
CSE333 lec 9 storage // 04-18-11 // gribble

CSE 333
Lecture 9 - storage

Steve Gribble

Department of Computer Science & Engineering

University of Washington

CSE333 lec 9 storage // 04-18-11 // gribble

Administrivia

Colin’s away this week

- Aryan will be covering his office hours (check the schedule for
the location)

Reminder about coding exercises

- the way to build intuition and skill in systems programming is
to write a lot of code

- we strongly advise you to do all of the exercises

‣ this means writing your own solution before looking at ours! :)

CSE333 lec 9 storage // 04-18-11 // gribble

Administrivia

HW2 is out today

- more complex than HW1

‣ you will finish our implementation of a file system crawler, indexer,
and query processor (i.e., a search engine!)

‣ you will need to teach yourself about several system calls along the
way (we tell you which man pages to read)

‣ there is a more code for you to read and understand

- please, please, please

‣ start early and come see us when you run into issues!

CSE333 lec 9 storage // 04-18-11 // gribble

Administrivia

HW2 teams

- you can work solo if you want

- or, you can team up with somebody else (teams of 2)

‣ you need to find a teammate; you can use the discussion board

- if you work in a team, you need to be together when you code

‣ one of you writes code, the other watches and suggests/bughunts

‣ also, one of you must code parts A & C, the other codes B & D

CSE333 lec 9 storage // 04-18-11 // gribble

HW2: parsing a text file

In part B, we ask you to walk through a giant in-memory
C string, extracting out individual words. To do it, you’ll
“walk” two pointers down the string in place.

˽ H i ˽ ˽ t h e r e ! ! \0

= word start

= word end

CSE333 lec 9 storage // 04-18-11 // gribble

HW2: parsing a text file

In part B, we ask you to walk through a giant in-memory
C string, extracting out individual words. To do it, you’ll
“walk” two pointers down the string in place.

= word start

= word end

˽ H i ˽ ˽ t h e r e ! ! \0

CSE333 lec 9 storage // 04-18-11 // gribble

HW2: parsing a text file

In part B, we ask you to walk through a giant in-memory
C string, extracting out individual words. To do it, you’ll
“walk” two pointers down the string in place.

= word start

= word end

˽ H i ˽ ˽ t h e r e ! ! \0

CSE333 lec 9 storage // 04-18-11 // gribble

HW2: parsing a text file

In part B, we ask you to walk through a giant in-memory
C string, extracting out individual words. To do it, you’ll
“walk” two pointers down the string in place.

= word start

= word end

˽ H i ˽ ˽ t h e r e ! ! \0

CSE333 lec 9 storage // 04-18-11 // gribble

HW2: parsing a text file

In part B, we ask you to walk through a giant in-memory
C string, extracting out individual words. To do it, you’ll
“walk” two pointers down the string in place.

= word start

= word end

˽ H i \0 ˽ t h e r e ! ! \0

CSE333 lec 9 storage // 04-18-11 // gribble

HW2: parsing a text file

In part B, we ask you to walk through a giant in-memory
C string, extracting out individual words. To do it, you’ll
“walk” two pointers down the string in place.

= word start

= word end

˽ H i ˽ ˽ t h e r e ! ! \0

CSE333 lec 9 storage // 04-18-11 // gribble

HW2: parsing a text file

In part B, we ask you to walk through a giant in-memory
C string, extracting out individual words. To do it, you’ll
“walk” two pointers down the string in place.

= word start

= word end

˽ H i ˽ ˽ t h e r e ! ! \0

CSE333 lec 9 storage // 04-18-11 // gribble

HW2: parsing a text file

In part B, we ask you to walk through a giant in-memory
C string, extracting out individual words. To do it, you’ll
“walk” two pointers down the string in place.

= word start

= word end

˽ H i ˽ ˽ t h e r e ! ! \0

CSE333 lec 9 storage // 04-18-11 // gribble

HW2: parsing a text file

In part B, we ask you to walk through a giant in-memory
C string, extracting out individual words. To do it, you’ll
“walk” two pointers down the string in place.

