
C++ Inheritance
Or: Yet Another Thing That Is Simple In Java and Very Complicated

In C++

Colin Gordon
csgordon@cs.washington.edu

University of Washington

CSE333 Section 6, 5/5/11

Colin Gordon (University of Washington) Section 6: C++ Inheritance CSE333 - Spring 2011 1 / 10

Today’s Topics

Bad News
Did you think memory errors were the only thing Java simplified from
C++? No, we’ve only scratched the surface

1 Basic Inheritance
Static Method Dispatch
Constructors
Destructors

2 Virtual Methods (Dynamic Dispatch)
Virtual Destructors

3 Pure Virtual Methods

Colin Gordon (University of Washington) Section 6: C++ Inheritance CSE333 - Spring 2011 2 / 10

Basic Public Inheritance

How do we do inheritance in C++?

c lass SubClass : p u b l i c SuperClass {
. . .

} ;

Much like in Java, this gives the subclass access to the base
class’s public and protected members, but not private members.
There is also private or protected inheritance, where the class
inherits the base class’s properties, but clients don’t see the
subtyping relation

◮ In private inheritance, subclasses of the subclass also don’t see the
privately-inherited base class’s members

Colin Gordon (University of Washington) Section 6: C++ Inheritance CSE333 - Spring 2011 3 / 10

A Method Dispatch Surprise
Java and C++ dispatch methods differently... From BadOverride.cc:

class Employee {

public:

void print() {

cout << "I am a mere employee" << endl;

}

};

class Manager : public Employee {

public:

void print() {

cout << "I am not only an employee, but a manager!" << endl;

}

};

int main() {

Manager *m = new Manager();

Employee *e = m;

e->print();

delete m;

return 0;

}

What does this print?

Colin Gordon (University of Washington) Section 6: C++ Inheritance CSE333 - Spring 2011 4 / 10

Static Method Dispatch

What Went Wrong?
By default, when calling method m on an object o statically typed as
class C, C++ directly calls the method C.m — regardless of o’s actual
runtime class!

Why Would They Do Such a Thing?
C++ was invented in the early 1980s. Back then a clock cycle was a
valuable thing, and in cases where static dispatch was the right thing, it
was considerably faster than dynamic dispatch.

C++ does have dynamic dispatch (what you’re used to from Java) but
you have to explicitly request it.

Colin Gordon (University of Washington) Section 6: C++ Inheritance CSE333 - Spring 2011 5 / 10

Constructors with Inheritance

Since base class may have
inaccessible members, we must be
able to trigger its constructor

Default constructors can be
called automatically
If the superclass has no
default constructor, we must
be able to invoke non-default

◮ Invoked similar to an
initializer for a member of
the base class

Can have multiple / default
constructors in the subclass
invoke arbitrary constructor for
the superclass

From ConstructorTest.cc:

class BaseClass {

public:

BaseClass(int x);

int getX();

private:

int x_;

};

class SubClass : public BaseClass {

public:

SubClass(int x, int y);

...

private:

int y_;

};

...

SubClass::SubClass(int x, int y)

: BaseClass(x),

y_(y)

{ ... }

Colin Gordon (University of Washington) Section 6: C++ Inheritance CSE333 - Spring 2011 6 / 10

Destructors with Inheritance

Superclass destructors
are always called
automatically when a
subclass’s destructor is
invoked!
But invoking the
subclass destructor is
subtle...

◮ Because it might be
statically dispatched.

From BadDestructors.cc:

class Employee {

public:

~Employee() {

cout << "employee destructor" << endl;

}

};

class Manager : public Employee {

public:

~Manager() {

cout << "manager destructor" << endl;

}

};

int main() {

Manager *m = new Manager();

Employee *e = m;

delete e;

return 0;

}

What does this print?

Colin Gordon (University of Washington) Section 6: C++ Inheritance CSE333 - Spring 2011 7 / 10

Virtual Methods (Dynamic Dispatch)

So how do we get dynamic dispatch?

class Employee {

public:

virtual void print() {

cout << "I am a mere employee" << endl;

}

};

class Manager : public Employee {

public:

void print() {

Employee::print(); // Can still invoke base class’s method

cout << "I am not only an employee, but a manager!" << endl;

}

};

int main() {

Manager *m = new Manager();

Employee *e = m;

e->print();

delete m;

return 0;

}

Colin Gordon (University of Washington) Section 6: C++ Inheritance CSE333 - Spring 2011 8 / 10

Virtual Destructors

The problem with statically dispatched destructors can be handled the
same way:

class Employee {

public:

virtual ~Employee() {

cout << "employee destructor" << endl;

}

};

class Manager : public Employee {

public:

~Manager() {

cout << "manager destructor" << endl;

}

};

int main() {

Manager *m = new Manager();

Employee *e = m;

delete e;

return 0;

}

Colin Gordon (University of Washington) Section 6: C++ Inheritance CSE333 - Spring 2011 9 / 10

Pure Virtual Functions

Basically the C++ equivalent to Java’s abstract keyword:

c lass BaseClass {
p u b l i c :

v i r t u a l i n t m(i n t x) = 0 ;
} ;

A class with at least one pure-virtual method is called an abstract
class

An abstract class with no methods implemented is roughly what
Java calls an interface
Abstract classes cannot be instantiated directly

◮ e.g. for the code above, new BaseClass() is a compiler error!

Colin Gordon (University of Washington) Section 6: C++ Inheritance CSE333 - Spring 2011 10 / 10

	Basic Inheritance
	Static Method Dispatch
	Constructors
	Destructors

	Virtual Methods (Dynamic Dispatch)
	Virtual Destructors

	Pure Virtual Methods

