
1

Hidden Surface Algorithms

2

Reading

Reading:

Angel 5.6, 10.10.2, 12.2 (pp. 626-627)

Optional reading:

Foley, van Dam, Feiner, Hughes, Chapter 15

I. E. Sutherland, R. F. Sproull, and R. A. Schumacker,
A characterization of ten hidden surface
algorithms, ACM Computing Surveys 6(1): 1-55,
March 1974.

3

Introduction

In the previous lecture, we figured out how to
transform the geometry so that the relative sizes will
be correct if we drop the z component.

But, how do we decide which geometry actually gets
drawn to a pixel?

Known as the hidden surface elimination problem
or the visible surface determination problem.

There are dozens of hidden surface algorithms.

We look at three prominent ones:

Z-buffer

Ray casting

Binary space partitioning (BSP) trees

4

Z-buffer

The Z-buffer or depth buffer algorithm [Catmull, 1974] is
probably the simplest and most widely used.

Here is pseudocode for the Z-buffer hidden surface
algorithm:

for each pixel (i,j) do

Z-buffer [i,j] ← FAR

Framebuffer[i,j] ← <background color>

end for

for each polygon A do

for each pixel in A do

Compute depth z and shade s of A at (i,j)

if z > Z-buffer [i,j] then

Z-buffer [i,j] ← z

Framebuffer[i,j] ← s

end if

end for

end for

Q: What should FAR be set to?

5

Rasterization

The process of filling in the pixels inside of a polygon
is called rasterization.

During rasterization, the z value and shade s can be
computed incrementally (fast!).

Curious fact:

Described as the “brute-force image space
algorithm” by [SSS]

Mentioned only in Appendix B of [SSS] as a point
of comparison for huge memories, but written off
as totally impractical.

Today, Z-buffers are commonly implemented in
hardware.

6

Z-buffer: Analysis

Easy to implement?

Easy to implement in hardware?

Incremental drawing calculations (uses coherence)?

Pre-processing required?

On-line (doesn’t need all objects before drawing
begins)?

If objects move, does it take more work than normal to
draw the frame?

If the viewer moves, does it take more work than
normal to draw the frame?

Typically polygon-based?

Efficient shading (doesn’t compute colors of hidden
surfaces)?

Handles transparency?

Handles refraction?

7

Ray casting

Idea: For each pixel center Pij

Send ray from eye point (COP), C, through Pij into
scene.

Intersect ray with each object.

Select nearest intersection.

8

Ray casting, cont.

Implementation:

Might parameterize each ray:

r(t) = C + t (Pij - C)

Each object Ok returns tk > 0 such that first
intersection with Ok occurs at r(tk).

Q: Given the set {tk} what is the first intersection point?

Note: these calculations generally happen in world
coordinates. No projective matrices are applied.

9

Ray casting: Analysis

Easy to implement?

Easy to implement in hardware?

Incremental drawing calculations (uses coherence)?

Pre-processing required?

On-line (doesn’t need all objects before drawing
begins)?

If objects move, does it take more work than normal to
draw the frame?

If the viewer moves, does it take more work than
normal to draw the frame?

Typically polygon-based?

Efficient shading (doesn’t compute colors of hidden
surfaces)?

Handles transparency?

Handles refraction?

10

Binary-space partitioning (BSP) trees

Idea:

Do extra preprocessing to allow quick display
from any viewpoint.

Key observation: A polygon A is painted in correct
order if

Polygons on far side of A are painted first

A is painted next

Polygons in front of A are painted last.

A

B

C

D

11

BSP tree creation

12

BSP tree creation (cont’d)

procedure MakeBSPTree:

takes PolygonList L

returns BSPTree

Choose polygon A from L to serve as root

Split all polygons in L according to A

node ← A

node.neg ← MakeBSPTree(Polygons on neg. side of A)

node.pos ← MakeBSPTree(Polygons on pos. side of A)

return node

end procedure

Note: Performance is improved when fewer polygons
are split --- in practice, best of ~ 5 random splitting
polygons are chosen.

Note: BSP is created in world coordinates. No
projective matrices are applied before building tree.

13

BSP tree display

procedure DisplayBSPTree:

Takes BSPTree T

if T is empty then return

if viewer is in front (on pos. side) of T.node

DisplayBSPTree(T. _____)

Draw T.node

DisplayBSPTree(T._____)

else

DisplayBSPTree(T. _____)

Draw T.node

DisplayBSPTree(T. _____)

end if

end procedure

14

BSP trees: Analysis

Easy to implement?

Easy to implement in hardware?

Incremental drawing calculations (uses coherence)?

Pre-processing required?

On-line (doesn’t need all objects before drawing
begins)?

If objects move, does it take more work than normal to
draw the frame?

If the viewer moves, does it take more work than
normal to draw the frame?

Typically polygon-based?

Efficient shading (doesn’t compute colors of hidden
surfaces)?

Handles transparency?

Handles refraction?

15

Summary

What to take home from this lecture:

Understanding of three hidden surface
algorithms:

• Z-buffering

• Ray casting

• BSP tree creation and traversal

