in fact prove somewhat more about the w walks: each

switchable edge in S can be assigned a unique walk that contains it.

Next, we will sketch several promised generalizations to the theorem. First, to extend the result

to d-regular graphs, d � 3, we generalize the squirrel cage graph H. Note that Kd�1, the d � 1

vertex complete graph, is d� 2 regular. Form the new d-regular, n=2 vertex graph H from (d� 1)

cycles of length n=(2(d�1)) by joining corresponding groups of (d�1) vertices as Kd�1. (An extra

gadget is needed if 2(d � 1) does not divide n.) The rest of the argument is essentially as before,

except that there are more switchable edges (all but a spanning tree of H, hence �(dn) of them),

but on average they are closer to marked vertices (
(n=(dP)) average distance). The result is still

an
(n2=P) lower bound, independent of d. To provide some intuition of why the bound does

not increase with d, note that any connected d-regular graph has diameter O(n=d), a corollary of

Lemma 13 below. This idea is exploited in Theorem 12 to obtain a matching upper bound.

A better bound is possible for nonregular graphs. For n vertex graphs of maximum degree d,

one can prove an
(dn2=P) lower bound, provided n=(4d) � 2P . Again, the key point is to choose

H appropriately. In this case it su�ces to take H to be an n=4 vertex cycle, attached at evenly

spaced intervals to n=(4d) copies of Kd. Most of the �(dn) edges are switchable, and their average

distance from any placement of P pebbles is
(n=P). In Section 4.3 we prove matching upper

bounds for both the regular and nonregular cases, demonstrating that this disparity in bounds is

inherent in the problem.

The remaining generalization promised above is to the case where the automaton can move the

\unmovable" pebbles a limited number of times. (A detail about the algorithms of Broder et al.,

Barnes and Feige, and Feige that we oversimpli�ed above is that they rerandomize the placement

of the P � 3 landmark pebbles O(log n) times.) Suppose M is a P -pebble JAG of this more

general form. Suppose pebbles are placed on at most P 0 vertices during M 's computation. Then

a straightforward adaptation of the proof of Theorem 11 shows that M requires time
(n2=P 0).

Note that, as long as the number of pebble placements is sublinear, the time must be superlinear.

However, any graph in the family G built from squirrel cage graphs as above can be traversed

in linear time by a deterministic automaton with 2 pebbles, one of them passive, even without

jumping, provided the passive pebble can be moved freely. Thus, stronger proof techniques are

necessary for freely moving pebbles; see our companion paper [9] for one such technique.

4.2. Preplacement of Unmovable Pebbles

As we have noted earlier, the JAG is a powerful yet restricted model. It is conceivable that there

is certain useful information about graphs that is intuitively \easy to compute," yet hard for JAGs

to compute. That is, there might be certain information about an input graph G that (1) could be

16

collected easily by a more
exible computational device such as a logarithmic space RAM, that (2)

would greatly facilitate a JAG's determination of the st-nonconnectivity of G, yet (3) is di�cult or

impossible for a JAG to collect. If this were the case, it might \explain" (and trivialize) the strong

lower bound given in the previous section.

The algorithms of Broder et al., Barnes and Feige, and Feige again furnish a motivating example.

In all three algorithms the initial (random) pebble placement is dependent on vertex degree. On

nonregular graphs, a JAG cannot duplicate this behavior without visiting all vertices, a slow or

even impossible process for, say, a probabilistic JAG without strong jumping. Yet this is an easy

process for a RAM, and a crucial one for the e�ciency of their algorithms. (Note that the rest

of their algorithms can be performed e�ciently by a JAG.) Generalizing this slightly, it might be

useful to know how many neighbors each vertex has at distance two. Although this information

is easily computed by a RAM, as far as we know it is not easily computable by a JAG with one

active pebble and a limited number of unmovable pebbles, even a nondeterministic one with strong

jumping.

Does our lower bound rest on this or similar de�ciencies of the JAG model? In this section we

give evidence that it does not. We generalize the model to allow precomputation on the input and

preplacement of (unmovable) pebbles, and show that a similar lower bound holds. Of course, such

precomputation must be restricted so as to preclude solving st-connectivity itself. Therefore, the

unmovable pebbles are placed based on complete knowledge of the local, but not global, structure

of the graph as described below.

Let N�(G) denote a list G1; G2; : : : Gn of edge labeled graphs, each with a distinguished vertex,

such that Gi is isomorphic to the radius � neighborhood of vertex i in G, and the isomorphism

maps Gi's distinguished vertex to vertex i. For instance for a triangle free graph, and ignoring edge

labels, N1(G) is equivalent to an ordered list of the degrees of G's vertices. Then an automaton

with P 0 unmovable pebbles placed by �-precomputation is a pair (f;M), where M is one of the JAG

variants as described above, and f is an arbitrary function mapping N�(G) to U 2 f1; 2; : : : ; ngP
0

.

Given G, the P 0 unmovable pebbles are placed on the sequence of vertices f(N�(G)), and then M

is run on the resulting pebbled graph. The de�nition can be further generalized to allow f to select

M 's initial state. Additionally, it can be generalized in a straightforward way to probabilistic or

nondeterministic precomputation by letting f be a relation, and selecting a value from its range

probabilistically or nondeterministically. For instance, the algorithms of Broder et al., Barnes and

Feige, and Feige can be executed by a probabilistic JAG with probabilistic 1-precomputation.