= word start

= word end

˽ H i ˽ ˽ t h e r e ! ! \0

CSE333 lec 9 storage // 04-18-11 // gribble

HW2: parsing a text file

In part B, we ask you to walk through a giant in-memory
C string, extracting out individual words. To do it, you’ll
“walk” two pointers down the string in place.

= word start

= word end

˽ H i ˽ ˽ t h e r e ! ! \0

CSE333 lec 9 storage // 04-18-11 // gribble

HW2: parsing a text file

In part C, we ask you to intersect two “posting lists”
when processing a query

awesome
52 (list)

82 (list)

192 (list)

assignment
12 (list)

82 (list)

101 (list)

192 (list)

CSE333 lec 9 storage // 04-18-11 // gribble

HW2: parsing a text file

In part C, we ask you to intersect two “posting lists”
when processing a query

awesome
52 (list)

82 (list)

192 (list)

assignment
12 (list)

82 (list)

101 (list)

192 (list)

52

82

192

initial search
result list

CSE333 lec 9 storage // 04-18-11 // gribble

HW2: parsing a text file

In part C, we ask you to intersect two “posting lists”
when processing a query

awesome
52 (list)

82 (list)

192 (list)

assignment
12 (list)

82 (list)

101 (list)

192 (list)

52

82

192

52?
no.

CSE333 lec 9 storage // 04-18-11 // gribble

HW2: parsing a text file

In part C, we ask you to intersect two “posting lists”
when processing a query

awesome
52 (list)

82 (list)

192 (list)

assignment
12 (list)

82 (list)

101 (list)

192 (list)

82

192

52?
no.

CSE333 lec 9 storage // 04-18-11 // gribble

HW2: parsing a text file

In part C, we ask you to intersect two “posting lists”
when processing a query

awesome
52 (list)

82 (list)

192 (list)

assignment
12 (list)

82 (list)

101 (list)

192 (list)

82

192

82?
yes.

CSE333 lec 9 storage // 04-18-11 // gribble

HW2: parsing a text file

In part C, we ask you to intersect two “posting lists”
when processing a query

awesome
52 (list)

82 (list)

192 (list)

assignment
12 (list)

82 (list)

101 (list)

192 (list)

82

192

192?
yes.

CSE333 lec 9 storage // 04-18-11 // gribble

HW2: parsing a text file

In part C, we ask you to intersect two “posting lists”
when processing a query

awesome
52 (list)

82 (list)

192 (list)

assignment
12 (list)

82 (list)

101 (list)

192 (list)

82

192

final search
result list

CSE333 lec 9 storage // 04-18-11 // gribble

HW2: ugly hack
#include "ll.h"

void LLNullFree(void *el) { }

int main(int argc, char **argv) {
 int res = 52;
 LinkedList ll = AllocateLinkedList();
 assert(ll != NULL);

 // Store the some ints in the linked list without
 // needing to call malloc. How? By abusing
 // type casting and casting an (int) to a (void *).
 // UGLY HACK ALERT! Q: when is this safe?
 PushLinkedList(ll, (void *) res);
 PushLinkedList(ll, (void *) 87);
 PopLinkedList(ll, (void **) &res);

 // Free the linked list. Since the payload is
 // not a pointer to heap-allocated memory, our
 // free function should do nothing.
 FreeLinkedList(ll, &LLNullFree);
 return 0;
}

CSE333 lec 9 storage // 04-18-11 // gribble

HW2

We provide you with our libhw1.a

- AFAQ: “test_suite crashes inside InsertHashTable(). I think
this means your libhw1.a has a bug in it.”

‣ probably not; more likely it means that your code has a bug in it that
stomps over the memory that libhw1.a relies on

‣ but, if you really think we have a bug in our libhw1.a, send us the
simplest piece of code that replicates the problem, and we’ll check

