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Administrivia

HW2 was due 2 minutes ago

- HW3 goes out on Wednesday

Your midterm is a week from today

- Monday May 9th

‣ covers C, C++ up to today

‣ DO ALL OF THE EXERCISES FROM LEC1 - LEC14!
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Today’s goals

Concurrency

- why it is useful

- why it is hard

Concurrent programming styles

- using multiple threads or processes

- using asynchronous or non-blocking I/O

‣ event-driven programming
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Let’s imagine you want to...

...build a file crawler, indexer, and query processor

- well, you did! (HW2)

- but, you probably noticed some problems with it

‣ it takes a lot of time to crawl files

‣ the index consumes a boat-load of memory, limiting how many files 
can be indexed

‣ if you quit searchshell, you lose the index and have to start over
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What’s the alternative?

Let’s store the index on disk instead of RAM [ HW3 :) ]

- disk costs ~$70 per TB, RAM costs ~$1500 per TB

‣ we can afford a much larger index

- disk is non-volatile

‣ we can quit/restart searchshell, reboot the PC, and it stays durable
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But, disks have problems too

Disks are is slow

- most people still use hard drives (spinning platter), not SSDs

‣ 3ms disk seek vs. 10ns DRAM latency

‣ 200MB disk bandwidth vs. 10-20GB/s RAM bandwidth

Disks are durable

- if a file gets corrupted, it stays corrupted

‣ rebooting does not “clear out” bad state

‣ you have to take extra precautions when modifying files
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Architecturally
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A sequential implementation
 doclist Lookup(string word) {
   bucket = hash(word);
   hitlist = file.read(bucket);
   foreach hit in hitlist {
     doclist.append(file.read(hit));
   }
   return doclist;
 }

 main() {
   while (1) {
     string query_words[] = GetNextQuery();
     results = Lookup(query_words[0]);
     foreach word in query[1..n] {
       results = results.intersect(Lookup(word));
     }
     Display(results);
   }
 }
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Visually
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Simplifying
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Simplifying
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queries don’t run until 
earlier queries finish

the CPU is idle
most of the time

only one I/O request 
at a time is in flight
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Sequentiality can be inefficient

Only one query is being processed at a time

- all other queries queue up behind the first one

The CPU is idle most of the time

- it is “blocked” waiting for I/O to complete

‣ disk I/O can be very, very slow

At most one I/O operation is in flight at a time

- misses opportunities to speed I/O up

‣ separate devices in parallel, better scheduling of single device, ...
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What we want...concurrency

A version of the program that executes multiple tasks 
simultaneously

- it could execute multiple queries at the same time

‣ while one is waiting for I/O, another can be executing on the CPU

- or, it could execute queries one at a time, but issue 
IO requests against different files/disks simultaneously

‣ it could read from several different index files at once, processing 
the I/O results as they arrive

Concurrency != parallelism

- parallelism is when multiple CPUs work simultaneously
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One way to do this

Use multiple threads or processes

- as a query arrives, fork a new thread (or process) to handle it

‣ the thread reads the query from the console, issues read requests 
against files, assembles results and writes to the console

‣ the thread uses blocking I/O; the thread alternates between 
consuming CPU cycles and blocking on I/O

- the OS context switches between threads / processes

‣ while one is blocked on I/O, another can use the CPU

‣ multiple threads’ I/O requests can be issued at once



CSE333 lec 15 ccncurrency // 05-02-11 // gribble

Multithreaded pseudocode
 main() {
   while (1) {
     string query_words[] = GetNextQuery();
     ForkThread(ProcessQuery());
   }
 }

 doclist Lookup(string word) {
   bucket = hash(word);
   hitlist = file.read(bucket);
   foreach hit in hitlist
     doclist.append(file.read(hit));
   return doclist;
 }

 ProcessQuery() {
   results = Lookup(query_words[0]);
     foreach word in query[1..n] {
       results = results.intersect(Lookup(word));
     }
   Display(results);
 }
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Multithreaded, visually

time

I
/
O
 
1
.
b

C
P
U
 
1
.
a

query 1

I
/
O
 
1
.
d

C
P
U
 
1
.
c

C
P
U
 
1
.
e

I
/
O
 
2
.
b

C
P
U
 
2
.
a

I
/
O
 
2
.
d

C
P
U
 
2
.
c

C
P
U
 
2
.
e

query 2

I
/
O
 
3
.
b

C
P
U
 
3
.
a

I
/
O
 
3
.
d

C
P
U
 
3
.
c

C
P
U
 
3
.
e

query 3



CSE333 lec 15 ccncurrency // 05-02-11 // gribble

Whither threads?
Advantages

- you (mostly) write sequential-looking code

- if you have multiple CPUs / cores, threads can run in parallel

Disadvantages

- if your threads share data, need locks or other synchronization

‣ this is very bug-prone and difficult to debug

- threads can introduce overhead

‣ lock contention, context switch overhead, and other issues

- need language support for threads
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An alternative

Use asynchronous or non-blocking I/O

- your program begins processing a query

‣ when your program needs to read data to make further progress, it 
registers interest in the data with the OS, then switches to a 
different query

‣ the OS handles the details of issuing the read on the disk, or waiting 
for data from the console (or other devices, like the network)

‣ when data becomes available, the OS lets your program know

- your program (almost never) blocks on I/O
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Event-driven programming
Your program is structured as an event-loop

void dispatch(task, event) {
  switch(task.state) {
    case READING_FROM_CONSOLE:
      query_words = event.data;
      async_read(index, query_words[0]);
      task.state = READING_FROM_INDEX;
      return;
    case READING_FROM_INDEX:
      ...etc.
  }
}

while(1) {
  event = OS.GetNextEvent( );
  task = lookup(event);
  dispatch(task, event);
}
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Asynchronous, event-driven

time

I
/
O
 
1
.
b

C
P
U
 
1
.
a

I
/
O
 
1
.
d

C
P
U
 
1
.
c

C
P
U
 
1
.
e

I
/
O
 
2
.
b

C
P
U
 
2
.
a

I
/
O
 
2
.
d

C
P
U
 
2
.
c

C
P
U
 
2
.
e

I
/
O
 
3
.
b

C
P
U
 
3
.
a

I
/
O
 
3
.
d

C
P
U
 
3
.
c

C
P
U
 
3
.
e



CSE333 lec 15 ccncurrency // 05-02-11 // gribble

Non-blocking vs. asynchronous

Non-blocking I/O (network, console)

- your program enables non-blocking I/O on its fd’s

- your program issues read( ), write( ) system calls

‣ if the read/write would block, the system call returns immediately

- program can ask the OS which fd’s are readable/writeable

‣ program can choose to block while no fds are ready

Asynchronous I/O (disk)

- program tells the OS to begin reading / writing

‣ the “begin_read” or “begin_write” returns immediately

‣ when the I/O completes, OS delivers an event to the program
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Why the difference?

Non-blocking I/O

- according to Linux, the disk never blocks your program

‣ it just delays it

- but, reading from the network can truly block your program

‣ a remote computer may wait arbitrarily long before sending data

Asynchronous I/O

- primarily used with disks; is used to hide disk latency

‣ asynchronous I/O system calls are messy and complicated :(
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Whither events?
Advantages

- don’t have to worry about locks and “race conditions”

- for some kinds of programs, especially GUIs, leads to a very 
simple and intuitive program structure

‣ one event handler for each UI event

Disadvantages

- can lead to very complex structure for programs that do lots of 
disk, network I/O

‣ sequential code gets broken up into a jumble of small event handlers

‣ you have to package up all task state between handlers
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See you on Wednesday!


