CSE333 — Section 4

fread vs. read
Client-side Network Code

Cody A. Schroeder

April 19, 2012

Cody A. Schroeder



© 10 Interfaces
@ Library Streams
@ File Descriptors and syscalls
@ Comparison

© Client Sockets
@ Basic Idea
@ Lecture Code

© The Lab
@ Your Task

Cody A. Schroeder



File Descriptors and syscalls Comparison

fread /fwrite

@ Standard C library functions.

o Takes a FILE stream and reads/writes nmemb elements of
data, each size bytes long, into/from the given buffer (ptr).

@ Function will block until all nmemb elements are read/written,
until an error occurs, or until an EOF is reached.
@ Returns the number of elements successfully read/written.

o EOF and errors can be checked with feof(3) and ferror(3).
o Errors/EOFs may result in anywhere between 0 to nmemb
elements being read /written.

#include <stdio.h>

size_t fread(void *ptr, size_-t size, size_-t nmemb,
FILE xstream);

size_t fwrite(const void *ptr, size_t size, size_-t nmemb,
FILE sstream);

Cody A. Schroeder



Library Streams Comparison

read /write

o POSIX system call (very low level).

o Takes a file descriptor (socket, file, etc.) and reads/writes
up to count bytes into/from the given buffer.
@ Returns the number of bytes read/written or -1 on an error.
e 0 bytes can be written on a success.
o 0 bytes read signals an EOF.

e On an error, errno is set appropriately to an error
(i.e. EAGAIN, EINTR, EBADF, EFAULT, etc.)

ssize_t read(int fd, void xbuf, size_t count);

#include <unistd.h>
ssize_t write(int fd, const void xbuf, size_t count);

Cody A. Schroeder



Library Streams File Descriptors and syscalls
Comparison

@ What are the primary differences between fread and read?
Library function vs. System call

FILE streams vs. File descriptors

Blocking for EOF or N bytes vs. You get whatever is available
Buffering

o Return Values and Errors

@ Which is better...?
o IT DEPENDS!!!
o for reading from the filesystem?
o usually fread (Why?)
e for network 107
o usually read (Why?)

Cody A. Schroeder



Lecture Code
Basic Idea

Client-side Network Code

@ DNS Resolve a Name (e.g. www.uw.edu to 140.142.16.69)
@ Create a Socket

@ Connect the Socket to the Resolved Address

@ Use read/write on the Resulting File Descriptor

@ Close the Socket

Cody A. Schroeder


www.uw.edu

Basic Idea

Network Address Translation

1 bool LookupName(char xname,

2 unsigned short port,

3 struct sockaddr_storage xret_addr,
4 size_t *ret_addrlen) {

5 struct addrinfo hints, xresults;

6 int retval;

7

8 memset(&hints , 0, sizeof(hints));

9 hints.ai-family = AF_UNSPEC;

10 hints.ai_socktype = SOCK.STREAM;

11

12 Do the lookup by invoking getaddrinfo ()

13 if ((retval = getaddrinfo(name, NULL, &hints, &results)) != 0) {
14 cerr << "getaddrinfo failed: ";

15 cerr << gai_strerror(retval) << endl;

16 return false;

17

18 assert(results != NULL);

19

20

Cody A. Schroeder



Basic Idea

Network Address Translation (cont.)

ookupName
1
2
3 Set the port in the first result
4 if (results—ai_family = AF_INET) {
5 struct sockaddr.in xv4addr = (struct sockaddr_in x) results—>ai_addr;
6 vdaddr—>sin_port = htons(port);
7 } else if (results—ai_family = AF_INET6) {
8 struct sockaddr_in6 xv6addr = (struct sockaddr_in6 x*) results—>ai_addr;
9 vbaddr—>sin6_port = htons(port);
10 } else {
11 cerr << "getaddrinfo failed to provide an IPv4 or IPv6 address";
12 cerr << endl;
13 return false;
14 }
15
16 Return the first result.
17 memcpy(ret_addr , results—>ai_addr, results—>ai_addrlen);
18 xret_addrlen = results—ai-addrlen;
19
20 Clean up
21 freeaddrinfo(results);
22 return true;
23}

Cody A. Schroeder



Basic Idea

Initiate a Socket Connection

Conne

1 bool Connect(const struct sockaddr_storage &addr,

2 const size_t &addrlen ,

g int xret_fd) {

4 Create the socket

5 int socket_fd = socket(addr.ss_family , SOCKSTREAM, 0);
6 if (socket_fd = —1) {

7 cerr << "socket () failed: " << strerror(errno) << endl;
8 return false;

9 }

10

11 Connect the socket to the remote host

12 int res = connect(socket_fd ,

13 reinterpret_cast <const sockaddr x>(&addr),
14 addrlen);

15 if (res = —1) {

16 cerr << "connect () failed: " << strerror(errno) << endl;
17 return false;

18 3

19

20 xret_fd = socket_fd;

21 return true;

2 3}

Cody A. Schroeder



@ Write a C++ program that will

e connect to a server and port (given by the command-line),
read a line of input from the user (using cin),
send that line of data to the server (including the "\n’),
read a line of data back from the server (terminated by a "\n’),
print that line to stdout (using cout),
repeat the read /write loop until cin has reached an EOF.

@ Grab the template code from:
http://www.cs.washington.edu/education/courses/cse333/12sp/sections/sec4/echoClient.cc
e You'll get the lecture code we talked about and a basic main.
@ |'ve setup a few test servers to try out your code:
o An echo server:
o A FUN server:
o An ELIZA server:

Don’t forget to turn your code into Catalyst!!!

Cody A. Schroeder


http://www.cs.washington.edu/education/courses/cse333/12sp/sections/sec4/echoClient.cc

	IO Interfaces
	Library Streams
	File Descriptors and syscalls
	Comparison

	Client Sockets
	Basic Idea
	Lecture Code

	The Lab
	Your Task