The proof of Theorem 11 immediately extends to show an
(n2=P) lower bound on nondeter-

ministic JAGs with nondeterministic 1-precomputation. The only changes needed in the proof are

to note that the initial pebble placement and state f(N1(G0r)) are considered to be part of the �xed

accepting computation
, and to note that all graphs in G are 3-regular, symmetrically labeled,

and triangle-free, hence N1(G0r) = N1(Gx) for all x 2 f0; 1gr , and so this initial con�guration is

also legal in Gx.

As a concrete example of the potential utility of precomputation, we note that the squirrel cage

family G de�ned above can be traversed quickly, provided the unmovable pebbles can be placed

based on vertex neighborhoods of radius two, generalizing the use of vertex degree. Speci�cally,

in Gx, a vertex v will have 4, 5, or 6 distinct neighbors at distance two depending on whether the

\rung" of the squirrel cage incident to v is of the same parity as both, one, or neither, respectively,

17

of the two nearest nonincident rungs. Thus, 2-precomputation alone su�ces to distinguish the

disconnected graph G0r (every vertex has 4 neighbors at distance two) from all the connected

members of G (some vertex has more than 4 neighbors). Furthermore, by placing one unmovable

pebble on any vertex with more than 4 neighbors at distance two, a WAG with no additional

pebbles can traverse the entire graph in linear time.

However, we can show that radius two, or indeed any constant radius, does not help in general.

That is, we can further generalize the proof of Theorem 11 to use families of graphs in which

switched edges do not alter the local structure within any �xed radius �. This is done by choosing

a d-regular bipartite graph R whose girth (minimum cycle length) is at least 2�+2 and whose size

jRj is dO(�) (Bollob�as [14, Chapter 3]), and then constructing the half-size graph H by connecting

c = bn=(2jRj)c copies of R in a cycle. One way to do this is to choose a �xed edge fu; vg in R,

remove this edge from each copy of R, then insert an edge from u in the ith copy of R to v in

copy (i + 1) mod c; 0 � i < c. Note that, for every cycle in Gx, there is a corresponding cycle in

G0r that is no longer, so all graphs in G have girth at least 2� + 2. Furthermore, note by Hall's

Theorem [29] that R can be symmetrically labeled since it is regular and bipartite, hence so can G0r .

The key new idea in the proof is that the list N�(G) of radius � neighborhoods of any symmetrically

labeled, d-regular, girth 2� + 2 graph G will simply consist of n identical symmetrically labeled,

degree d, complete trees of height �. Thus, �-precomputation cannot distinguish between G0r

and Gx. The remainder of the proof is essentially unchanged. Thus, nondeterministic JAGs

with nondeterministic �-precomputation require time n2=(dO(�)P) to solve st-nonconnectivity for

d-regular graphs.

We remark in closing this section that �-precomputation seems to be orthogonal to pebble

placement by the JAG itself. For instance, as noted above, deterministic 2-precomputation may

be helpful even to a nondeterministic JAG with strong jumping on as simple a family as the

basic squirrel cage family. On the other hand, there are cases where even a weak model such

as a deterministic WAG can place pebbles more e�ectively than can be done by deterministic

precomputation. Speci�cally, we again consider the simple 3-regular squirrel cage family, but

enlarged to include all n! permutations of vertex labels for each Gx; x 2 f0; 1gr . Suppose all

unmovable pebbles are placed by deterministic 1-precomputation. Then an
(n2) lower bound

applies for P � n �
(n), since all pebbled vertices might be concentrated on one part of the

squirrel cage pair. On the other hand, a deterministic WAG (knowing the edge labeling) can easily

walk one of the cycles, dropping its P �1 unmovable pebbles at evenly spaced positions around the

cycle. It is then a simple matter to test the switchable edges one after the other from the nearest

pebble, hence solving st-connectivity in time O(n2=P).

4.3. An Upper Bound for Unmovable Pebbles

A natural question to ask is whether the lower bounds given in Section 4.1 can be improved. Recall

that Theorem 11 shows time
(mn=P) (
(n2=P) for regular graphs) is required by JAGs with

unmovable pebbles and strong jumping, even with an unbounded number of states. We will close

this section by showing that this bound cannot be improved: on the model to which the lower

bounds apply, exploiting an unbounded number of states we give matching upper bounds on time

for a given number of pebbles, even without jumping. More strongly, we show that any graph

problem, as de�ned in Section 3, can be solved within the same bounds.

18

Theorem 12: Let G be the set of all bijectively labeled graphs (all bijectively labeled regular

graphs). For any P � 2, the following sets can be recognized by a nondeterministic WAG with one

active pebble, P �1 unmovable pebbles, an unbounded number of states, and time O((mn=P)+m)

(O((n2=P) +m) in the case of regular graphs):

1. the set of st-nonconnected graphs in G, or

2. any set H of connected graphs in G.

The main import of this result is to show the limits of the proof technique used in Theorem 11.

