
CSE333 lec 15 ccncurrency // 05-02-11 // gribble

CSE 333
Lecture 15 - intro to concurrency

Steve Gribble

Department of Computer Science & Engineering

University of Washington

CSE333 lec 15 ccncurrency // 05-02-11 // gribble

Administrivia

HW2 was due 2 minutes ago

- HW3 goes out on Wednesday

Your midterm is a week from today

- Monday May 9th

‣ covers C, C++ up to today

‣ DO ALL OF THE EXERCISES FROM LEC1 - LEC14!

CSE333 lec 15 ccncurrency // 05-02-11 // gribble

Today’s goals

Concurrency

- why it is useful

- why it is hard

Concurrent programming styles

- using multiple threads or processes

- using asynchronous or non-blocking I/O

‣ event-driven programming

CSE333 lec 15 ccncurrency // 05-02-11 // gribble

Let’s imagine you want to...

...build a file crawler, indexer, and query processor

- well, you did! (HW2)

- but, you probably noticed some problems with it

‣ it takes a lot of time to crawl files

‣ the index consumes a boat-load of memory, limiting how many files
can be indexed

‣ if you quit searchshell, you lose the index and have to start over

CSE333 lec 15 ccncurrency // 05-02-11 // gribble

What’s the alternative?

Let’s store the index on disk instead of RAM [HW3 :)]

- disk costs ~$70 per TB, RAM costs ~$1500 per TB

‣ we can afford a much larger index

- disk is non-volatile

‣ we can quit/restart searchshell, reboot the PC, and it stays durable

CSE333 lec 15 ccncurrency // 05-02-11 // gribble

But, disks have problems too

Disks are is slow

- most people still use hard drives (spinning platter), not SSDs

‣ 3ms disk seek vs. 10ns DRAM latency

‣ 200MB disk bandwidth vs. 10-20GB/s RAM bandwidth

Disks are durable

- if a file gets corrupted, it stays corrupted

‣ rebooting does not “clear out” bad state

‣ you have to take extra precautions when modifying files

CSE333 lec 15 ccncurrency // 05-02-11 // gribble

Architecturally

crawler
indexer

crawler
indexer

crawler
indexer

file
system

RAM
index

RAM
index

RAM
index

disk
marshaller

disk
marshaller

disk
marshaller

index
file

index
file

index
file

CSE333 lec 15 ccncurrency // 05-02-11 // gribble

Architecturally

index
file

index
file

index
file

query
processor

client

client

client

client

client

CSE333 lec 15 ccncurrency // 05-02-11 // gribble

A sequential implementation
 doclist Lookup(string word) {
 bucket = hash(word);
 hitlist = file.read(bucket);
 foreach hit in hitlist {
 doclist.append(file.read(hit));
 }
 return doclist;
 }

 main() {
 while (1) {
 string query_words[] = GetNextQuery();
 results = Lookup(query_words[0]);
 foreach word in query[1..n] {
 results = results.intersect(Lookup(word));
 }
 Display(results);
 }
 }

CSE333 lec 15 ccncurrency // 05-02-11 // gribble

Visually

time

m
a
i
n
(
)

G
e
t
N
e
x
t
Q
u
e
r
y
(
)

L
o
o
k
u
p
(
)

f
i
l
e
.
r
e
a
d
(
)

f
i
l
e
.
r
e
a
d
(
)

L
o
o
k
u
p
(
)

f
i
l
e
.
r
e
a
d
(
)

L
o
o
k
u
p
(
)

c
o
n
s
o
l
e

I
/
O

d
i
s
k

I
/
O

d
i
s
k

I
/
O

d
i
s
k

I
/
O

c
o
n
s
o
l
e

I
/
O

D
i
s
p
l
a
y
(
)

G
e
t
N
e
x
t
Q
u
e
r
y
(
)

•••

query

CSE333 lec 15 ccncurrency // 05-02-11 // gribble

Simplifying

time

I
/
O

1
.
b

C
P
U

1
.
a

query 1

I
/
O

1
.
d

C
P
U

1
.
c

C
P
U

1
.
e

I
/
O

2
.
b

C
P
U

2
.
a

I
/
O

2
.
d

C
P
U

2
.
c

C
P
U

2
.
e

query 2

I
/
O

3
.
b

C
P
U

3
.
a

I
/
O

3
.
d

C
P
U

3
.
c

C
P
U

3
.
e

query 3

CSE333 lec 15 ccncurrency // 05-02-11 // gribble

Simplifying

time

I
/
O

1
.
b

C
P
U

1
.
a

query 1

I
/
O

1
.
d

C
P
U

1
.
c

C
P
U

1
.
e

I
/
O

2
.
b

C
P
U

2
.
a

I
/
O

2
.
d

C
P
U

2
.
c

C
P
U

2
.
e

query 2

I
/
O

3
.
b

C
P
U

3
.
a

I
/
O

3
.
d

C
P
U

3
.
c

C
P
U

3
.
e

query 3

queries don’t run until
earlier queries finish

the CPU is idle
most of the time

only one I/O request
at a time is in flight

CSE333 lec 15 ccncurrency // 05-02-11 // gribble

Sequentiality can be inefficient

Only one query is being processed at a time

- all other queries queue up behind the first one

The CPU is idle most of the time

- it is “blocked” waiting for I/O to complete

‣ disk I/O can be very, very slow

At most one I/O operation is in flight at a time

- misses opportunities to speed I/O up

‣ separate devices in parallel, better scheduling of single device, ...

