
CSE333 lec1 intro // 03-28-11 // gribble

CSE 333
Lecture 1 - Systems programming

Steve Gribble

Department of Computer Science & Engineering

University of Washington

CSE333 lec1 intro // 03-28-11 // gribble

Welcome!

Today’s goals:

- big picture introduction

- discuss course syllabus

- set expectations

CSE333 lec1 intro // 03-28-11 // gribble

Welcome!

Today’s goals:

- big picture introduction

- discuss course syllabus

- set expectations

CSE333 lec1 intro // 03-28-11 // gribble

Course map: 100,000 foot view

hardware

operating system
HW/SW interface
(x86 + devices)

CPU memory storage network
GPU clock audio radio peripherals

OS / app interface
(system calls)

C standard library
(glibc)

C application

C++ STL / boost /
standard library

C++ application

JRE

Java
application

CSE333 lec1 intro // 03-28-11 // gribble

Software “System”

A platform, application, or other structure that:

- is composed of multiple modules

‣ the system’s architecture defines the interfaces of and
relationships between the modules

- usually is complex

‣ in terms of its implementation, performance, management

- hopefully has requirements

‣ performance, security, fault tolerance, data consistency

CSE333 lec1 intro // 03-28-11 // gribble

A layered view

layer below

your system

client

layer below

client client

• • •

understands
and relies on
layers below

provides
service to

layers above

CSE333 lec1 intro // 03-28-11 // gribble

A layered view

layer below

your system

client

layer below

client client

• • •

constrained
by performance,

footprint, behavior
of the layers below

more useful,
portable, reliable

abstractions

CSE333 lec1 intro // 03-28-11 // gribble

Example system

Operating system

- a software layer that abstracts away the messy details of
hardware into a useful, portable, powerful interface

- modules:

‣ file system, virtual memory system, network stack,
protection system, scheduling subsystem, ...

‣ each of these is a major system of its own!

- design and implementation has tons of engineering tradeoffs

‣ e.g., speed vs. (portability, maintainability, simplicity)

CSE333 lec1 intro // 03-28-11 // gribble

Another example system

Web server framework

- a software layer that abstracts away the messy details of OSs,
HTTP protocols, and storage systems to simplify building
powerful, scalable Web services

- modules:

‣ HTTP server, HTML template system, database storage,
user authentication system, ...

- also has many, many tradeoffs

‣ programmer convenience vs. performance

‣ simplicity vs. extensibility

CSE333 lec1 intro // 03-28-11 // gribble

Systems programming

The programming skills, engineering discipline, and
knowledge you need to build a system

- programming: C / C++

- discipline: testing, debugging, performance analysis

- knowledge: long list of interesting topics

‣ concurrency, OS interfaces and semantics, techniques for
consistent data management, algorithms, distributed systems, ...

‣ most important: deep understanding of the “layer below”

• quiz: what data is guaranteed to be durable and consistent after
a power loss?

CSE333 lec1 intro // 03-28-11 // gribble

Programming languages

Assembly language / machine code

- (approximately) directly executed by hardware

- tied to a specific machine architecture, not portable

- no notion of structure, few programmer conveniences

- possible to write really, really fast code

CSE333 lec1 intro // 03-28-11 // gribble

Programming languages

Structured but low-level languages (C, C++)

- hides some architectural details, is kind of portable, has a few
useful abstractions, like types, arrays, procedures, objects

- permits (forces?) programmer to handle low-level details like
memory management, locks, threads

- low-level enough to be fast and to give the programmer
control over resources

‣ double-edged sword: low-level enough to be complex, error-prone

‣ shield: engineering discipline

CSE333 lec1 intro // 03-28-11 // gribble

Programming languages

High-level languages (Python, Ruby, JavaScript, ...)

- focus on productivity and usability over performance

- powerful abstractions shield you from low-level gritty details
(bounded arrays, garbage collection, rich libraries, ...)