For example, we do not believe that st-nonconnectivity can be solved by a nondeterministic JAG

in time O(mn) and space O(log n) simultaneously. The fastest known logarithmic space nondeter-

ministic JAG for st-nonconnectivity is much slower than this. Indeed, no better method is known

than to use a universal traversal sequence, i.e., a deterministic one pebble WAG, which may require

time
(m2n logn) for nonregular graphs (Lemma 4). However, Theorem 12 shows that to obtain

a lower bound greater than that of Theorem 11 we must somehow exploit a bound on the number

of states, as well as the number of pebbles. (It might also be possible to exploit nonbijective label-

ings but, in light of Lemma 1 and the remarks following the proof of the theorem, this issue is a

technicality of the model that is not of fundamental importance to the computational complexity

of st-connectivity.)

The following facts are needed in the proof of Theorem 12.

Lemma 13: Let G be a connected d-regular graph, u and v be any two vertices in G,

and dist(u; v) = l be the length of a shortest path between them. Then there are at least

(d+ 1) b(l + 2)=3c vertices in G within distance l of u.

Proof: Let �(x) = f y j dist(x; y) � 1 g. Fix a shortest path u = u0; u1; : : : ; ul = v from u to v.

Then �(u0);�(u3); : : : ;�(u3b(l�1)=3c) are pairwise disjoint, for otherwise there would be a shorter

path from u to v. Furthermore, these sets are all of size (d+ 1), and all are within distance l of u.

2

Corollary 14: Let G be a connected d-regular graph, and s a vertex in G. For any positive

integer P � n=d, there exists a set S with s 2 S and jSj � P such that every vertex of G is within

distance l = 2 d1 + 3n=((d+ 1)P)e = O(n=(dP)) of some member of S.

Proof: Construct S = fs0; s1; : : :g, where s0 = s and, for i � 1, si is chosen to be any vertex

at distance greater than l from fs0; : : : ; si�1g. The neighborhoods of radius l=2 around the si's are

pairwise disjoint. Furthermore, by Lemma 13, each of these neighborhoods will be of size at least

(d+1) b(l=2 + 2)=3c � n=P . Hence at most P members of S can be chosen before no vertices of G

remain at distance greater than l. 2

The analogous results for nonregular graphs are that at least (l+1) vertices are within distance

l of u, hence P vertices can be chosen so that every vertex is within distance 2n=P of a chosen

vertex. The proofs are similar, but easier.

19

Finally, we prove the theorem.

Proof (of Theorem 12): The approach is to nondeterministically guess the graph, then verify the

guess. First we prove part 1: we describe a nondeterministic WAG M accepting st-nonconnected

graphs.

Let G be the input graph. It su�ces to verify that the connected component C of G containing

s does not contain t. Let l = 2n=(P � 1), or l = 2 d1 + 3n=((d+ 1)(P � 1))e in the case of regular

graphs. By Corollary 14, for any n-vertex graph G and designated vertex s, there is a set of P � 1

vertices including s such that every vertex of C is within distance l of a member of this set. Leave

one unmovable pebble on s (the initial location of the active pebble), and place the other P � 2

unmovable pebbles on arbitrary, distinct vertices selected nondeterministically during a walk
 of

length at most 2(n� 1) from s back to s. (This walk is long enough to traverse a spanning tree of

C, hence any vertex may be pebbled.)

M proceeds by guessing and recording in its state an n0 < n vertex, connected, bijectively

labeled graph B with P � 1 distinct vertices marked by numbered pebbles. The remainder of M 's

computation is deterministic. In outline,M constructs a mapping � from B to C, then veri�es that

� is a surjective homomorphism. That is, � is a surjection preserving pebble placement, vertex

degree, adjacency, and edge labeling. Thus, for all vertices u in B, (1) there is a pebble p on �(u)

in C if pebble p is on u in B, (2) degree(u) = degree(�(u)), and (3) for all edges fu; vg in B, if

�u;v = a then ��(u);�(v) = a. (It might seem more natural to guess an isomorphic graph B, and it

would not be di�cult to modifyM to do this, but a homomorphism su�ces and is easier to verify.)

To complete the algorithm, M visits �(v) in C for all v 2 B, accepting if and only if none is the

specially marked vertex t. (Recall that M can sense when it has a pebble on t.)

We now show how to construct and verify the homomorphism �. A key property of a bijectively

labeled graph, used earlier in Lemma 6, is that for any sequence � of edge labels, and any vertices

u; u0 and v, if walks following � from both u and u0 end at v, then u = u0. Otherwise, the graph is

nonbijectively labeled at the vertex where the two paths last converge. This property is central to

constructing and verifying the homomorphism. In particular, recall that a JAG has no access to

vertex numbers of the input graph. Instead, we will identify vertices by paths to or from pebbles.

M now runs a breadth-�rst search of B, with the queue initially containing all the pebbled

vertices. The result is a spanning forest of B with B's pebbles as the roots. Reject if any tree

has height greater than l. Otherwise, for all vertices u in B, let �(u) be the number of the pebble

marking the root of the tree containing u, let �(u) be the sequence of edge labels on the unique

path of tree edges from �(u) to u, and let ��1(u) be the sequence of labels in the reverse direction,

i.e., from u to �(u). For all vertices u in B, de�ne �(u) to be the vertex reached in C by walking

from the vertex marked by pebble �(u) according to the sequence �(u).

M now performs the following test.

