CSE 143

Lecture 25: Inheritance and Polymorphism

Just a second e A L
Mercutio, do you - PRy it the way it should have
have a minute? Will. I'm refactoring some What does that mean? been written in the first place,

of my code. but it sounds cooler.

s ——— T e
Input and output streams

® stream: an abstraction of a source or target of data
» 8-bit bytes flow to (output) and from (input) streams

® can represent many data sources:
e files on hard disk

I Network

e another computer on network Device Byte Stream

* web page

* input device (keyboard, mouse, etc.) File

* represented by java.io classes
s P b ST re s

» L e

——
Recall: inheritance

* inheritance: Forming new classes based on existing ones.
* a way to share/reuse code between two or more classes

» superclass: Parent class being extended.

» subclass: Child class that inherits behavior from superclass.
« gets a copy of every field and method from superclass

* is-a relationship: Each object of the subclass also "is a(n)" object of the
superclass and can be treated as one.

Employee
20-page manual
fiy

Lawyer Secretary Marketer
2-page manual 1-page manual 3-page manual

T

LegalSecretary
1-page manual

e
Streams and inheritance

® input streams extend common superclass InputStream;
output streams extend common superclass OutputStream

* guarantees that all sources of data have the same methods
» provides minimal ability to read/write one byte at a time

InputStream

read{): int
close()
s

AudiolnputStream | |ByteArraylnputStream FilelnputStream FilterlnputStream ObjectinputStream

I

BufferedinputStream DatalnputStream InflaterinputStream LineNumberinputStream PushbacklinputStream
T
| |
GZ|PInputStream ZiplnputStream
JarlnputStream
4

Inheritance syntax

public class name extends superclass {

public class Lawyer extends Employee {

}

* override: To replace a superclass's method by writing a new version of
that method in a subclass.

public class Lawyer extends Employee {
// overrides getSalary method in Employee class;
// give Lawyers a $5K raise
public double getSalary () {
return 55000.00;

L ss— T e
super keyword

® Subclasses can call inherited behavior with super

super . method (parameters)
super (parameters) ;

public class Lawyer extends Employee {
public Lawyer (int years) {
super (years); // calls Employee constructor

}

// give Lawyers a $5K raise

public double getSalary () {
double baseSalary = super.getSalary();
return baseSalary + 5000.00;

}

» Lawyers now always make S5K more than Employees.

The class Object

» The class object forms the root of the Object
overall inheritance tree of all Java classes. equals
» Every class is implicitly a subclass of 0bject gr;taglzjss
hashCode
nofify
* The object class defines several methods :;'gf;jl”g
that become part of every class you write. wait
For example: T
e public String toString/() Point
Returns a text representation of the object, Xl

: ; distance
usually so that it can be printed. geiX

gety
setlLocation
toString
translate

Object methods

method

description

protected Object clone ()

creates a copy of the object

public boolean equals (Object o)

returns whether two objects
have the same state

protected void finalize ()

used for garbage collection

public Class<?> getClass ()

info about the object's type

public 1nt hashCode ()

a code suitable for putting this
object into a hash collection

public Strong toString ()

text representation of object

SHE O e I o Yoy vl 0 5
public void notifyAll ()
public void wait()
public void wait(...)

methods related to
concurrency and locking (take
a data structures course!)

” Using the Object class

* You can store any object in a variable of type Object.

Gisfe b | W PosieiEa s)
Gbgcebior — the i tothera

* You can write methods that accept an Object parameter.

public void checkNotNull (Object o) {
Tibatioreier ey
throw new IllegalArgumentException ()

}

* You can make arrays or collections of Objects.

Object[] a = new Object[5];

Shfe e e

all] = new Random() ;

sl aOhreci sl e ew A ra v e s e ey

L e—
Polymorphism

» polymorphism: Ability for the same code to be used with different
types of objects and behave differently with each.

» A variable or parameter of type 7 can refer to any subclass of 7.

Employee ed = new Lawyer () ;
Object otto = new Secretary():;

» When a method is called on eg, it behaves as a Lawyer.

» You can call any Employee methods on ed.
You can call any Object methods on otto.

« You can not call any Lawyer-only methods on ed (e.g. sue).
You can not call any Employee methods on otto (e.g. getHours).

11

L e—
Polymorphism examples

* You can use the object's extra functionality by casting.

Employee ed = new Lawyer();

ed.getVacationDays () ; Tiaok
ed.sue () ; // compiler error
((Lawyer) ed) .sue(); e

* You can't cast an object into something that it is not.

Object otto = new Secretary();
sSysbemyontyprintintobtorEoSEringtyly; Lok
otto.getVacationDays () ; // compiler error
((Employee) otto) .getVacationDays () ; Lok

((Lawyer) otto) .sue(); // runtime error

1.2

L e—
Recall: comparing objects

* The == operator does not work well with objects.

