Affine transformations

Reading

Required:
+ Watt, Section 1.1.
Further reading:

+ Foley, et al, Chapter 5.1-5.5.

+ David F. Rogers and J. Alan Adams,
Mathematical Elements for Computer
Graphics, 2™ Ed., McGraw-Hill, New York,
1990, Chapter 2.

Geometric transformations

Geometric transformations will map points in one
space to points in another: (x'y',z') = f(x,y,z).

These transformations can be very simple, such
as scaling each coordinate, or complex, such as
non-linear twists and bends.

We'll focus on transformations that can be
represented easily with matrix operations.

We'll start in 2D...

Representation

We can represent a point, p = (x,y), in the plane

X
+ as a column vector {
y

+ as arow vector [x]

Representation, cont.

We can represent a 2-D transformation M by a

matrix
{a b}
M=
c d

If p is a column vector, M goes on the left:

HiED

If p is a row vector, mT goes on the right:

pl=pMT

x vl o5 o]

We will use column vectors.

Two-dimensional
transformations

Here's all you get with a 2 x 2 transformation
matrix M:

X' a bjl x

y'| le dlly

x'=ax+ by
y'=cx+dy

We will develop some intimacy with the
elements g, b, ¢, d...

Identity

Suppose we choose a=d=1, b=c=0:

+ Gives the identity matrix:

s]

¢ Doesn't move the points at all

Scaling
Suppose we set b=c=0, but let a and d take on
any positive value:

+ Gives a scaling matrix:

s

+ Provides differential scaling in x and y:
x'=ax
y'=dy

y
)}

Suppose we keep b=c=0, but let either a or d go
negative.

Examples:

Now let's leave a=d=1 and experiment with b. . ..

The matrix

Effect on unit square

Let's see how a general 2 x 2 transformation M
affects the unit square:

ﬁ 2:[p qr s|=[p" q r s]

a bl[0 11 0] [0 a a+b b
c d|0 01 1] |0 ¢ c+d d

Effect on unit square, cont.

Observe:

¢ Origin invariant under M

+ M can be determined just by knowing how
the corners (1,0) and (0,1) are mapped

+ aand d give x- and y-scaling
+ b and c give x- and y-shearing

Rotation

From our observations of the effect on the unit
square, it should be easy to write down a matrix
for “rotation about the origin”:

Limitations of the 2 x 2 matrix

A 2 x 2 matrix allows

¢ Scaling
Rotation
Reflection
Shearing

Q: What important operation does that leave out?

Homogeneous coordinates

Idea is to loft the problem up into 3-space, adding
a third component to every point:

And then transform with a 3 x 3 matrix:

0 t, | x
%
11

X 1
"1=T) vy =0
1 0

1
0

Rotation about arbitrary points

Until now, we have only considered rotation about
the origin.

With homogeneous coordinates, you can specify
. . _ T .

a rotation, 8, about any point q = [q, qy] with a

matrix.

Q: how would you find the matrix for rotating
about q by 6?

Rotation about arbitrary points Basic 3-D transformations: scaling

Until now, we have only considered rotation about Some of the 3-D transformations are just like the
the origin. 2-D ones.

With homogeneous coordinates, you can specify For example, scaling:
a rotation, 8, about any point q = [q, qy]T with a
matrix:

J‘

LN

¥ ¥ ¥
=R Y
x x =X > x

1. Translate q to origin

2. Rotate
3. Translate back

Note: Transformation order is important!!

Rotation in 3D

Rotation now has more possibilities in 3D:

(1 0 0
0 cos@ -sing
0 sin@ cosé
10 0 0

[cos@ sing
0

—sin@

Use right hand rule

AOOOH—\OOOH—\OOO

Shearing in 3D

Shearing is also more complicated. Here is one
example:

fH

We call this a shear with respect to the x-y plane

Properties of affine
transformations

All of the transformations we've looked at so far
are examples of “affine transformations.”

Here are some useful properties of affine
transformations:

+ Lines map to lines

+ Parallel lines remain parallel

+ Midpoints map to midpoints (in fact, ratios
along a line are always preserved)

Affine xforms in OpenGL

OpenGL maintains a “modelview” matrix that holds
the current transformation M

The modelview matrix is applied to points (usually
vertices of polygons) before drawing

It is modified by commands including:

¢ glLoadIdentity()
— set M to identity

¢ glTranslatef(t,, t,, t,))

— translate by (t,, t, t,)

¢ glRotatef (6, x, vy, 2z) M« MR
— rotate by angle e about axis (x, y, z)

¢ glscalef(s,, s,, s,) M <« MS
— scale by (s,, s,, S,)

Note that OpenGL adds transformations by
postmultiplication of the modelview matrix

Summary

What to take away from this lecture:

+ All the names in boldface.

+ How points and transformations are
represented.

What all the elements of a2 x 2
transformation matrix do and how these
generalize to 3 x 3 transformations.

What homogeneous coordinates are and
how they work for affine transformations.

How to concatenate transformations.

The mathematical properties of affine
transformations.

