[image: image2.png]

CSE 326 – Data Structures

Winter 2004.

Final Exam.
3/16/2004

	Student name
	Student number

	
	

	Question
	

	1
	 /16

	2
	 /18

	3
	 /24

	4
	 /20

	5
	 /22

	Total
	 /100

Question 1 (16 points)

a. A binary search tree includes 6 elements whose keys are 1,2,3,4,5,6.

Given the sequence 5,3,2,1,4,6

a.1 Is it possible that this sequence is the output of a preorder traversal?

 If your answer is positive, draw a tree for which this is the output of preorder.

 If your answer is negative, explain why such a tree does not exist.

 5
 3 6
 2 4
 1
a.2 Is it possible that this sequence is the output of a postorder traversal?

 If your answer is positive, draw a tree for which this is the output of postorder.

 If your answer is negative, explain why such a tree does not exist.

No: 6 must be the root (postorder), and since it is the largest, all other 5 must be in the left subtree, but in this case, the next element to be output is the minimal one (in postorder we go all the way down left) – can’t be ‘5’.
b. An archaeologist found an old vase with the following strange text:

An array representing a minimum binary heap:

	-∞
	2
	4
	6
	10
	15
	7
	9
	20
	25
	16
	30
	11

The heap after delete_min:

	-∞
	4
	10
	6
	11
	15
	7
	9
	20
	25
	16
	30

Help the archaeologist complete the missing entries.

Question 2 (18 points - 3* 6)

For each of the following questions, circle the correct answer, and explain briefly.
1. Suppose several elements are added to a hash table using a good hash function. During the addition, there is a collision between elements A and B (element A added before B). After removing A, find (B) returns null. This could be an example of:
 a. A bad rehashing function. B should have been rehashed to A's position.

b. Not correctly implementing lazy deletion.

c. Using a non-prime table size.

 Explain:

b. if lazy deletion is not implemented correctly, then in find(B) when calculating hash(B), we get the old entry of A, and since A was deleted, we find out that this entry is null and B is not in the table.
2. Which of the following three data structures for storing integers would be best that satisfies the following amortized requirements: getting a sorted list of all the stored values (O(n)), inserting a new value (O(log n)), and finding a particular value as efficient as possible, when it is known that most of the find operations are for a small subset of the elements.

a. AVL Tree

b. Binary heap
c. Splay Tree
 Explain:
 c. Both AVL and Splay can produce the sorted list in O(n) (using inorder traversal), and can insert a new value in O(log n) [balanced binary search trees. AVL – always, splay – on average]. However, only splay tree is self adjusting – guarantying that the popular elements will be close to the root.
3. The largest key in an AVL tree is 10. insert(20) and insert(30) are performed one after the other.

a. There must be one rotation after insert(20) and one rotation after insert(30).
b. There must be one rotation either after insert(20) or after insert(30).

c. It might be that no rotation is needed at all.

 Explain:

c. Try the tree 10
 5
Question 3 (24 points - 4* 6)

For each of the following claims, determine if it is True. Justify a positive answer; give a counter example for a negative answer.

1. Given an undirected graph G=(V,E) and a vertex s(V, if there is a single BFS tree rooted at s then G is cycle-free.

Circle: True / False. Explain:

False o-----o Single BFS tree, but there’s a cycle.
 \ /

 o (s)
2. 4. Given an undirected graph G = (V,E). Let |E| = m, |V| = n. It is known that there are no parallel edges (with the same endpoints) and that (v deg(v) = 2(n-5) (assume n is large enough so that (n-5) > 0). The graph G is not connected.

Circle: True / False. Explain:

True, for connection we need at least n-1 edges, here we have n-5.
3. The n keys x1,x2,…xn are inserted into a hash table. It is known that hash(x1) = hash(x2) = … = hash(xn). Collisions are resolved using separate chaining (with linked lists). The total time complexity of performing find(x1), find (x2),…, find(xn) is ((n2).

Circle: True / False. Explain:

 True: In this case we get a linked list of length n. Finding the k’th element in this list takes ((k), and finding them all takes ((1+2+…+n)= ((n2).

4. Union-Find is implemented using up-trees with union-by-weight and path- compression. Starting from the same state, Bob performs find(c) followed by union(a,b). Alice performs union(a,b) followed by find(c). The resulting up-trees (of Bob and Alice) are identical.

