
U Computer Graphics Instructor: Zoran Popović

CSE 457, Spring 2003

Homework #2

Hidden Surfaces, Shading, Texture Mapping, Parametric Curves

Prepared by: Steve Martin

Assigned: Friday, May 9th
Due: Friday, May 23rd, at the beginning of class

Directions: Please provide short written answers to the questions in the space provided. If you
require extra space, you may staple additional pages to the back of your assignment. Feel free
to discuss the problems with classmates, but please answer the questions on your own.

Name:___

 Problem 1: BSP Trees (15 points)
BSP trees are widely used in computer graphics. Many variations can be used to increase
performance. The following questions deal with some of these variations.

For the version of BSP trees that we learned about in class, polygons in the scene (or more
precisely, their supporting planes) were used to do the scene splitting. However, it is not
necessary to use existing polygons – one can choose arbitrary planes to split the scene:

a. (5 pts) What is one advantage of being able to pick the plane used to divide the scene at each

step? What is one disadvantage of not just using existing polygons? Draw a two
dimensional example to illustrate your point for each case.

Problem 1 - continued

Recall that when using a BSP tree as described in class, we must draw all the polygons in the
tree. This is inefficient, since many of these polygons will be completely outside of the view
frustum. However, it is possible to store information at the internal nodes in a BSP tree that will
allow us to easily determine if any of the polygons below that node will be visible. If none of
the polygons in that sub-tree will be visible, we can completely ignore that branch of the tree.

b. (5pts) Explain what extra information should be stored at the internal nodes to allow this,

and how it would be used to do this “pruning” of the BSP tree.

c. (5 pts) In class, we talked about doing a “back to front” traversal of a BSP tree. But it is

sometimes preferable to do a “front to back” traversal of the tree, in which we draw
polygons closer to the viewer before we draw the polygons farther away. How should the
tree traversal order be changed in order to do a front to back traversal?

 Problem 2: Shading (14 points)

Respond TRUE or FALSE to each of these statements and explain your reasoning.

a. (2 pts) The Phong shading model provides an accurate physical model for how light interacts
with real surfaces.

b. (2 pts) A rough surface with many tiny microfacets is likely to have a large diffuse reflection
coefficient. Assume that the microfacets are oriented in random directions.

c. (2 pts) In the Phong shading model, specular reflection does not depend on viewing angle.

 Problem 2 - continued

In the following, suppose you are approximating a curved surface with a triangular mesh (i.e., a
set of adjacent triangles).

d. (2 pts) Gouraud interpolation cannot produce specular highlights.

e. (2 pts) The brightest point on an object shaded with Gouraud interpolation can be brighter
than the brightest point shaded with Phong interpolation. (hint: can points within a polygon be
brighter than the vertices?).

f. (2 pts) By increasing the number of polygons, you can make the difference between Gouraud
interpolation and Phong interpolation to be arbitrarily small—you can make the polygons small
enough that there is no perceivable difference.

g. (2 pts) Gouraud interpolation requires fewer shading operations (evaluations of the Phong
illumination equation) than Phong interpolation.

Problem 3. More uses of texture mapping (20 points)

Texture mapping can be used in many ways in addition to simply providing realistic looking
surface material treatments on objects.

For example, the texture applied to a surface doesn't have to be a representation of the surface
material at all. It could be an image rendered from another point of view in the model.

a. (3 pts) Consider the scene shown in the figure. The viewer is at the origin, and there is a

perfect planar (flat) mirror sitting in the scene nearby. Think about the image in the mirror.
Calculate where you would place another center of projection (viewer) in order to render the
exact image that is visible in the mirror from the viewer at the origin, and draw it on the
diagram. Show the coordinates of the added center of projection.

b. (5 pts) Describe a general procedure for calculating a mirror’s viewpoint given a scene, a

planar mirror polygon, and a viewer positioned at the origin. Describe your steps in
words.

Problem 3 – continued

c. (6 pts) The psuedocode below describes the basic Z-buffer algorithm we discussed in class.

for each pixel (i, j) do {
 Z-buffer[i,j] = FAR
 Framebuffer[i,j] = background color
}
for each polygon A do {
 for each pixel (i,j) in A do {
 z = compute depth of A at (i,j)
 s = shade of A at (i,j)
 if z < Z-buffer[i,j] {
 Z-buffer[i,j] = z
 Framebuffer[i,j] = s
 }
 }
}

Consider the function image = RenderMirror(polygon mirror) that takes in a polygon mirror
and renders the scene as it would be seen by the mirror, returning the rendered image. Write a
pseudocode for RenderMirror, using a modified version of the Z-buffer algorithm above. To
simulate a simple mirror, your algorithm should disregard cases such as infinite reflections from
other mirrors, and instead just render the objects in front of the mirror. Feel free to reference
your explanation in part b) instead of writing out detailed code for viewpoint transformations.

Problem 3 – continued

d. (6 pts) Using your function RenderMiror from part c), write an algorithm pseudocode that

can render a scene that includes simple mirrors. Your algorithm should basically be a
modified version of the Z-buffer algorithm.

Problem 4: Parametric Curves (4 points)

Bezier curves are very simple and so versatile that almost all graphics packages feature a Bezier
curve tool. Now suppose you bought BezierDraw, a graphics program that only has a Bezier
curve tool and nothing else. (Assume that all curves that BezierDraw creates are third-order
Beziers.)

a. (4 pts) Is it possible to draw a perfect circle with BezierDraw? Explain in detail why or

why not. (Hint: what’s the parametric formulation of a circle?)

 Problem 5 - Properties of Bezier Curves (15 points)

A nice property of Bezier curves is that the
curve itself will always remain within the
convex hull of its control points. The convex
hull of a set of points is defined as the smallest
convex polygon containing all those points.
Intuitively, you might imagine the convex hull
of a set of points in two dimensional space to be
the polygon defined by wrapping a rubber band
around those points. In three dimensional
space, imaging using a rubber sheet instead.

An intuitively true property about convex hulls is as follows. Suppose we are given n points;
call these nppp ,...,, 21 . Now suppose we are given n real numbers, nwww ,,, 21 Κ . If

10 ≤≤ iw for all ni ≤≤1 and 1...21 =+++ nwww , then nnwww pppq +++= ...2211 lies

within the convex hull of the points nppp ,...,, 21 . In other words, taking a weighted average of

a set of points necessarily gives a point within the convex hull of those points.

a. (3 Points) A point on a cubic Bezier curve can be defined by the function

[]

−
−

−−

=

4

3

2

1

23

0001

0033

0363

1331

1)(

p

p

p

p

Q tttt

where 4321 ,,, pppp are the control points of the curve and 10 ≤≤ t . Write out the Bezier

basis functions)(),(),(),(4321 tftftftf such that

44332211)()()()()(ppppQ tftftftft +++= .

Problem 5 - continued

b. (4 Points) Show that 0)(,0)(,0)(,0)(4321 ≥≥≥≥ tftftftf for all 10 ≤≤ t .

c. (3 Points) Show that 1)()()()(4321 =+++ tftftftf for all 10 ≤≤ t .

d. (2 Point) Using the property about convex hulls stated previously, argue that any Bezier

curve must lie within the convex hull of its control points. (Make sure you use the convex
hull property exactly as it is stated)

e. (3 Points) Give an example of a situation in which the convex hull property of Bezier

curves might be useful.

