
CSE333 lec 21 network.3  // 05-18-11 // gribble

CSE 333
Lecture 21 -- server sockets

Steve Gribble

Department of Computer Science & Engineering

University of Washington



CSE333 lec 21 network.3  // 05-18-11 // gribble

Administrivia

HW4 out either Friday or Monday

- planning on letting you write more of the code

Bonus questions in HW2, HW3, HW4

- your grade will be completely unaffected if you don’t do any of 
the bonus questions



CSE333 lec 21 network.3  // 05-18-11 // gribble

HW3 q1

How long did it take you?

- 10-12: 1

- 12-14: 1

- 14-16: 3

- 16-20: 3

- 20-25: 7

- 25-35: 4

- 35+: 3



CSE333 lec 21 network.3  // 05-18-11 // gribble

HW3 q2

Confidence in your work

- low [tons ‘o bugs]: 1

- medium [a few bugs]: 6

- high [code pretty much correct]: 17

- supreme [ > Gribble’s]: 0



CSE333 lec 21 network.3  // 05-18-11 // gribble

HW3 q3

Worthwhile

- True; even better than hw1/hw2:  8

- True; just as good as hw1/hw2: 14

- True; < hw1/hw2:  1

- False: 1



CSE333 lec 21 network.3  // 05-18-11 // gribble

HW3 q4

We provided [...] code:

- Too little:    1

- Just right:  18

- Too much:  4

- Waaay too much, next time don’t provide any:  1



CSE333 lec 21 network.3  // 05-18-11 // gribble

HW3 q5

I spent my time:

- on stupid C++ compiler errors: 1

- on memory-related bugs/errors: 3

- bugs in my on-file index format: 17

- learning STL: 0

- other: 3



CSE333 lec 21 network.3  // 05-18-11 // gribble

HW3 q6

I like that you give us optional parts:

- True: 17

- False: 7



CSE333 lec 21 network.3  // 05-18-11 // gribble

Q7

Other feedback?

- make the bonus due after the assignment   [agreed]

‣ I like the range of difficulty

- thanks for providing libhw1 and libhw2

‣ but fix your unit tests for HW1 and HW2!   [agreed!!!]

- liked the free format for filesearchshell

- I’d like to learn how to write C++ unit tests

- wish our test suite worked, but great project for learning C++



CSE333 lec 21 network.3  // 05-18-11 // gribble

Q7

Other feedback?

- found that the homeworks are equivalent to giving an artist 
color-by-numbers.  Very little thinking.

‣ great potential, but please leave more to the student.

- filling out the table readers was repetitive, but it was a nice 
balance to the free-form QueryProcessor

- part D was *much* easier in C++ than in C  [yay!]

- consider giving us better tools for debugging index file errors

- for next assignment, give us *less* (specs, few statements)?



CSE333 lec 21 network.3  // 05-18-11 // gribble

Q8:

Favorite game



CSE333 lec 21 network.3  // 05-18-11 // gribble

Today

Network programming

- server-side programming



CSE333 lec 21 network.3  // 05-18-11 // gribble

Servers

Pretty similar to clients, but with additional steps

- there are seven steps:

1. figure out the address and port on which to listen

2. create a socket

3. bind the socket to the address and port on which to listen

4. indicate that the socket is a listening socket

5. accept a connection from a client

6. read and write to that connection

7. close the connection



CSE333 lec 21 network.3  // 05-18-11 // gribble

Accepting a connection from a client

Step 1.  Figure out the address and port on which to listen.

Step 2.  Create a socket.

Step 3.  Bind the socket to the address and port on which to listen.

Step 4.  Indicate that the socket is a listening socket.



CSE333 lec 21 network.3  // 05-18-11 // gribble

Servers

Servers can have multiple IP addresses

- “multihomed”

- usually have at least one externally visible IP address, as well 
as a local-only address (127.0.0.1)

When you bind a socket for listening, you can:

- specify that it should listen on all addresses

‣ by specifying the address “INADDR_ANY” -- 0.0.0.0

- specify that it should listen on a particular address



CSE333 lec 21 network.3  // 05-18-11 // gribble

bind( )

The “bind( )” system call associates with a socket:

- an address family

‣ AF_INET:    IPv4

‣ AF_INET6:  IPv6

- a local IP address

‣ the special IP address INADDR_ANY (“0.0.0.0”) means “all local IP 
addresses of this host”

- a local port number



CSE333 lec 21 network.3  // 05-18-11 // gribble

listen( )

The “listen( )” system call tells the OS that the socket is a 
listening socket to which clients can connect

- you also tell the OS how many pending connections it should 
queue before it starts to refuse new connections

‣ you pick up a pending connection with “accept( )”

- when listen returns, remote clients can start connecting to 
your listening socket

‣ you need to “accept( )” those connections to start using them



CSE333 lec 21 network.3  // 05-18-11 // gribble

Server socket, bind, listen

see server_bind_listen.cc



CSE333 lec 21 network.3  // 05-18-11 // gribble

Accepting a connection from a client

Step 5.  Accept a connection from a client.

Step 6.  read( ) and write( ) to the client.

Step 7. close( ) the connection.



CSE333 lec 21 network.3  // 05-18-11 // gribble

accept( )

The “accept( )” system call waits for an incoming 
connection, or pulls one off the pending queue

- it returns an active, ready-to-use socket file descriptor 
connected to a client

- it returns address information about the peer

‣ use inet_ntop( ) to get the client’s printable IP address

‣ use getnameinfo( ) to do a reverse DNS lookup on the client



CSE333 lec 21 network.3  // 05-18-11 // gribble

Server accept, read/write, close

see server_accept_rw_close.cc



CSE333 lec 21 network.3  // 05-18-11 // gribble

Something to note...

Our server code is not concurrent

- single thread of execution

- the thread blocks waiting for the next connection

- the thread blocks waiting for the next message from the 
connection

A crowd of clients is, by nature, concurrent

- while our server is handling the next client, all other clients are 
stuck waiting for it



CSE333 lec 21 network.3  // 05-18-11 // gribble

Exercise 1

Write a program that:

- creates a listening socket, accepts connections from clients

‣ reads a line of text from the client

‣ parses the line of text as a DNS name

‣ does a DNS lookup on the name

‣ writes back to the client the list of IP addrsses associated with the 
DNS name

‣ closes the connection to the client



CSE333 lec 21 network.3  // 05-18-11 // gribble

Exercise 2

Write a program that:

- creates a listening socket, accepts connections from clients

‣ reads a line of text from the client

‣ parses the line of text as a DNS name

‣ connects to that DNS name on port 80

‣ writes a valid HTTP request for “/”

• see next slide for what to write

‣ reads the reply, returns the reply to the client



CSE333 lec 21 network.3  // 05-18-11 // gribble

Exercise 2 continued

Here’s a valid HTTP request to server www.foo.com

- note that lines end with ‘\r\n’,  not just ‘\n’

GET / HTTP/1.0\r\n
Host: www.foo.com\r\n
Connection: close\r\n
\r\n



CSE333 lec 21 network.3  // 05-18-11 // gribble

See you on Friday!


