CSE 333

Lecture 15 - intro to concurrency

Steve Gribble
Department of Computer Science & Engineering
University of Washington

S
-

CSE333 lec 15 ccncurrenc y // 05-02-11 // gribble

Administrivia

HW2 was due 2 minutes ago
- HW3 goes out on Wednesday
Your midterm Is a week from today

- Monday May 9th

» covers C, C++ up to today

» DO ALL OF THE EXERCISES FROM LECT - LEC14!

CSE333 lec 15 ccncurrenc y // 05-02-11 // gribble

Joday's goals

Concurrency

- why it is useful

- why It is hard

Concurrent programming styles

- using multiple threads or processes

- using asynchronous or non-blocking I/O

» event-driven programming

CSE333 lec 15 ccncurrency // 05-02-11 // gribble

Let’s Imagine you want to...

...build a file crawler, indexer, and query processor
- well, you did! (HW2)
- but, you probably noticed some problems with it

» |t takes a lot of time to crawl files

» the index consumes a boat-load of memory, limiting how many files
can be indexed

» If you quit searchshell, you lose the index and have to start over

CSE333 lec 15 ccncurrency // 05-02-11 // gribble

What’s the alternative?

Let’s store the index on disk instead of RAM [HW3) |
- disk costs ~$70 per TB, RAM costs ~$1500 per TB

» we can afford a much larger index

- disk is non-volatile

» Wwe can quit/restart searchshell, reboot the PC, and it stays durable

CSE333 lec 15 ccncurrenc y // 05-02-11 // gribble

But, disks have problems too

Disks are Is slow

- most people still use hard drives (spinning platter), not SSDs

» 3ms disk seek vs. 10ns DRAM latency
» 200MB disk bandwidth vs. 10-20GB/s RAM bandwidth

Disks are durable

- If a file gets corrupted, it stays corrupted
» rebooting does not “clear out” bad state

» you have to take extra precautions when modifying files

CSE333 lec 15 ccncurrency // 05-02-11 // gribble

Architecturally

crawler
indexer

disk
marshaller

crawler
indexer

disk
marshaller

crawler
indexer

disk
marshaller

CSE333 lec 15 ccncurrency // 05-02-11 // gribble

Architecturally

client

client

query
processor

client

client

client

CSE333 lec 15 ccncurrency // 05-02-11 // gribble

A sequential Implementation

=

doclist Lookup(string word) {
bucket = hash (word) ;

hitlist = file.read(bucket);
foreach hit in hitlist {

doclist.append(file.read (hit)) ;

}

return doclist;

}

main() {
while (1) {

string query words[] = GetNextQuery() ;
results = Lookup (query words[0]);
foreach word in query[l..n] {

results = results.intersect (Lookup (word)) ;

}
Display (results);

1// gribble

Visually

() AxanpaixsN3ieo

O/I STOSsuod

()AeTdsTa

O/I ¥STP

()peox- o117
()dn3oorT

0/I YSTIP

()peax*o1TZF
()dn3oog

O/I ¥STP

()peax-aTT3
()dn3ooT

O/I °TOSuUO0D

() AxondaxsN3iIoD
()uteu

A

time

CSE333 lec 15 ccncurrency // 05-02-11 // gribble

time

CSE333 lec 15 ccncurrency // 05-02-11 // gribble

Simplifying

A

Simplifying

only one I/0 request
at a time is in flight

the CPU is idle \
most of the time

I/0 3.b
I/0 3.d

CPU 3.e

/N

CPU 2.a
I/0 2.b

I/0 2.d

I/0 1.b

o

queries don’t run until
earlier queries finish

CSE333 lec 15 ccncurrency // 05-02-11 // gribble

Sequentiality can be inefficient

Only one query is being processed at a time
- all other queries queue up behind the first one
The CPU is idle most of the time

- it is “blocked” waiting for I/O to complete

» disk I/O can be very, very slow
At most one |/O operation is in flight at a time

- misses opportunities to speed /O up

» separate devices in parallel, better scheduling of single device, ...