Circle: True / False. Explain:

False. Example: a b
 / / \
 c d e

Question 4 (20 points)

The keys in a binary tree (not necessarily a search tree) are positive integers.

A node in the binary tree is called ‘happy’ if the sum of the keys in its left subtree is at most the sum of the keys in its right subtree. The sum of keys in a null-tree is 0. This implies that a leaf is always happy, that a node having a right child but no left child is happy, while a node having a left child but no right child is not happy.

A binary tree is ‘happy’ is all its nodes are happy. For example, in this graph 5 and 4 are happy (leaves), 2 is happy (0 ≤ 4), 3 is not happy (2+4 > 5), so the whole tree is not happy.

· Warm-up (2 points): For each of the following trees, determine if it is happy (circle the correct answer).

[image: image1]
The tree is implemented using pointers to the left and right subtrees (as usual). For each node, the following structure is kept. The field key includes the node’s value, the field sum is initially empty (with unknown garbage).

struct node {

int key;

int sum;

struct node pointer left;

struct node pointer right;

};

Complete the pseudo-code of the recursive function IsHappy(), that gets as input a pointer to a tree roots, and

· Returns as output ‘1’ if the tree is happy, and ‘0’ otherwise.

· For every node v, fills the field v.sum with the sum of all the keys in the subtree rooted at v. This should be done regardless of the tree being happy.
Let n be the number of nodes in the tree. The time complexity of your function should be O(n). Moreover, each node should be visited exactly once.
IsHappy(struct node pointer v): int {

if (v == NULL) return 1;
leftOK = IsHappy(v.left);

rightOK = IsHappy(v.right);

v.sum = v.key;

if (v.left) {

v.sum += v.left.sum;

left = v.left.sum;

} else left = 0;

if (v.right) {

v.sum += v.right.sum;

right = v.right.sum;

} else right = 0;

return leftOK and rightOK and left <= right;

}
Common errors were to not check for NULL correctly, to not make the recursive calls in the right place (the children must be fully updated before you can check if v is happy or not), and to not deal with the various cases of v.left or v.right being NULL when comparing left vs. right. The technique shown here of a temporary variable (left/right) that is set to zero if the corresponding child was NULL seemed to be the cleanest way to do it.

Question 5 (22 points)

Given an undirected graph G=(V,E), a subset H(V of the vertices is called an independent-set, if for every edge (i,j)(E, at most one of i and j is in H. In other words, no two vertices in H are joined by an edge in E.
a. Consider the graph in the figure.

Which of the following sets form an independent set (circle all that apply)

1. A,C,D

2. A,B,C,E

3. F,G

4. A,B,D

5. B,C,F

b. Consider the following algorithm that finds an independent-set:

1. Sort the vertices in non-decreasing order of their degree (first vertex has the minimal degree). Ties are broken arbitrarily.

2. Init H to be empty.

3. For every vertex, v, selected in sorted order (as produced in step 1), add v to H if v is not adjacent to any vertex in H.

b.1. What is the independent-set produced by the above algorithm for the graph in the figure? If there is more than one possible answer, give one possible output, no need to explain.

b.2. Suggest an implementation to the above algorithm. Describe all the data structures you are using and explain how each of the steps is performed. No need to write pseudo-code. Analyze the time and space complexity of your algorithm, as a function of n=|V| and m=|E|. The more efficient your implementation is, the more points you are going to get.

Answer (sketch):

 1. Use adj. lists.
2. In O(m+n) (scanning the adj. lists) calculate the degrees, store them in
an array.
3. Use BUCKET SORT to sort the vertices according to degree (the max degree
is n, so the whole sort is O(n)). No need to use heap sort, or any other n
log n sort.
4. Initialize an indicator array with 0's (to denote if a vertex is in H).
5. Now step 3 can be performed in O(degree(v)) for any vertex v, (by
checking the indicator array of the neighbors, and update it if needed).
This sums up to a total O(n+m) (both time and space).
E

F

D

C

B

G

yes / no

yes / no

yes / no

yes / no

yes / no

9

8

7

3

5

8

A

7

3

5

7

3

5

3

5

7

5

8=<9

3=<7

0=<7

4

2

5

3