For all edges fu; vg in B, say with labels �u;v = a and �v;u = b, M veri�es that in C the

walk �(u)a��1(v) ends at �(v) when started from �(u), and that �(v)b��1(u) returns to �(u)

from �(v). During this process, at the �rst visit to �(u) for each u in B, M also veri�es that

degree(u) = degree(�(u)) (with the same set of labels).

We now show that � is a surjective homomorphism if and only if this test succeeds. First,

suppose � is a surjective homomorphism. For any vertices x and y in B, if a walk from x according

20

to � ends at y, then a walk from �(x) in C according to � must end at �(y). This is shown

easily by induction on the length of �, using the fact that �u;v = ��(u);�(v) for all edges fu; vg. By

construction, for any edge fu; vg in B, the walk in B from �(u) according to �(u)�u;v�
�1(v) must

end at �(v). Furthermore, by construction, if vertex w in B holds a pebble, then �(w) holds the

same pebble in C. Consequently, each of M 's \walk" tests will succeed. By the assumption that �

is a homomorphism, each of M 's degree tests will also succeed, and so � passes the test.

Conversely, suppose the test succeeds. We argue that � is a surjective homomorphism. Note

that by construction a walk from �(v) according to �(v) ends at �(v), for all v. We claim �rst that

the reverse also holds: a walk from �(v) according to ��1(v) ends at �(v), for all v. If v has a pebble,

this is trivial. Otherwise v is the child of some u in the spanning forest of B. Then �(v) = �(u)

and �(v) = �(u)a for some a. Since the test succeeds, �(u)a��1(v) goes from �(u) = �(v) to �(v).

But the �rst part �(u)a goes from �(v) to �(v), so the last part ��1(v) must go from �(v) to �(v),

establishing the claim. Note that as a consequence, if a walk in C from a vertex w according to

��1(v) ends at �(v), then w = �(v), since C is bijectively labeled.

The following properties of � are now easily established.

1. For all pebbled vertices u in B, �(u) holds the same pebble. This holds by construction.

2. For all u 2 B; degree(u) = degree(�(u)). This holds sinceM explicitly tests for this condition,

and by assumption the test succeeds.

3. For all adjacent vertices u; v 2 B, �(u) and �(v) are adjacent, with ��(u);�(v) = �u;v (and

��(v);�(u) = �v;u). This holds since �(u)�u;v�
�1(v) walks from �(u) to �(v), by construction

the vertex reached by �(u) is �(u), and by the remark above the vertex from which ��1(v)

reaches �(v) is �(v).

4. � is surjective. If this did not hold, there would be a vertex in C not in the range of � that

is adjacent to a vertex �(u) that is in the range of �. However, this is impossible, since by

property 2, degree(u) = degree(�(u)), and by property 3, �(u) has degree(u) neighbors that

are in the range of �.

Thus, � is a surjective homomorphism, as claimed.

If M accepts, then there is an accepting computation in which B is isomorphic to C, hence

has at most m edges. In this computation, the algorithm makes O(m) walks, each of length O(l),

hence the total running time is O(ml), as desired. Note that M can move between the pebbles in

C by walking
, the tour used initially to drop the pebbles, which adds only O(n) to the time.

The proof of part 2 of the theorem is similar. The main di�erence is that the graph B guessed

by M will have n vertices, rather than n0 < n. M then veri�es that this graph is isomorphic to the

input graph G, accepting (nonuniformly) if and only if it is in H. Note that the homomorphism

test given above su�ces to verify that B is isomorphic to G, since they have the same number of

vertices. 2

As in Section 3, these results can be generalized to graph problems with other input parameters,

and/or to other problems about unconnected graphs, given an appropriate mechanism for accessing

all connected components.

21

The restriction of Theorem 12 to bijectively labeled graphs can be relaxed at the expense of

adding one passive pebble, as follows. The constructions of �(u); ��1(u); �(u), and �(u) are as

before. With a nonbijectively labeled graph it remains true that a walk from �(u) according to

��1(u) will end at �(u), but it is no longer true that �(u) is the only vertex with this property.

To verify that the active pebble is on vertex �(u), we instead leave the passive pebble there, then

verify that ��1(u) walks to �(u), from which �(u) returns to the passive pebble. The remainder of

the algorithm is unchanged.

As a �nal observation, the following theorem shows that, at the extreme where P = n, the

WAG of Theorem 12 can be made deterministic.

Theorem 15: The set of st-nonconnected graphs, and arbitrary sets of connected graphs (non-

regular, under general labelings) can be recognized in time O(m) by a deterministic WAG with one

active pebble and n unmovable pebbles.

Proof: Rather than guessing the input graph, as in Theorem 12, the WAG simply does a

systematic traversal of it, akin to a depth-�rst search, placing a pebble on each vertex. With

jumping, or with symmetric edge labels, depth-�rst search itself would be easy to implement, but

lacking both it seems di�cult to quickly return after crossing a \back edge" whose reverse label is

unknown. We avoid this problem with the following algorithm, which is also akin to an algorithm

for �nding Euler tours.

M places a distinctly labeled pebble on each vertex it visits, thus e�ectively numbering the

vertices. M records in its state the source, destination, and label of each half edge it crosses. It will

eventually cross each half edge, so at termination it will have in its state a complete description

of the graph. Connectivity or other properties of the graph can then be determined directly

(nonuniformly).

