C++ Inheritance

Or: Yet Another Thing That Is Simple In Java and Very Complicated
In C++

Colin Gordon
csgordon@cs.washington.edu

University of Washington

CSE333 Section 6, 5/5/11

Colin Gordon (University of Washington) Section 6: C++ Inheritance CSE333 - Spring 2011 1/10



Today’s Topics

Bad News

Did you think memory errors were the only thing Java simplified from
C++? No, we’ve only scratched the surface

0 Basic Inheritance
@ Static Method Dispatch
@ Constructors
@ Destructors

e Virtual Methods (Dynamic Dispatch)
@ Virtual Destructors

e Pure Virtual Methods

Colin Gordon (University of Washington) Section 6: C++ Inheritance CSE333 - Spring 2011 2/10



Basic Public Inheritance

How do we do inheritance in C++7?

class SubClass : public SuperClass {
b

@ Much like in Java, this gives the subclass access to the base
class’s public and protected members, but not private members.

@ There is also private or protected inheritance, where the class
Inherits the base class’s properties, but clients don’t see the
subtyping relation

» In private inheritance, subclasses of the subclass also don’t see the
privately-inherited base class’s members

Colin Gordon (University of Washington) Section 6: C++ Inheritance CSE333 - Spring 2011 3/10



A Method Dispatch Surprise

Java and C++ dispatch methods differently... From BadOverride.cc:

class Employee {
public:
void print() {
cout << "I am a mere employee" << endl;

¥

s

class Manager : public Employee {

public:
void print() {
cout << "I am not only an employee, but a manager!" << endl;

¥

s

int main() {
Manager *m = new Manager () ;
Employee *e = m;
e->print () ;
delete m;
return O;

What does this print?

4/10

Colin Gordon (University of Washington) Section 6: C++ Inheritance CSE333 - Spring 2011



Static Method Dispatch

What Went Wrong?

By default, when calling method m on an object o statically typed as
class C, C++ directly calls the method C.m — regardless of o’s actual
runtime class!

Why Would They Do Such a Thing?

C++ was invented in the early 1980s. Back then a clock cycle was a
valuable thing, and in cases where static dispatch was the right thing, it
was considerably faster than dynamic dispatch.

_4

C++ does have dynamic dispatch (what you're used to from Java) but
you have to explicitly request it.

Colin Gordon (University of Washington) Section 6: C++ Inheritance CSE333 - Spring 2011 5/10



Constructors with Inheritance

Since base class may have From ConstructorTest.cc:

Inaccessible members, we must be

class BaseClass {

able to trigger its constructor public:
@ Default constructors can be BaseClass (int
_ int getX();
called automatically private:
int x_;

@ If the superclass has no ;.
default constructor, we must class SubClass

be able to invoke non-default public:
» Invoked similar to an SubClass(int
initializer for a member of private:
the base class int y_;
};

@ Can have multiple / default

X) ;

: public BaseClass {

X, int y);

constructors N the SUbClaSS SubClass: :SubClass(int x, int y)

: BaseClass(x),

Invoke arbitrary constructor for ()
the superclass { ...}

6/10

Colin Gordon (University of Washington) Section 6: C++ Inheritance

CSE333 - Spring 2011



Destructors with Inheritance

@ Superclass destructors
are always called
automatically when a
subclass’s destructor is
Invoked!

@ But invoking the

subclass destructor is
subtle...

» Because it might be
statically dispatched.

Section 6: C++ Inheritance

From BadDestructors.cc:

class Employee {
public:
“Employee () {
cout << "employee destructor" << endl;
}
s
class Manager :
public:
“Manager () {
cout << "manager destructor" << endl;

¥

public Employee {

+s;
int main() {
Manager *m = new Manager();
Employee *e = m;
delete e;
return O;

}

What does this print?

7/10

Colin Gordon (University of Washington)

CSE333 - Spring 2011



Virtual Methods (Dynamic Dispatch)

So how do we get dynamic dispatch?

class Employee {
public:
virtual void print() {
cout << "I am a mere employee" << endl;

¥
s
class Manager : public Employee {
public:
void print() {
Employee: :print(); // Can still invoke base class’s method
cout << "I am not only an employee, but a manager!" << endl;
¥
s

int main() {
Manager *m = new Manager () ;
Employee *e = m;
e->print () ;
delete m;
return O;

8/10

Colin Gordon (University of Washington) Section 6: C++ Inheritance CSE333 - Spring 2011



Virtual Destructors

The problem with statically dispatched destructors can be handled the
same way:

class Employee {
public:
virtual “Employee() {
cout << "employee destructor" << endl;

+

s

class Manager : public Employee {

public:
“Manager () {
cout << "manager destructor" << endl;

+

s

int main() {
Manager *m = new Manager();
Employee *e = m;
delete e;
return O;

Colin Gordon (University of Washington) Section 6: C++ Inheritance CSE333 - Spring 2011 9/10



Pure Virtual Functions

Basically the C++ equivalent to Java’s abstract keyword:

class BaseClass {
public:
virtual int m(int x) =0;

|

@ A class with at least one pure-virtual method is called an abstract
class

@ An abstract class with no methods implemented is roughly what
Java calls an interface

@ Abstract classes cannot be instantiated directly
» e.g. for the code above, new BaseClass() Iis a compiler error!

Colin Gordon (University of Washington) Section 6: C++ Inheritance CSES333 - Spring 2011 10/10



	Basic Inheritance
	Static Method Dispatch
	Constructors
	Destructors

	Virtual Methods (Dynamic Dispatch)
	Virtual Destructors

	Pure Virtual Methods

