
 1

Computer Graphics Zoran Popovi}
CSE 457 Autumn 1999

Homework 3

Received: Mon, Nov. 1
Due: Mon, Nov. 15

DIRECTIONS

Please provide short written answers to the questions in the space provided.
If you require extra space, you may staple additional pages to the back of
your assignment. Feel free to talk over the problems with classmates, but
please answer the questions on your own.

NAME: ________________________________

 2

Problem 1. (20 Points)

The Z-buffer algorithm can be improved by using an image space “Z-pyramid.” The basic idea of the Z-
pyramid is to use the original Z-buffer as the finest level in the pyramid, and then combine four Z-values
at each level into one Z-value at the next coarser level by choosing the farthest (largest) Z from the
observer. Every entry in the pyramid therefore represents the farthest (largest) Z for a square area of the
Z-buffer. A Z-pyramid for a single 2x2 image is shown below:

a) (3 Points) At the coarsest level of the pyramid there is just a single Z value. What does that Z value
represent?

Suppose we wish to test the visibility of a polygon P. Let Zp be the nearest (smallest) Z value of
polygon P. Let R be the smallest region in the Z-pyramid that completely covers polygon P, and let Zr
be the Z value that is associated with region R in the Z-pyramid.

 3

Problem 1 - continued.

 b) (5 Points) What can we conclude if Zr < Zp?

c) (5 Points) What can we conclude if Zp < Zr?

If the visibility test is inconclusive, then the algorithm applies the same test recursively: it goes to the
next finer level of the pyramid, where the region R is divided into four quadrants, and attempts to prove
that polygon P is hidden in each of the quadrants R of that P intersects. Since it is expensive to
compute the closest Z value of P within each quadrant, the algorithm just uses the same Zp (the nearest
Z of the entire polygon) in making the comparison in every quadrant. If at the bottom of the pyramid
the test is still inconclusive, the algorithm resorts to ordinary Z-buffered scan conversion to resolve
visibility.

d) (7 Points) Suppose that, instead of using the above algorithm, we decided to go to the expense of
computing the closest Z value of P within each quadrant. Would it then be possible to always make a
definitive conclusion about the visibility P of within each pixel, without resorting to scan conversion?
Why or why not?

 4

Problem 2. (20 Points)

BSP trees are widely used in computer graphics. There are many variations that can be used to increase
performance. The following questions deal with some of these variations.

For the version of BSP trees that we learned about in class, polygons in the scene (or more precisely,
their supporting planes) were used to do the scene splitting. However, it is not necessary to use existing
polygons – one can choose arbitrary planes to split the scene:

a) (2 Points) What is one advantage of being able to pick the plane used to divide the scene at each
step? What is one disadvantage of not just using existing polygons?

Recall that when using a BSP tree as described in class, we must draw all the polygons in the tree. This
is very inefficient, since many of these polygons will be completely outside of the view frustum.
However, it is possible to store information at the internal nodes in a BSP tree that will allow us to easily
determine if any of the polygons below that node will be visible. If none of the polygons in that sub-tree
will be visible, we can completely ignore that branch of the tree.

b) (5 Points) Explain what extra information should be stored at the internal nodes to allow this, and
how it would be used to do this “pruning” of the BSP tree.

 5

Problem 2 - continued.

c) (6 Points) In class, we talked about doing a “back to front” traversal of a BSP tree. But it is
sometimes preferable to do a “front to back” traversal of the tree, in which we draw polygons closer to
the viewer before we draw the polygons farther away. (See part (d) for one reason why this is useful)
How should the tree traversal order be changed in order to do a front to back traversal?

When we traverse a BSP tree in back to front order, we may draw over the same pixel location many
times, which is inefficient since we would do a lot of “useless” shading computations. Assume we
instead traverse the tree in front to back order. As we scan convert each polygon, we would like to be
able to know whether or not each pixel of it will be visible in the final scene (and thus whether we need
to compute shading information for that point).

d) (7 Points) What simple information about the screen do we need to maintain in order to know if each
pixel in the next polygon we draw will be visible or not?