It compares references, not objects' state.
» It produces true only when you compare an object to itself.

Podn e —amawr o ek fh o
Bl e e e B)

Polnt pav=ipas;
p1 xf 5ty 3
flopl == pno e fatlaes
o e i e
// p2 == p3 1is true p2 .| x| 5 v| 3

// pl.equals (p2)? ////l ME
.

o e aa e e Ry p3 -

23

Cse— e
Default equals method

* The Object class's equals implementation is very simple:

public class Object {

public boolean equals (Object o) {
return this == o;

}

e However:

» When we have used equals with various objects, it didn't behave like
—— , Why not? if (strl.equals(str2)) {

e The Java API documentation for equals is elaborate. Why?

24

http://download.oracle.com/javase/6/docs/api/java/lang/Object.htmlequals%28java.lang.Object%29

L e—
Implementing equals

public boolean equals (Object name) ({
statement(s) that return a boolean value ;

» The parameter to equals must be of type Object.

» Having an Object parameter means any object can be passed.
- If we don't know what type it is, how can we compare it?

25

Cse— e
The instanceof keyword

if (variable instanceof type) {

statement(s);
}

expression result

o Asks if a variable refers S natanceor Foant s

to an object of a given type. s 1nstanceof String true

» Used as a boolean test. R thstanceor Folne e
p instanceof String false

S e p instanceof Object true

Pornb pr=new RPorntily g S e e R e true
null instanceof String| false

null instanceof Object | false

27

Cse— e
equals method for Points

// Returns whether o refers to a Point object with
e B 8 B B TR e e F e S e
public boolean equals (Object o) {
1f (o instanceof Point) {
// o i1s a Point; cast and compare it

Point other = (Point) o;
return x == other.x && y == other.y;
} else {

// o 1s not a Point; cannot be equal
return false;

28

L s— T e
More about equals

e Equality is expected to be reflexive, symmetric, and transitive:

a.equals (a) is true for every object a
a.equals (b) & b.equals(a)
(a.equals (b) && b.equals(c)) < a.equals(c)

* No non-null object is equal to null:
a.equals (null) is false for every object a

» Two sets are equal if they contain the same elements:

Se s e g e e ey HaehSer s e

Set<String> set2 = new TreeSet<String>();

Npai e vean e i e e e e A e e L T
Seis el e Vele RS

}
System.out.println (setl.equals (set2)) ; // true

_ 29

Cse— e
[/0 and exceptions

* exception: An object representing an error.

* checked exception: One that must be
handled for the program to compile.

* Many I/O tasks throw exceptions.
o Why?

* When you perform 1/O, you must either:
» also throw that exception yourself
» catch (handle) the exception

30

L ss— T e
Throwing an exception

public type name (params) throws type ({

* throws clause: Keywords on a method's header that state that it may
generate an exception.

* Example:

public void processFile(String filename)
throws FileNotFoundException {

"I hereby announce that this method might throw an exception, and | accept

the consequences if it happens."

31

L —
Catching an exception

A
statement(s);
} catch (type name) ({
code to handle the exception

}

* The try code executes. If the given exception occurs, the try block stops
running; it jumps to the catch block and runs that.

try {
Scanner 1in = new Scanner (new File(filename)) ;
System.out.println (input.nextlLine()) ;

} catch (FileNotFoundException e) ({
systemioutiprintin tYErlevwas " nob Toundal)sg

}

3

Exception inheritance

* Exceptions extend from a common superclass Exception

Exception
ClassMNotFoundException DataFormatException IOException NoSuchMethodException RuntimeException SQLException
dlh s

FileNotFoundException

MalformedURLException SocketException

ArithmeticException

ClassCasiBxception

ConcurrentiModi

icationException

EmptyStackException

lllegalArgumeniException

lllegalStateException

IndexOutOfBo

LndsException

NoSuchElementException

MNullPointerException

SecurityException

UnsupportedOperationException

33

s — e
Dealing with an exception

® All exception objects have these methods:

Method Description
public String getMessage () text describing the error
public String toString () a stack trace of the line

numbers where error occurred

getCause (), getStackTrace (), other methods
printStackTrace ()

®* Some reasonable ways to handle an exception:

e try again; re-prompt user; print a nice error message;
quit the program; do nothing (!)

T T 34

L e—
Inheritance and exceptions

® You can catch a general exception to handle any subclass:

Eryey
Scanner input = new Scanner (new File("foo"));
Sy S Eem ot PR AT I TN puE e e ne

} catch (Exception e) {
sSystemioutiprintlin tYErlevwas inot Toundil)y

}

® Similarly, you can state that a method throws any exception:

public void foo () throws Exception {

* Are there any disadvantages of doing so?

3