CSE333 lec 9 storage // 04-18-11 // gribble

The storage “stack”

 your
 program

hard drive solid state
drive (SSD)

device driver device driver

buffer cache

EXT4 ZFS LFS

VFS layer
system call handlers

stdio

OS

Like most systems, has many,
many layers of abstraction

- lots of complexity, but each layer
is understandable on its own

- layer X

‣ relies on the features of layer X-1

‣ provides more features to layer X+1

CSE333 lec 9 storage // 04-18-11 // gribble

Storage hardware

 your
 program

hard drive solid state
drive (SSD)

device driver device driver

buffer cache

EXT4 ZFS LFS

VFS layer
system call handlers

stdio

OS

Hard drive

- spinning magnetic platters

‣ spins at ~7200 RPM

- read/write head on an arm

‣ moves back and forth; ~5ms to
move to a new location

CSE333 lec 9 storage // 04-18-11 // gribble

Storage hardware

 your
 program

hard drive solid state
drive (SSD)

device driver device driver

buffer cache

EXT4 ZFS LFS

VFS layer
system call handlers

stdio

OS

Hard drive characteristics

- exponentially cheaper capacity

‣ 1TB = $60; ~2x every 18 months

- great “sequential” bandwidth

‣ ~200MB/s, improving exponentially
along with capacity

- terrible “random” bandwidth

‣ ~1MB/s, not improving, since it’s
mechanically limited

- this difference dominates the
design of higher layers

CSE333 lec 9 storage // 04-18-11 // gribble

Storage hardware

 your
 program

hard drive solid state
drive (SSD)

device driver device driver

buffer cache

EXT4 ZFS LFS

VFS layer
system call handlers

stdio

OS

Hard drive interface

- an array of 512 byte sectors

- read / write entire sector at a time

Hard drive internals

- remaps bad sectors

‣ sequentiality can be tricky

- has an on-controller RAM buffer

‣ writes may indicate completion
before they hit the platter!

CSE333 lec 9 storage // 04-18-11 // gribble

Storage hardware - SSDs

 your
 program

hard drive solid state
drive (SSD)

device driver device driver

buffer cache

EXT4 ZFS LFS

VFS layer
system call handlers

stdio

OS

banks of NAND flash chips

- unit of read/write is ~4KB page

‣ before write, must erase entire
~512KB block to all 1s, then can
set individual bits to 0

‣ limited # of writes per block

- no mechanical parts!

CSE333 lec 9 storage // 04-18-11 // gribble

Storage hardware - SSDs

 your
 program

hard drive solid state
drive (SSD)

device driver device driver

buffer cache

EXT4 ZFS LFS

VFS layer
system call handlers

stdio

OS

SSD characteristics

- 20x more expensive than HD

‣ 1TB = $2K; ~2x better per year

- fantastic read bandwidth

‣ ~40K IOPS, ~250MB/s

‣ same for random & sequential!

- good sequential write bandwidth

‣ ~30K IOPS, ~175 MB/s

- but, random writes are slower

‣ ~3K IOPS, ~10 MB/s

CSE333 lec 9 storage // 04-18-11 // gribble

Storage hardware - SSDs

 your
 program

hard drive solid state
drive (SSD)

device driver device driver

buffer cache

EXT4 ZFS LFS

VFS layer
system call handlers

stdio

OS

SSD interface

- an array of 4096 byte page

- read / write entire page at a time

SSD internals

- flash translation layer (FTL)

‣ wear leveling, background erasing
& remapping to maintain a pool of
writeable blocks

CSE333 lec 9 storage // 04-18-11 // gribble

Device drivers

 your
 program

hard drive solid state
drive (SSD)

device driver device driver

buffer cache

EXT4 ZFS LFS

VFS layer
system call handlers

stdio

OS

Software layer at bottom of OS

- abstracts away the details of
communicating with different
storage interfaces

‣ IDE, SCSI, etc.

- probes the device to learn its
characteristics

- permits higher-level software to
issue commands to read and
write blocks

CSE333 lec 9 storage // 04-18-11 // gribble

Buffer cache

 your
 program

hard drive solid state
drive (SSD)

device driver device driver

buffer cache

EXT4 ZFS LFS

VFS layer
system call handlers

stdio

OS

OS-managed pool of memory

- stores recently read disk blocks

‣ speed up re-reads by fetching
recently read data from cache

- accumulates writes in buffer
cache, eventually write back

‣ reduces traffic via coalescing

‣ batches, reorders writes to attempt
to induce more sequential I/O

- can introduce reliability problems
on OS crash, HW power loss

CSE333 lec 9 storage // 04-18-11 // gribble

File system

 your
 program

hard drive solid state
drive (SSD)