M starts at s, initializing a stack in its state to contain s. At a general step, when at a vertex

u with u on top of the stack, if there is a previously uncrossed half edge leaving u, say (u; v), then

M crosses this edge, pushing v onto the stack. (M pebbles v if it does not already hold a pebble.)

If there are no previously uncrossed half edges leaving u, then M backtracks by popping u from

the stack, and returning to v, where v is the new top of stack. By assumption M has previously

crossed the (u; v) half edge, and so knows its label. In either case, the process is repeated at v. M

terminates when the stack is emptied.

It is easy to see that every visited vertex is pushed onto the stack, and none is removed from the

stack until all its outgoing half edges have been traversed. Thus, M will visit all vertices reachable

from s. M 's running time will be exactly 4m, since exactly two moves can be charged to each half

edge (u; v) | one for the �rst move by M across that half edge, when v is pushed (on top of u),

and the second for the move across (v; u) when that instance of v (there may be several instances)

is popped from the stack. 2

As noted above, with jumping it would be easy to implement depth-�rst search directly in

O(m) time using O(n) pebbles, and space O(n logn) in total. The algorithm presented in the proof

of Theorem 15 also uses O(n) pebbles, but uses more space, namely �(m log n) in total, since it

constructs a representation of the entire graph in its state. It is not known whether the result

can be strengthened to match the bounds attained by depth-�rst search while retaining the weaker

model assumed in Theorem 15.

22

5. Lower Bounds for the Cycle

5.1. A Lower Bound on the Number of States

In this section we show that deterministic nonjumping automata with a constant number Q of

states, one active pebble, and a constant number P of passive pebbles are too weak for studying

lower bounds on time. In fact, unless PQ =
(n) such automata cannot even traverse all n-vertex

cycles, no matter how much time they are allowed.

Lemma 16: Let � 2 f0; 1g�. Consider the chain C� of length 2j�j with left endpoint L, right

endpoint R, and midpoint M , and edge labels so that � is the labeling from L to M and also

from R to M . Then starting at any vertex v on C� that is an even distance from L and traversing

according to � terminates at M .

Proof: Consider three pebbles traversing simultaneously according to �, beginning at L, v,

and R, respectively. A straightforward induction shows that the pebble that began at v is always

an even distance from the other two and between them. Since the ones that started at L and R

both end at M , so does the third. 2

Theorem 17: Any WAG W that traverses every labeled n-cycle using Q states, one active

pebble, and P passive pebbles satis�es (P + 4)Q � n.

Proof: Assume to the contrary that (P +4)Q < n. Consider the action of W 's active pebble if

it never encounters a passive pebble it previously dropped: it traverses according to the sequence

t = �0�1 � � ��P 2 f0; 1g�, where �i is its traversal after dropping i but before dropping i + 1

pebbles. If each j�ij � Q, then jtj � (P + 1)Q < n � 1, so that W does not traverse any cycle

having t as the pre�x of the clockwise labeling beginning at the start vertex. Thus let i be the least

integer such that j�ij > Q. Then W repeats some state during this interval, and �i = ���� � � � is

in�nite, with j�j+ j�j � Q.

Let � = �� and t0 = �0�1 � � ��i�1�. Consider the cycle in which t0 is the clockwise labeling

from the start vertex to a vertex L, followed by an embedding of the chain C� of Lemma 16

from L clockwise to R. Notice that jt0j + jC�j � (P + 4)Q < n, so that this labeling can be

embedded on a cycle of length n. Now a traversal according to t0� causes the active pebble to

move unidirectionally to the midpoint M of C�, so that no pebble dropped is reencountered. By

Lemma 16, each further traversal according to � returns to M , so that the pebbles previously

dropped cannot be reencountered, and R is never reached. 2

In contrast, it is easy to see that there is a nonjumping automaton that traverses every labeled

n-cycle using a constant number of states and only 2 active pebbles, and in addition requires

only O(n) time. The idea is to maintain the invariant that the leading and trailing pebbles are

on adjacent vertices, and the automaton knows the label from the trailing pebble to the leading

pebble. Now after moving the leading pebble along label 0 it is a simple matter to advance both

pebbles one vertex while maintaining the invariant. A similar construction works with only one

passive pebble, if the automaton can jump.

23

Cook and Racko� [24, Theorem 4.14] present a family of 3-regular graphs that cannot be tra-

versed using a constant number of states and pebbles, even if jumping is allowed and the edge labels

are disclosed. The price paid to capture this strengthened model is a bound that is quantitatively

weaker than that of Theorem 17. For instance, they do not rule out the combination Q = O(1)

and P = O(log logn).

5.2. The Form of Universal Traversal Sequences

As another byproduct of Lemma 16, there is an interesting corollary concerning universal traversal

sequences for the cycle. It is not clear a priori that a sequence such as (00010)n
2
could not be

universal for all cycles. The following corollary of Lemma 16 shows that this is impossible.

Corollary 18: For any � 2 f0; 1g+ and any integers n and k, if j�j < n=2 then �k is not a

universal traversal sequence for all labeled n-cycles.

Proof: Since j�j < n=2, the chain C� of Lemma 16 can be embedded in a cycle of length n.