CSE333 lec 15 ccncurrency // 05-02-11 // gribble

What we want...concurrency

A version of the program that executes multiple tasks
simultaneously

- it could execute multiple queries at the same time

‣ while one is waiting for I/O, another can be executing on the CPU

- or, it could execute queries one at a time, but issue
IO requests against different files/disks simultaneously

‣ it could read from several different index files at once, processing
the I/O results as they arrive

Concurrency != parallelism

- parallelism is when multiple CPUs work simultaneously

CSE333 lec 15 ccncurrency // 05-02-11 // gribble

One way to do this

Use multiple threads or processes

- as a query arrives, fork a new thread (or process) to handle it

‣ the thread reads the query from the console, issues read requests
against files, assembles results and writes to the console

‣ the thread uses blocking I/O; the thread alternates between
consuming CPU cycles and blocking on I/O

- the OS context switches between threads / processes

‣ while one is blocked on I/O, another can use the CPU

‣ multiple threads’ I/O requests can be issued at once

CSE333 lec 15 ccncurrency // 05-02-11 // gribble

Multithreaded pseudocode
 main() {
 while (1) {
 string query_words[] = GetNextQuery();
 ForkThread(ProcessQuery());
 }
 }

 doclist Lookup(string word) {
 bucket = hash(word);
 hitlist = file.read(bucket);
 foreach hit in hitlist
 doclist.append(file.read(hit));
 return doclist;
 }

 ProcessQuery() {
 results = Lookup(query_words[0]);
 foreach word in query[1..n] {
 results = results.intersect(Lookup(word));
 }
 Display(results);
 }

CSE333 lec 15 ccncurrency // 05-02-11 // gribble

Multithreaded, visually

time

I
/
O

1
.
b

C
P
U

1
.
a

query 1

I
/
O

1
.
d

C
P
U

1
.
c

C
P
U

1
.
e

I
/
O

2
.
b

C
P
U

2
.
a

I
/
O

2
.
d

C
P
U

2
.
c

C
P
U

2
.
e

query 2

I
/
O

3
.
b

C
P
U

3
.
a

I
/
O

3
.
d

C
P
U

3
.
c

C
P
U

3
.
e

query 3

CSE333 lec 15 ccncurrency // 05-02-11 // gribble

Whither threads?
Advantages

- you (mostly) write sequential-looking code

- if you have multiple CPUs / cores, threads can run in parallel

Disadvantages

- if your threads share data, need locks or other synchronization

‣ this is very bug-prone and difficult to debug

- threads can introduce overhead

‣ lock contention, context switch overhead, and other issues

- need language support for threads

CSE333 lec 15 ccncurrency // 05-02-11 // gribble

An alternative

Use asynchronous or non-blocking I/O

- your program begins processing a query

‣ when your program needs to read data to make further progress, it
registers interest in the data with the OS, then switches to a
different query

‣ the OS handles the details of issuing the read on the disk, or waiting
for data from the console (or other devices, like the network)

‣ when data becomes available, the OS lets your program know

- your program (almost never) blocks on I/O

CSE333 lec 15 ccncurrency // 05-02-11 // gribble

Event-driven programming
Your program is structured as an event-loop

void dispatch(task, event) {
 switch(task.state) {
 case READING_FROM_CONSOLE:
 query_words = event.data;
 async_read(index, query_words[0]);
 task.state = READING_FROM_INDEX;
 return;
 case READING_FROM_INDEX:
 ...etc.
 }
}

while(1) {
 event = OS.GetNextEvent();
 task = lookup(event);
 dispatch(task, event);
}

CSE333 lec 15 ccncurrency // 05-02-11 // gribble

Asynchronous, event-driven

time

I
/
O

1
.
b

C
P
U

1
.
a

I
/
O

1
.
d

C
P
U

1
.
c

C
P
U

1
.
e

I
/
O

2
.
b

C
P
U

2
.
a

I
/
O

2
.
d

C
P
U

2
.
c

C
P
U

2
.
e

I
/
O

3
.
b

C
P
U

3
.
a

I
/
O

3
.
d

C
P
U

3
.
c

C
P
U

3
.
e

CSE333 lec 15 ccncurrency // 05-02-11 // gribble

Non-blocking vs. asynchronous

Non-blocking I/O (network, console)

- your program enables non-blocking I/O on its fd’s

- your program issues read(), write() system calls

‣ if the read/write would block, the system call returns immediately

- program can ask the OS which fd’s are readable/writeable

‣ program can choose to block while no fds are ready

Asynchronous I/O (disk)

- program tells the OS to begin reading / writing

‣ the “begin_read” or “begin_write” returns immediately

‣ when the I/O completes, OS delivers an event to the program

CSE333 lec 15 ccncurrency // 05-02-11 // gribble

Why the difference?

Non-blocking I/O

- according to Linux, the disk never blocks your program

‣ it just delays it

- but, reading from the network can truly block your program

‣ a remote computer may wait arbitrarily long before sending data

Asynchronous I/O

- primarily used with disks; is used to hide disk latency

‣ asynchronous I/O system calls are messy and complicated :(

CSE333 lec 15 ccncurrency // 05-02-11 // gribble

Whither events?
Advantages

- don’t have to worry about locks and “race conditions”

- for some kinds of programs, especially GUIs, leads to a very
simple and intuitive program structure

‣ one event handler for each UI event

Disadvantages

- can lead to very complex structure for programs that do lots of
disk, network I/O

‣ sequential code gets broken up into a jumble of small event handlers

‣ you have to package up all task state between handlers

CSE333 lec 15 ccncurrency // 05-02-11 // gribble

See you on Wednesday!