 6

Problem 3. (15 Points)

The company you work for has just bought rights to a raytracing engine. Unfortunately, you don’t have
the source code, just a compiled library. You have been asked to determine how rays are terminated.
So, you call the authors you find out even they don’t remember for sure. All they can tell you is this:
The termination criteria for tracing rays is either (a) rays are traced to a maximum recursion depth of
5, or (b) rays are adaptively terminated based on their contribution to a pixel color.

a) (5 Points) Describe a scene that can be used to determine which method is used. Be specific about all
relevant aspects of the scene and what you would look for in the resulting image to determine which
termination method is used.

One of the features included in the raytracing engine your company bought is a brand new algorithm for
antialiasing by adaptive supersampling.

The normal implementation is to sample rays at the corner of every pixel, compare the colors of each
sample, and if the difference between neighboring sample colors is too great, subdivide that region
recursively and sample more times. (See the diagram below, or Foley, et al., 15.10.4)

Scene geom
etry

One pixel of image plane

Another pixel of image plane

Place where a ray is cast

A B

C
D

However, in this new algorithm, we subdivide and supersample if neighboring rays intersect different
objects. In other words, note the light-grey pixel above. Three of the four corner samples (a, b, and c)
intersect the scene geometry. The fourth corner (d), misses the geometry completely. So we choose to
supersample this pixel without ever comparing colors.

 7

Problem 3 - continued.

b) (10 Points) In what ways is this better than the traditional way? In what ways is it worse?

 8

Problem 4. (25 Points)

The Phong shading model can be summarized by the following equation:

where the summation i is taken over all light sources. The variables used in the Phong shading equation
are summarized below:
 I a0 a1 a2 di ke ka kd ks ns Ia Ili Li Ri N V

a) (6 Points) Which of the quantities above are affected if...

• …the viewing direction changes?

• …the position of the ith light changes?

• …the orientation of the surface changes? Assume that the change in
orientation is about the intersection point.

Blinn and Newell have suggested that, when V and L are assumed to be constants, the computation of

RV ⋅ can be simplified by associating with each light source a fictitious light source that will generate
specular reflections. This second light source is located in a direction H halfway between L and V. The

specular component is then computed from () sn
+⋅ HN instead of from () sn

+⋅ RV .

b) (3 Points) Under what circumstances might L and V be assumed to be constant?

c) (4 Points) How does the new equation using H simplify shading equations?

() ()[]∑




















++
⋅+⋅++= ++

i ii

n
isidlaaephong dadaa

kkIIkkI s

i 2
210

1
,1minRVLN

 9

Problem 4 - continued.

The ambient term in the Phong model is one way to guarantee that all visible surfaces receive some
light. Another possibility is to use the "headlamp" method in which a point light source is positioned at
the eye, but no ambient term is used.

d) (4 Points) Are these two methods equivalent? If so, explain why. If not, describe a scene in which
the results would be clearly different.

e) (4 Points) Describe the relationships between N, Li, and Ri that would result in a point shaded with
the Phong model appearing maximally bright.

f) (4 Points) The equation above is not the only hallmark to Mister Phong’s fame. We also talked in
class about the difference between two polygon shading methods, one called Phong and one called
Gouraud. Describe a scene where the difference between Phong and Gouraud shading would be
noticeable.

 10

Problem 5. (12 Points)

 (3 Points Each) Respond TRUE or FALSE to each of these statements and explain your reasoning.

_____ The Phong model is a physical simulation of the behavior of real-world light.

_____ For polished metal, the specular component ns would be large.

_____ A rough surface with many tiny microfacets is likely to have a large diffuse

reflection coefficient.

____ In the Phong model, specular reflection does not depend on viewing angle.

 11

Problem 6. (15 Points)

Texture mapping has many applications in computer graphics.

a) (5 Points) List 5 different applications of texture mapping, including at least one that has nothing to

do with simulating the appearance of 3D objects.

The computationally difficult part of texture mapping is in summing over all of the pixels covered by a
particular quadrilateral in the r x r-pixel texture map. In class we discussed four different ways that this
process can be implemented:

1. The “brute force” method
2. Mip maps
3. Summed area tables

b) (5 Points) Suppose we’re using texture mapping to determine the color of a single pixel P in screen

space, computed by averaging all of the n pixels in the texture map covered by the image of P in
texture space. For each of the three methods above, what is the asymptotic time complexity of
computing this average (in terms of n and r)?

c) (5 Points) Suppose that the pixels in the original texture map are each represented with b bits. How

many bits are there in the original texture map?