Consider a traversal according to � starting at M . If j�j, the distance from M to L, is even then,

according to Lemma 16, the traversal ends at M . If j�j is odd then the traversal ends at a vertex

an even distance from L, so that a second traversal according to � returns to M . In either case a

traversal according to �� starting at M returns to M after visiting at most j�j + 1 < n distinct

vertices. Therefore �k starting at M never visits more vertices. 2

Using similar techniques, Theorem 19 proves that the previous result in fact holds for any even

length � such that � is not a universal traversal sequence for all labeled (n=2)-cycles. For instance,

it holds for any � whose length is even and O(n1:43) (Buss and Tompa [21]).

Theorem 19: For any � 2 f0; 1g� of even length, any even integer n, and any integer k, if � is

not a universal traversal sequence for all labeled (n=2)-cycles, then �k is not a universal traversal

sequence for all labeled n-cycles.

Proof: Since � is not a universal traversal sequence for all labeled (n=2)-cycles, there is a

labeled chain C of n=2�1 vertices with a vertex S such that starting at S and traversing according

to � never leaves C and ends at some vertex T . Construct a cycle of length n as follows (see

Figure 1): take a copy of C in which T is clockwise from S, followed by a new vertex M , followed

by a copy C 0 of C in which the copy T 0 of T is counterclockwise from the copy S0 of S, followed by

a new vertex X.

Now start at any vertex s on the arc between S and S0 containingM , where s is an even distance

from S, and traverse according to �. This must terminate at a vertex t on the arc between T and

T 0 containing M , where t is also an even distance from S, without ever reaching X. The reason

t is between T and T 0 is that the walk from s to t is trapped between the walks from S to T and

from S0 to T 0. The reason t is an even distance from S is because s is, and because j�j is even.

Therefore, starting at S and traversing according to �k will never reach X, for any k. 2

24

...........
............................

....
....
....
...
...
...
...
...
..
...
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
.
..
..
..
..
..
..
..
.
..
..
..
.
..
.
..
.
..
.
..
.
..
..
..
.
..
..
..
..
.
..
..
.
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
...
...
...
...
...
...
....
...
....

..
..
..
..
...
..
..
..
..
....................
..

......
....
....
....
...
....
...
...
...
...
...
....
...
....
.....
.....
.........
...

t

t

t

t

t

t

..

..

.

..

.

..

.

..

..

..

.

..

..

..

.

..

..

..

..

..

..

.

..

..

.

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
...
..
..
...
..
...
...
..
...
...
...
...
...
....
....
....
.....
.....
.......

..........
..

........
.....
.....
....
....
....
...
....
...
...
...
...
...
...
...
....
...
...
....
....
....
....
.....
......
...........
..

........
......
.....
....
....
....
....
...
...
...
...
...
...
..
...
..
...
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
.
..
..
..
..
..
..
.
..
..
.
..
..
..
..
..
.
..
..
..
.
..
..
..
.
..
.
..
.
.C 0C

S S0

T T 0

X

M

Figure 1: A Cycle Constructed from a Chain and its Reversal

6. Conclusion

This paper has investigated time-space tradeo�s for traversing undirected graphs, using structured

models based on Cook and Racko�'s \Jumping Automata for Graphs". Our three main contribu-

tions are the following.

First, we investigated the power of the model. It is easy to see that JAGs with su�ciently

many pebbles can simulate well known algorithms such as depth-�rst search and random walk.

More surprisingly, we have shown that an extremely simple variant of this model (a 2-pebble WAG,

one of whose pebbles is passive) is nearly as powerful as a Turing machine. Speci�cally, for general

undirected graph problems, it can simulate a Turing machine with only a constant factor increase

in space and a polynomial factor increase in time.

Second, we have shown a lower bound on the number of states required by such machines |

a WAG with one active and P passive pebbles requires
(n=P) states to traverse even such a

simple graph as an n-cycle, independent of time. An interesting corollary is that universal traversal

sequences for labeled n-cycles cannot consist solely of the repetition of some short sequence.

Finally, we have shown a strong tradeo� for graph traversal | a quadratic lower bound on the

product of time and space for nondeterministic JAGs with strong jumping, one active pebble, and

any number of unmovable pebbles. For example, achieving linear time requires linear space, imply-

ing that depth-�rst search is optimal on this model. Since our bound applies to nondeterministic

algorithms for nonconnectivity, it also implies that closure under complementation of nondetermin-

istic space-bounded complexity classes is achieved only at the expense of increased time, and that

the algorithm of Feige [28] (based on Broder et al. [20] and Barnes and Feige [7]) cannot be made

both errorless and substantially faster. We also showed that our lower bound is tight.

The obvious important problem is to strengthen and generalize these lower bounds. Following

an earlier version of this paper [10], Edmonds [26] proved a time-space tradeo� on general JAGs:

for every z � 2, a JAG with at most 1
28z

logn
log log n

pebbles and at most 2log
z n states requires time

n � 2
((log n)=(log log n)) to traverse 3-regular graphs. The ultimate goal might be to prove that ST =

25

(mn) for JAGs, or even for general models of computation.

References

[1] L. M. Adleman. Two theorems on random polynomial time. In 19th Annual Symposium on

Foundations of Computer Science, pages 75{83, Ann Arbor, MI, Oct. 1978. IEEE.

