Hierarchical Modeling

Reading

Required

+ Angel, sections 8.1 - 8.6

Optional
+ OpenGL Programming Guide, chapter 3

Symbols and instances

Most graphics APIls support a few geometric
primitives:

+ spheres
¢ cubes
+ cylinders

These symbols are instanced using an instance
transformation.

Q: What is the matrix for the instance
transformation above?

3D Example: A robot arm

Consider this robot arm with 3 degrees of freedom:

+ Base rotates about its vertical axis by 6
+ Upper arm rotates in its xy-plane by ¢
+ Lower arm rotates in its xy-plane by v

Q: What matrix do we use to transform the base?
Q: What matrix for the upper arm?

Q: What matrix for the lower arm?

Hierarchical modeling ;Oi«gc:::r:plex example: human

Hierarchical models can be composed of D

I

instances using trees or DAGs:

chassis

right front

left front

right rear

left rear

right front left front right rear left rear
wheel wheel wheel wheel

. . . left upper right upper left upper right upper
+ edges contain geometric transformations a”;;p ¢ amﬂ’p |egp ¢ .egpp

+ nodes contain geometry (and possibly \ ‘ \ ‘

drawing attributes)

left lower right lower left lower right lower
arm arm leg leg

How might we
draw the tree for
the robot arm?

Q: What's the most sensible way to traverse this tree?

Robot arm implementation

The robot arm can be displayed by keeping a global
matrix and computing it at each step:

Matrix M model;

main ()

{

robot arm() ;

robot_arm()

{
M model R_y (theta);
base() ;
M model = R y(theta)*T(0,hl,0)*R z(phi);
upper arm() ;
M model = R y(theta)*T(0,hl,0)*R z(phi)

*T(0,h2,0)*R z(psi);

lower arm();

}

Do the matrix computations seem wasteful?

7

Robot arm implementation,
better

Instead of recalculating the global matrix each time, we
can just update it in place:

Matrix M _model;

main ()

{

M model = Identity();

robot arm() ;

robot arm()
{
M model *= R_y(theta);
base () ;
M model *= T(0,hl,0)*R _z(phi):
upper_arm() ;
M model *= T(0,h2,0)*R z(psi):

lower arm();

Robot arm implementation,
OpenGL

OpenGL maintains a global state matrix called the
model-view matrix.

main ()

{

o e

glMatrixMode (GL_MODELVIEW) ;
glLoadIdentity () ;
robot_arm() ;

robot_arm()

{
glRotatef (theta, 0.0,
base();
glTranslatef(0.0, hl,
glRotatef (phi, 0.0, O.
lower_arm();
glTranslatef(0.0, h2,
glRotatef(psi, 0.0, O.

upper_arm() ;

Human figure implementation

We can also design code for drawing the human figure,
with a slight modification due to the branches in the
tree:

figure ()

{
torso() ;
M save = M model;
M model *= T(. . .)*R(. . .);
head () ;
M model = M save;
M model *= T(.
left upper arm();
M model *= T(.
left lower arm();

M model = M save;

Human figure with hand
What if we add a hand?

figure()

{
torso() ;
M save = M model;
M model *= T(. . .)*R(.
head () ;
M model = M save;
M model *= T(. . .)*R(.
left upper arm():;
M model *= T(. . .)*R(.
left lower arm();
M model *= T(. . .)*R(.
left hand();
M save2 = M model;
M model *= T(. . .)*R(.
left thumb();
M model = M save2;
M model *= T(. . .)*R(.
left forefinger();

M model = M save2;

}

Is there a better way to keep track of piles of matrices
that need to be saved, modified, and restored?
12

Human figure implementation,
better

figure()
{

torso () ;

push (M model) ;
M model *= T(. . .)*R(.
head () ;

M model = pop (M model) ;

push (M model) ;
M model *= T(. . .)*R(.
left upper arm();
M model *= T(. . .)*R(.
left lower arm();
M model *= T(. . .)*R(.
left hand();
push (M model) ;

M model *= T(. . .)*R(. . .);
left thumb();
M model = pop (M model);
push (M model) ;
M model *= T(. . .)*R(. . .);
left forefinger();

M model = pop (M model) ;
push (M _model) ;

13

Human figure implementation,
OpenGL

figure ()
{
torso();
glPushMatrix() ;
glTranslate(...);
glRotate(...);
head () ;
glPopMatrix () ;
glPushMatrix () ;
glTranslate(...):
glRotate(...);
left upper arm();
glTranslate(...);
glRotate(...);
left lower_arm();
glTranslate(...);
glRotate(...);
left hand();
glPushMatrix() ;
glTranslate(...);
glRotate(...);
left thumb();
glPopMatrix () ;
glPushMatrix () ;
glTranslate(...);
glRotate(...):
left forefinger();
glPopMatrix () ;

The Matrix Stack

Trace of OpenGL calls
glLoadldentity();
glPushMatrix();
glTranslatef(Tx,Ty,0);
glRotatef(u,0,0,1);
glTranslatef(-px,-py,0);
glPushMatrix();
glTranslatef(gx,qy,0);
glRotatef(v,0,0,1);
glTranslatef(-rx,-ry,0);
Draw(A);

glPopMatrix();
Draw(B);

Animation

The above examples are called articulated
models:

+ rigid parts
+ connected by joints

They can be animated by specifying the joint

angles (or other display parameters) as functions

of time.

Kinematics and dynamics

Definitions:

+ Kinematics: how the positions of the parts
vary as a function of the joint angles.

+ Dynamics: how the positions of the parts
vary as a function of applied forces.

Questions:

Q: What do the terms inverse kinematics and
inverse dynamics mean?

Q: Why are these problems more difficult?

Key-frame animation

One way to get around these problems is to use
key-frame animation.

+ Each joint specified at various key frames
(not necessarily the same as other joints)

+ System does interpolation or in-betweening

Doing this well requires:

+ A way of smoothly interpolating key frames:
splines

+ A good interactive system

+ Aot of skill on the part of the animator

Scene graphs

The idea of hierarchical modeling can be
extended to an entire scene, encompassing:

+ many different objects
+ lights
+ camera position

This is called a scene tree or scene graph.

The peculiarity of OpenGL
ordering

Let’s revisit the very first simple example in this
lecture.

To draw the transformed house, we would write
OpenGL code like:

glMatrixMode (GL_MODELVIEW) ;
glLoadIdentity () ;
glTranslatef(...);
glRotatef(...);

glScalef(...);

house () ;

Is there something a little funny about the order of
operations?

Why was OpenGL designed this way?

Global, fixed coordinate system

OpenGL’s transforms, logical as they may be, still
seem backwards. They are, if you think of them
as transforming the object in a fixed coordinate
system.

_— A

translate

~—}___—7

A

Local, changing coordinate
system

Another way to view transformations is as
affecting a local coordinate system that the
primitive is drawn in. Now the transforms appear
in the “right” order.

translate Q

Summary

Here’s what you should take home from this
lecture:

All the boldfaced terms.

How primitives can be instanced and
composed to create hierarchical models
using geometric transforms.

How the notion of a model tree or DAG can
be extended to entire scenes.

How keyframe animation works.

How transforms can be thought of as
affecting either the geometry, or the
coordinate system which it is drawn in.

