#### **Affine transformations**

## Reading

#### Required:

• Watt, Section 1.1.

#### Further reading:

- Foley, et al, Chapter 5.1-5.5.
- David F. Rogers and J. Alan Adams, *Mathematical Elements for Computer Graphics*, 2<sup>nd</sup> Ed., McGraw-Hill, New York, 1990, Chapter 2.

2

#### **Geometric transformations**

Geometric transformations will map points in one space to points in another: (x',y',z') = f(x,y,z).

These transformations can be very simple, such as scaling each coordinate, or complex, such as non-linear twists and bends.

We'll focus on transformations that can be represented easily with matrix operations.

We'll start in 2D...

# Representation

We can represent a **point**, p = (x,y), in the plane

- as a column vector  $\begin{bmatrix} x \\ y \end{bmatrix}$
- as a row vector  $\begin{bmatrix} x & y \end{bmatrix}$

4

## Representation, cont.

We can represent a **2-D transformation** *M* by a matrix

$$M = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$

If **p** is a column vector, *M* goes on the left:

$$\mathbf{p'} = M\mathbf{p}$$

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

If **p** is a row vector,  $M^T$  goes on the right:

$$\mathbf{p'} = \mathbf{p} M^{T}$$

$$\begin{bmatrix} x' & y' \end{bmatrix} = \begin{bmatrix} x & y \end{bmatrix} \begin{bmatrix} a & c \\ b & d \end{bmatrix}$$

We will use column vectors.

## **Two-dimensional** transformations

Here's all you get with a 2 x 2 transformation matrix M:

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

So:

$$x' = ax + by$$
  
 $y' = cx + dy$ 

We will develop some intimacy with the elements a, b, c, d...

## Identity

Suppose we choose a=d=1, b=c=0:

• Gives the **identity** matrix:

$$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

Doesn't move the points at all

# **Scaling**

Suppose we set b=c=0, but let a and d take on any positive value:

Gives a scaling matrix:

Provides differential scaling in x and y:

$$x' = ax$$
  
 $y' = dy$ 

$$y' = dy$$







Suppose we keep b=c=0, but let either a or d go negative.

Examples:

$$\begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$$





9

Now let's leave a=d=1 and experiment with b...

The matrix

$$\begin{bmatrix} 1 & b \\ 0 & 1 \end{bmatrix}$$

gives:

$$x' = x + by$$

$$y' = y$$





10

# Effect on unit square

Let's see how a general 2 x 2 transformation *M* affects the unit square:

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} [\mathbf{p} \quad \mathbf{q} \quad \mathbf{r} \quad \mathbf{s}] = [\mathbf{p'} \quad \mathbf{q'} \quad \mathbf{r'} \quad \mathbf{s'}]$$

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 \end{bmatrix} = \begin{bmatrix} 0 & a & a+b & b \\ 0 & c & c+d & d \end{bmatrix}$$



11

# Effect on unit square, cont.

Observe:

- Origin invariant under M
- M can be determined just by knowing how the corners (1,0) and (0,1) are mapped
- a and d give x- and y-scaling
- b and c give x- and y-shearing

#### **Rotation**

From our observations of the effect on the unit square, it should be easy to write down a matrix for "rotation about the origin":





- $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$   $\rightarrow$
- $\bullet \begin{bmatrix} 0 \\ 1 \end{bmatrix} \rightarrow$

Thus,

$$M = R(\theta) =$$

#### Limitations of the 2 x 2 matrix

A 2 x 2 matrix allows

- Scaling
- Rotation
- Reflection
- Shearing

**Q**: What important operation does that leave out?

14

## Homogeneous coordinates

Idea is to loft the problem up into 3-space, adding a third component to every point:

$$\begin{bmatrix} x \\ y \end{bmatrix} \rightarrow \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

And then transform with a 3 x 3 matrix:

$$\begin{bmatrix} x' \\ y' \\ w' \end{bmatrix} = T(\mathbf{t}) \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & t_x \\ 0 & 1 & t_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$





... gives translation!