[2] R. Aleliunas, R. M. Karp, R. J. Lipton, L. Lov�asz, and C. W. Racko�. Random walks, universal

traversal sequences, and the complexity of maze problems. In 20th Annual Symposium on

Foundations of Computer Science, pages 218{223, San Juan, Puerto Rico, Oct. 1979. IEEE.

[3] N. Alon, Y. Azar, and Y. Ravid. Universal sequences for complete graphs. Discrete Applied

Mathematics, 27:25{28, 1990.

[4] A. Bar-Noy, A. Borodin, M. Karchmer, N. Linial, and M. Werman. Bounds on universal

sequences. SIAM Journal on Computing, 18(2):268{277, Apr. 1989.

[5] G. Barnes, J. F. Buss, W. L. Ruzzo, and B. Schieber. A sublinear space, polynomial time al-

gorithm for directed s-t connectivity. In Proceedings, Structure in Complexity Theory, Seventh

Annual Conference, pages 27{33, Boston, MA, June 1992. IEEE. To appear, SIAM Journal

on Computing.

[6] G. Barnes and J. A. Edmonds. Time-space lower bounds for directed s-t connectivity on JAG

models. In Proceedings 34th Annual Symposium on Foundations of Computer Science, pages

228{237, Palo Alto, CA, Nov. 1993. IEEE.

[7] G. Barnes and U. Feige. Short random walks on graphs. In Proceedings of the Twenty-Fifth

Annual ACM Symposium on Theory of Computing, pages 728{737, San Diego, CA, May 1993.

[8] G. Barnes and W. L. Ruzzo. Deterministic algorithms for undirected s-t connectivity us-

ing polynomial time and sublinear space. In Proceedings of the Twenty-Third Annual ACM

Symposium on Theory of Computing, pages 43{53, New Orleans, LA, May 1991. To appear,

Computational Complexity.

[9] P. W. Beame, A. Borodin, P. Raghavan, W. L. Ruzzo, and M. Tompa. A time-space tradeo�

for undirected graph traversal by walking automata. SIAM Journal on Computing. To appear.

[10] P. W. Beame, A. Borodin, P. Raghavan, W. L. Ruzzo, and M. Tompa. Time-space tradeo�s

for undirected graph traversal. In Proceedings 31st Annual Symposium on Foundations of

Computer Science, pages 429{438, St. Louis, MO, Oct. 1990. IEEE.

[11] P. Berman and J. Simon. Lower bounds on graph threading by probabilistic machines. In 24th

Annual Symposium on Foundations of Computer Science, pages 304{311, Tucson, AZ, Nov.

1983. IEEE.

[12] M. Blum and D. C. Kozen. On the power of the compass (or, why mazes are easier to search

than graphs). In 19th Annual Symposium on Foundations of Computer Science, pages 132{142,

Ann Arbor, MI, Oct. 1978. IEEE.

26

[13] M. Blum and W. J. Sakoda. On the capability of �nite automata in 2 and 3 dimensional space.

In 18th Annual Symposium on Foundations of Computer Science, pages 147{161, Providence,

RI, Oct. 1977. IEEE.

[14] B. Bollob�as. Extremal Graph Theory with Emphasis on Probabilistic Methods, volume 62

of Regional Conference Series in Mathematics. Published for the Conference Board of the

Mathematical Sciences by the American Mathematical Society, 1986.

[15] J. A. Bondy and U. S. R. Murty. Graph Theory with Applications. MacMillan, 1976. Revised

paperback edition, 1977.

[16] A. Borodin. Structured vs. general models in computational complexity. L'Enseignement

Math�ematique, XXVIII(3-4):171{190, July-Dec. 1982. Also in [39, pages 47{65].

[17] A. Borodin, S. A. Cook, P. W. Dymond, W. L. Ruzzo, and M. Tompa. Two applications of

inductive counting for complementation problems. SIAM Journal on Computing, 18(3):559{

578, June 1989. See also 18(6): 1283, Dec. 1989.

[18] A. Borodin, W. L. Ruzzo, and M. Tompa. Lower bounds on the length of universal traversal

sequences. Journal of Computer and System Sciences, 45(2):180{203, Oct. 1992.

[19] M. F. Bridgland. Universal traversal sequences for paths and cycles. Journal of Algorithms,

8(3):395{404, 1987.

[20] A. Z. Broder, A. R. Karlin, P. Raghavan, and E. Upfal. Trading space for time in undirected

s-t connectivity. SIAM Journal on Computing, 23(2):324{334, Apr. 1994.

[21] J. Buss and M. Tompa. Lower bounds on universal traversal sequences based on chains of

length �ve. Information and Computation, 120(2):326{329, Aug. 1995.

[22] A. K. Chandra, P. Raghavan, W. L. Ruzzo, R. Smolensky, and P. Tiwari. The electrical

resistance of a graph captures its commute and cover times. Computational Complexity. To

Appear.

[23] A. Cobham. The recognition problem for the set of perfect squares. Research Paper RC-1704,

IBM Watson Research Center, 1966.

[24] S. A. Cook and C. W. Racko�. Space lower bounds for maze threadability on restricted

machines. SIAM Journal on Computing, 9(3):636{652, Aug. 1980.

