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Surfaces
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Reading

Foley et.al., Section 11.3

Recommended:

Bartels, Beatty, and Barsky.  An Introduction to Splines for 
use in Computer Graphics and Geometric Modeling, 1987.
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Tensor product Bézier surfaces

Given a grid of control points Vij, forming a control net, contruct a 
surface S(u,v) by:

treating rows of V as control points for curves V0(u),…, Vn(u).

treating V0(u),…, Vn(u) as control points for a curve parameterized by v.
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Building surfaces from curves

Let the geometry vector vary by a second parameter v:
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Geometry matrices

By transposing the geometry curve we get:
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Geometry matrices

Combining

And

We get 
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Tensor product surfaces, cont.

Let’s walk through the steps:

Which control points are interpolated by the surface?
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Bezier Blending Functions

a.k.a. Bernstein polynomials
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Matrix form

Tensor product surfaces can be written out explicitly:
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Tensor product B-spline surfaces

As with spline curves, we can piece together a sequence of Bézier surfaces 
to make a spline surface.  If we enforce C2 continuity and local control, 
we get B-spline curves:

treat rows of B as control points to generate Bézier control points in u.
treat Bézier control points in u as B-spline control points in v.
treat B-spline control points in v to generate Bézier control points in u.
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Tensor product B-splines, cont.

Which B-spline control points are interpolated by the surface?
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Tensor product B-splines, cont.



13

Trimmed NURBS surfaces

Uniform B-spline surfaces are a special case of NURBS surfaces.

Sometimes, we want to have control over which parts of a NURBS 
surface get drawn.

For example:

We can do this by trimming the u-v domain.

Define a closed curve in the u-v domain (a trim curve)
Do not draw the surface points inside of this curve.

It’s really hard to maintain continuity in these regions, especially while 
animating.

u

v
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Surfaces of revolution

Idea:  rotate a 2D profile curve around an axis.

What kinds of shapes can you model this way?
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Variations

Several variations are possible:

Scale C(u) as it moves, possibly using length of T(v) as a scale 
factor.

Morph C(u) into some other curve C’(u) as it moves along T(v).

…
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Constructing surfaces of revolution

Given: A curve C(u) in the yz-plane:

Let Rx(θ) be a rotation about the x-axis.

Find: A surface S(u,v) which is C(u) rotated about the z-axis.
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General sweep surfaces

The surface of revolution is a special case of a swept surface.

Idea: Trace out surface S(u,v) by moving a profile curve C(u) along a 
trajectory curve T(v).

More specifically:

Suppose that C(u) lies in an (xc,yc) coordinate system with origin Oc.
For every point along T(v), lay C(u) so that Oc coincides with T(v).
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Orientation

The big issue:

How to orient C(u) as it moves along T(v)?

Here are two options:

1.  Fixed (or static):  Just translate Oc along T(v).

2.  Moving.  Use the Frenet frame of T(v).

Allows smoothly varying orientation.

Permits surfaces of revolution, for example.
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Frenet frames

Motivation:  Given a curve T(v), we want to attach a smoothly varying 
coordinate system.

To get a 3D coordinate system, we need 3 independent direction vectors.

As we move along T(v), the Frenet frame (t,b,n) varies smoothly.
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Frenet swept surfaces

Orient the profile curve C(u) using the Frenet frame of the 
trajectory T(v):

1. Put C(u) in the normal plane nb.

2. Place Oc on T(v).

3. Align xc for C(u) with -n.

4. Align yc for C(u) with b.

If T(v) is a circle, you get a surface of revolution exactly?
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Summary

What to take home:

How to construct tensor product Bézier surfaces

How to construct tensor product B-spline surfaces

Surfaces of revolution

Construction of swept surfaces from a profile and trajectory curve
• With a fixed frame

• With a Frenet frame