device driver device driver

buffer cache

EXT4 ZFS LFS

VFS layer
system call handlers

stdio

OS

Abstracts away disk blocks into
files and directories

- at its core, is just maintains a
data structure that lives on disk

- FS is tree of files & directories

‣ a file is a tree of disk blocks

• the root of tree is the inode;
inode contains file metadata
rather than data

‣ a directory is a file

• contains a table mapping names
to inodes

CSE333 lec 9 storage // 04-18-11 // gribble

File system

 your
 program

hard drive solid state
drive (SSD)

device driver device driver

buffer cache

EXT4 ZFS LFS

VFS layer
system call handlers

stdio

OS

There are many file systems

- they differ in how they lay out the
data structure on disk

‣ has big performance implications

‣ a good FS attempts to preserve
locality, sequentiality in the layout

- they differ in how they order
operations, flush the buffer cache

‣ tradeoffs between consistency of the
file system, performance, and the
delay before writes are durable

- some permit snapshots, versions,
and other features

CSE333 lec 9 storage // 04-18-11 // gribble

VFS layer

 your
 program

hard drive solid state
drive (SSD)

device driver device driver

buffer cache

EXT4 ZFS LFS

VFS layer
system call handlers

stdio

OS

Level of indirection between OS
API and specific file systems

- permits multiple file systems to
co-exist within your computer

‣ provides an API that lets concrete
file system plugs into VFS

‣ provides a single, uniform API to
the higher layers of the OS

Why multiple file systems?

- mount multiple storage devices,
drives with multiple partitions,
USB thumbdrives, NFS, etc.

CSE333 lec 9 storage // 04-18-11 // gribble

System calls

 your
 program

hard drive solid state
drive (SSD)

device driver device driver

buffer cache

EXT4 ZFS LFS

VFS layer
system call handlers

stdio

OS

basic read / write operations

- open(), read(), write(), close(), ..

seek within a file

- lseek(), ...

ability to flush dirty data from
buffer cache to disk

- fflush(), sync()

manage access permissions

- chmod(), chown(), ...

CSE333 lec 9 storage // 04-18-11 // gribble

System calls

 your
 program

hard drive solid state
drive (SSD)

device driver device driver

buffer cache

EXT4 ZFS LFS

VFS layer
system call handlers

stdio

OS

Two basic styles of doing file I/O

- blocking I/O

‣ the system call waits until the I/O
completes before returning

‣ the thread of execution that
invoked the system call stalls until
the call completes

- non-blocking I/O

‣ system call returns immediately

• a completion event fires later

‣ thread of execution can juggle
multiple, concurrent tasks

CSE333 lec 9 storage // 04-18-11 // gribble

Exercise 1

Write a program that, similar to last lecture, copies the
contents of a file

‣ use argc, argv to get the source and destination file names

‣ unlike last lecture, use open(), read(), write(), close()

‣ read the man pages for open, read, write, close

‣ read CSAPP chapter 10

CSE333 lec 9 storage // 04-18-11 // gribble

Exercise 2

Write a program that measures the sequential bandwidth
of writing data to disk

- “man gettimeofday” to measure time

- note that just because write() returns, it doesn’t mean data is
on disk

‣ man “fsync” to learn how to flush a file’s contents to disk

- you can assume that sequential writes to a file result in
sequential writes to disk (mostly true)

Bonus: measure the random seek write bandwidth

CSE333 lec 9 storage // 04-18-11 // gribble

Exercise 3
Modify your linked list implementation from HW1 to:

- add a “WriteToFile()” function

‣ pass the name of the file to create / truncate and write to as an
argument

‣ pass a “convert payload to bytearray” function pointer

- writes each element of the linked list to the file

‣ since elements are arbitrary byte sequences, you’ll need to record
the length of an element before you write the element itself

- add a “LoadLLFromFile()” function that takes a filename and
returns a linked list

‣ reads the output of WriteToFile(), obviously!

CSE333 lec 9 storage // 04-18-11 // gribble

See you on Wednesday!