CSE333 lec 15 ccncurrenc y // 05-02-11 // gribble

What we want...concurrency

A version of the program that executes multiple tasks
simultaneously

- It could execute multiple queries at the same time
» while one is waiting for I/O, another can be executing on the CPU

- o, It could execute queries one at a time, but issue
10 requests against different files/disks simultaneously

» It could read from several different index files at once, processing
the I/O results as they arrive

Concurrency != parallelism

- parallelism is when multiple CPUs work simultaneously

CSE333 lec 15 ccncurrency // 05-02-11 // gribble

One way to do this

Use multiple threads or processes

- as a query arrives, fork a new thread (or process) to handle it

» the thread reads the query from the console, issues read requests
against files, assembles results and writes to the console

the thread uses blocking |/O; the thread alternates between
consuming CPU cycles and blocking on 1/0O

- the OS context switches between threads / processes
» while one is blocked on I/O, another can use the CPU

» multiple threads’ I/O requests can be issued at once

CSE333 lec 15 ccncurrency // 05-02-11 // gribble

Multithreaded pseudocode

main() {
while (1) {
string query words[] = GetNextQuery()
ForkThread (ProcessQuery()) ;
}

}

%

/

doclist Lookup (string word) {
bucket = hash (word) ;

hitlist = file.read (bucket);
foreach hit in hitlist

doclist.append(file.read(hit)) ;
return doclist;

}

ProcessQuery () {
results = Lookup (query words[0]) ;
foreach word in query[l..n] {
results = results.intersect (Lookup (word)) ;

}
Display (results) ;

}

.

_Acy // 05-02-11 // gribble

1\

~visua

Multithreaded

°2°¢ NdO

pP*€ O/I

°°¢ NdO

O0*¢ NdO

CRS ERE O AT

P O/I

Q¢ NdO

e*¢ NdO

q:Z 0O/I

e*Z NdO

e R R R N YL 2

time

CSE333 lec 15 ccncurrency // 05-02-11 // gribble

Whither threads’?

Advantages
- you (mostly) write sequential-looking code

- if you have multiple CPUs / cores, threads can run in parallel

Disadvantages

- If your threads share data, need locks or other synchronization
» this is very bug-prone and difficult to debug
- threads can introduce overhead

» lock contention, context switch overhead, and other issues

- need language support for threads

CSE333 lec 15 ccncurrency // 05-02-11 // gribble

An alternative

Use asynchronous or non-blocking /O
- your program begins processing a query

» when your program needs to read data to make further progress, it
registers interest in the data with the OS, then switches to a
different query

the OS handles the details of issuing the read on the disk, or waiting
for data from the console (or other devices, like the network)

» when data becomes available, the OS lets your program know

- your program (almost never) blocks on /O

CSE333 lec 15 ccncurrency // 05-02-11 // gribble

Event-driven programming

Your program Is structured as an event-loop

e

void dispatch (task, event) {
switch (task.state) {
case READING FROM CONSOLE:
query words = event.data;
async_read(index, query words[0]);
task.state = READING FROM INDEX;
return;
case READING FROM INDEX:
.etc.

}
}

while (1) {
event = O0S.GetNextEvent(),
task = lookup (event) ;
dispatch(task, event);

}
-

/
CSE333Tec 15 ccneurrency /7 05-02-11 // gribble

CSE333 lec 15 ccncurrency // 05-02-11 // gribble

P°€ O/I

q*€ O/I

pP*Z O/I

P°T O/I

q:Z 0O/I
q°T O/I

-
O
=
Sl
O
I
-
O
>
O
%
=5
®,
-
®,
ALLL
=
O
-
>,
0
<C

S

Non-blocking vs. asynchronous

Non-blocking I/O (network, console)
- your program enables non-blocking |/O on its fd’s
- your program issues read(), write() system calls

» if the read/write would block, the system call returns immediately
- program can ask the OS which fd’s are readable/writeable

» program can choose to block while no fds are ready
Asynchronous I/O (disk)
- program tells the OS to begin reading / writing

» the “begin_read” or “begin_write” returns immediately

» when the I/O completes, OS delivers an event to the program

CSE333 lec 15 ccncurrency // 05-02-11 // gribble

Why the difference??

Non-blocking 1/0O

- according to Linux, the disk never blocks your program
» It just delays it

- but, reading from the network can truly block your program
» aremote computer may walit arbitrarily long before sending data

Asynchronous I/O

- primarily used with disks; is used to hide disk latency

» asynchronous I/O system calls are messy and complicated :(

CSE333 lec 15 ccncurrency // 05-02-11 // gribble

Whither events?

Advantages
- don’t have to worry about locks and “race conditions”

- for some kinds of programs, especially GUIs, leads to a very
simple and intuitive program structure

» one event handler for each Ul event

Disadvantages

- can lead to very complex structure for programs that do lots of
disk, network 1/O

» sequential code gets broken up into a jumble of small event handlers

» you have to package up all task state between handlers

CSE333 lec 15 ccncurrency // 05-02-11 // gribble

See you on Wednesday!

CSE333 lec 15 ccncurrency // 05-02-11 // gribble