- usually interpreted, translated, or compiled via an intermediate
representation

- slower (by 1.2x-10x), less control

CSE333 lec1 intro // 03-28-11 // gribble

Discipline

Cultivate good habits, encourage clean code

- coding style conventions

- unit testing, code coverage testing, regression testing

- documentation (code comments, design docs)

- code reviews

Will take you a lifetime to learn

- but oh-so-important, especially for systems code

‣ avoid write-once, read-never code

CSE333 lec1 intro // 03-28-11 // gribble

Knowledge

Tools

- gcc, gdb, g++, objdump, nm, gcov/lcov, valgrind, IDEs, race
detectors, model checkers, ...

Lower-level systems

- UNIX system call API, relational databases, map/reduce,
Django, ...

Systems foundations

- transactions, two-phase commit, consensus, RPC,
virtualization, cache coherence, applied crypto, ...

CSE333 lec1 intro // 03-28-11 // gribble

Welcome!

Today’s goals:

- big picture introduction

- discuss course syllabus

- set expectations

CSE333 lec1 intro // 03-28-11 // gribble

C / C++ programming

Major focus of this course

- ~2 weeks of diving deeper into C

‣ review some material from 351 and go deeper

- ~4 weeks of a (sane subset) of C++

- exposure to programming tools

‣ unit testing frameworks, performance profiling and analysis, revision
control systems

CSE333 lec1 intro // 03-28-11 // gribble

Interacting with UNIX and
standard libraries

The “layers below” we will be relying on

- learn C’s standard library and some of C++’s STL

‣ including memory management (malloc/new, free/delete)

- learn major aspects of the UNIX system call API

‣ I/O: storage, networking

‣ process management, signals

CSE333 lec1 intro // 03-28-11 // gribble

Some additional topics

Concurrency

- asynchronous I/O and event-driven programming

- probably won’t cover parallelism, threads

Security

- will be mindful of security topics as they come up

- e.g., how to avoid buffer overflow issues in C/C++

CSE333 lec1 intro // 03-28-11 // gribble

Welcome!

Today’s goals:

- big picture introduction

- discuss course syllabus

- set expectations

CSE333 lec1 intro // 03-28-11 // gribble

What you will be doing
Attending lectures and sections

- lecture: ~30 of them, MWF in this room

- sections: ~10 of then, Thu (8:30 or 9:30) in MGH

Doing programming projects

- ~4 of them, successively building on each other

- includes C, C++; files, networking; writing a server

Exams

- midterm is tentatively on May 2nd [may change]

- final is non-negotiably on Wed. June 8th, 2:30-4:20pm

CSE333 lec1 intro // 03-28-11 // gribble

Requirements

CSE351 is a prerequisite

- I assume you have just a little exposure to C

CSE332 is a corequisite

- I assume you know what a linked list, tree, hash table is

You need access to a CSE linux environment

- undergraduate labs, ssh into attu.cs, use CSE home VM

CSE333 lec1 intro // 03-28-11 // gribble

Textbooks

Required:

- Computer Systems, A Programmer’s Perspective (“CSAAP”)

‣ [2nd Ed]. CSE351 textbook; do you already have it?

Recommended (strongly):

- C: A Reference Manual (“CARM”) [5th Ed]

- C++ Primer (“C++P”) [4th Ed]

Optional (but cool):

- Effective C++ [3rd Ed]

CSE333 lec1 intro // 03-28-11 // gribble

Caveat emptor

This is the first time this course is being offered

- most of it doesn’t exist yet. :)

- be flexible, provide tons of feedback about topics and pace

‣ we need to know if we’re moving too slowly or too quickly

‣ we need to know if you’re working too little or too much

‣ we need to know if the projects work or are completely busted

CSE333 lec1 intro // 03-28-11 // gribble

Collaboration

Some of the projects will be individual, some in teams

- assume individual unless explicitly stated otherwise

Cross-team collaboration is useful and expected

- help other teams with programming fundamentals, concepts

Plagiarism and cheating is verboten

- helping other teams with assignments, debugging their code

- relying on help without attributing in your writeups

CSE333 lec1 intro // 03-28-11 // gribble

Administrivia

As usual, everything is on the course web

- http://www.cs.washington.edu/cse333/

CSE333 lec1 intro // 03-28-11 // gribble

See you on Wednesday!