[25] D. L. Dill, A. J. Drexler, A. J. Hu, and C. H. Yang. Protocol veri�cation as a hardware

design aid. In IEEE International Conference on Computer Design: VLSI in Computers and

Processors, pages 522{525. IEEE Computer Society, 1992.

[26] J. A. Edmonds. Time-space trade-o�s for undirected ST -connectivity on a JAG. In Proceedings

of the Twenty-Fifth Annual ACM Symposium on Theory of Computing, pages 718{727, San

Diego, CA, May 1993.

[27] J. A. Edmonds and C. K. Poon. A nearly optimal time-space lower bound for directed st-

connectivity on the NNJAG model. In Proceedings of the Twenty-Seventh Annual ACM Sym-

posium on Theory of Computing, pages 147{156, Las Vegas, NV, May 1995.

27

[28] U. Feige. A randomized time-space tradeo� of ~O(mR̂) for USTCON. In Proceedings 34th

Annual Symposium on Foundations of Computer Science, pages 238{246, Palo Alto, CA, Nov.

1993. IEEE.

[29] P. Hall. On representatives of subsets. J. London Math. Soc., 10:26{30, 1935.

[30] A. Hemmerling. Labyrinth Problems: Labyrinth-Searching Abilities of Automata, volume 114

of Teubner-Texte zur Mathematik. B. G. Teubner Verlagsgesellschaft, Leipzig, 1989.

[31] I. N. Herstein. Topics in Algebra. John Wiley & Sons, second edition, 1975.

[32] S. Hoory and A. Wigderson. Universal traversal sequences for expander graphs. Information

Processing Letters, 46(2):67{69, 17 May 1993.

[33] N. Immerman. Nondeterministic space is closed under complementation. SIAM Journal on

Computing, 17(5):935{938, Oct. 1988.

[34] S. Istrail. Polynomial universal traversing sequences for cycles are constructible. In Proceedings

of the Twentieth Annual ACM Symposium on Theory of Computing, pages 491{503, Chicago,

IL, May 1988.

[35] S. Istrail. Constructing generalized universal traversing sequences of polynomial size for graphs

with small diameter. In Proceedings 31st Annual Symposium on Foundations of Computer

Science, pages 439{448, St. Louis, MO, Oct. 1990. IEEE.

[36] J. D. Kahn, N. Linial, N. Nisan, and M. E. Saks. On the cover time of random walks on

graphs. Journal of Theoretical Probability, 2(1):121{128, Jan. 1989.

[37] H. J. Karlo�, R. Paturi, and J. Simon. Universal traversal sequences of length nO(log n) for

cliques. Information Processing Letters, 28:241{243, Aug. 1988.

[38] R. P. Kurshan. The complexity of veri�cation. In Proceedings of the Twenty-Sixth Annual

ACM Symposium on Theory of Computing, pages 365{371, Montr�eal, Qu�ebec, Canada, May

1994.

[39] Logic and Algorithmic, An International Symposium Held in Honor of Ernst Specker, Z�urich,

Feb. 5{11, 1980.Monographie No. 30 de L'Enseignement Math�ematique, Universit�e de Gen�eve,

1982.

[40] M. L. Mauldin and J. R. R. Leavitt. Web-agent related research at the Center for Machine

Translation. In Proceedings of the ACM Special Interest Group on Networked Information

Discovery and Retrieval (SIGNIDR-94), Aug. 1994.

[41] N. Nisan. RL � SC . Computational Complexity, 4(1):1{11, 1994.

[42] N. Nisan, E. Szemer�edi, and A. Wigderson. Undirected connectivity in O(log1:5 n) space.

In Proceedings 33rd Annual Symposium on Foundations of Computer Science, pages 24{29,

Pittsburgh, PA, Oct. 1992. IEEE.

[43] N. Nisan and A. Ta-Shma. Symmetric Logspace is closed under complement. Chicago Journal

of Theoretical Computer Science, 1995(1), June 1995.

28

[44] W. J. Savitch. Relationships between nondeterministic and deterministic tape complexities.

Journal of Computer and System Sciences, 4(2):177{192, 1970.

[45] W. J. Savitch. Maze recognizing automata and nondeterministic tape complexity. Journal of

Computer and System Sciences, 7(4):389{403, 1973.

[46] E. Selberg and O. Etzioni. Multi-engine search and comparison using the Metacrawler. In

World Wide Web Journal: Fourth International World Wide Web Conference Proceedings,

pages 195{208, 11{14 Dec. 1995.

[47] R. Szelepcs�enyi. The method of forcing for nondeterministic automata. Acta Informatica,

26:279{284, 1988.

[48] M. Tompa. Two familiar transitive closure algorithms which admit no polynomial time, sub-

linear space implementations. SIAM Journal on Computing, 11(1):130{137, Feb. 1982.

[49] M. Tompa. Lower bounds on universal traversal sequences for cycles and other low degree

graphs. SIAM Journal on Computing, 21(6):1153{1160, Dec. 1992.

[50] D. I. Zuckerman. On the time to traverse all edges of a graph. Information Processing Letters,

38(6):335{337, 28 June 1991.

(Last RCS Revision: 1.143 (Short) Date: 1997/01/16 16:27:57 :)

29