# Rotation about arbitrary points

Until now, we have only considered rotation about the origin.

With homogeneous coordinates, you can specify a rotation,  $\theta$ , about any point  $\mathbf{q} = [\mathbf{q_X} \ \mathbf{q_y}]^T$  with a matrix.



**Q**: how would you find the matrix for rotating about **q** by  $\theta$ ?

## Rotation about arbitrary points

Until now, we have only considered rotation about the origin.

With homogeneous coordinates, you can specify a rotation,  $\theta$ , about any point  $\mathbf{q} = [\mathbf{q_X} \ \mathbf{q_y}]^T$  with a matrix:



- 1. Translate q to origin
- 2. Rotate
- 3. Translate back

Note: Transformation order is important!!

17

#### **Basic 3-D transformations: scaling**

Some of the 3-D transformations are just like the 2-D ones.

For example, scaling:

$$\begin{bmatrix} x' \\ y' \\ z' \\ 1 \end{bmatrix} = \begin{bmatrix} s_x & 0 & 0 & 0 \\ 0 & s_y & 0 & 0 \\ 0 & 0 & s_z & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$





18

### **Translation in 3D**

$$\begin{bmatrix} x' \\ y' \\ z' \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & t_x \\ 0 & 1 & 0 & t_y \\ 0 & 0 & 1 & t_z \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$



## **Rotation in 3D**

Rotation now has more possibilities in 3D:

$$R_{\rm X}(\theta) = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos\theta & -\sin\theta & 0 \\ 0 & \sin\theta & \cos\theta & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
 
$$R_{\rm Y}(\theta) = \begin{bmatrix} \cos\theta & 0 & \sin\theta & 0 \\ 0 & 1 & 0 & 0 \\ -\sin\theta & 0 & \cos\theta & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
 
$$R_{\rm Z}(\theta) = \begin{bmatrix} \cos\theta & -\sin\theta & 0 & 0 \\ \sin\theta & \cos\theta & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$R_y$$
 $R_z$ 
Use right hand rule

19

## **Shearing in 3D**

Shearing is also more complicated. Here is one example:

$$\begin{bmatrix} x' \\ y' \\ z' \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & b & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$



We call this a shear with respect to the x-y plane

# Properties of affine transformations

All of the transformations we've looked at so far are examples of "affine transformations."

Here are some useful properties of affine transformations:

- Lines map to lines
- Parallel lines remain parallel
- Midpoints map to midpoints (in fact, ratios along a line are always preserved)



ratio = 
$$\frac{\|\mathbf{pq}\|}{\|\mathbf{qr}\|} = \frac{s}{t} = \frac{\|\mathbf{p'q'}\|}{\|\mathbf{q'r'}\|}$$

22

## Affine xforms in OpenGL

OpenGL maintains a "modelview" matrix that holds the current transformation  ${\bf M}$ 

The modelview matrix is applied to points (usually vertices of polygons) before drawing

It is modified by commands including:

• glLoadIdentity() 
$$\mathbf{M} \leftarrow \mathbf{I}$$
 - set  $\mathbf{M}$  to identity

• glTranslatef(
$$t_x$$
,  $t_y$ ,  $t_z$ )  $\mathbf{M} \leftarrow \mathbf{MT}$  - translate by  $(t_x, t_y, t_z)$ 

• glRotatef(
$$\theta$$
, x, y, z)  $\mathbf{M} \leftarrow \mathbf{MR}$   
- rotate by angle  $\theta$  about axis (x, y, z)

• glScalef(
$$s_x$$
,  $s_y$ ,  $s_z$ )  $M \leftarrow MS$   
- scale by  $(s_x, s_y, s_z)$ 

Note that OpenGL adds transformations by *postmultiplication* of the modelview matrix

## **Summary**

What to take away from this lecture:

- All the names in boldface.
- How points and transformations are represented.
- What all the elements of a 2 x 2 transformation matrix do and how these generalize to 3 x 3 transformations.
- What homogeneous coordinates are and how they work for affine transformations.
- How to concatenate transformations.
- The mathematical properties of affine transformations.

23