CSE 143

Lecture 19: Binary Trees

reading: 17.1-17.3

' PLANT THE
DEQSION TREE

L ANDSCAPING
Al THE
INDUSTRIAL
PARK.

L —— g
Trees

* tree: A directed, acyclic structure of linked nodes.

— directed : Has one-way links between nodes.
— acyclic : No path wraps back around to the same node twice.

* binary tree: One where each node has at most two children.

* Recursive definition: A tree is either: root
— empty (null), or
— aroot node that contains:
- data,

- a left subtree, and
« aright subtree.

- (The left and/or right
subtree could be empty.)

L e—
Trees in computer science

3 X My Doc ts
* TreeMap and TreeSet implementations - E"" bac‘i‘(:‘[f"

£ csel00
o folders/files on a computer O csel42
= 2 cseld3
. : 2 = = 09wi
» family genealogy; organizational charts & mssassin
) exams
=3 grades
£ handouts
= I3 homework
i) 1-sortedintlist

e Al: decision trees

» compilers: parse tree
— a=(b+c)*d; @

e cell phone T9 Names: Root

Joe

Johin o :

Jare ™~

.

Terminology

» node: an object containing a data value and left/right children
» root: topmost node of a tree
« leaf: a node that has no children
» branch: any internal node; neither the root nor a leaf

» parent: a node that refers to this one
» child: a node that this node refers to
» sibling: a node with a common parent

e subtree: the smaller tree of nodes on
the left or right of the current node

* height: length of the longest path
from the root to any node

* level or depth: length of the path
from a root to a given node

T T =

Recursive data structure

* Recursive definition: A tree is either:
— empty (null), or
— aroot node that contains:
- data,

« a left tree, and
« aright tree

root root root root root

=

A tree node for integers

» A basic tree node object stores data, refers to left/right
» Multiple nodes can be linked together into a larger tree

left |data | right
// 2~
left |data |right left | data | right
59 27 N
E
left | data | right

86

L s— T e
THiPeceele e class

R R O e O e
public class IntTreeNode {
ool i i nlinhe ot Hee // data stored at this node
public IntTreeNode left; // reference to left subtree
e e e // reference to right subtree

// Constructs a leaf node with the given data.

public IntTreeNode (int data) {
thissitdatassnulisvangldys

}

// Constructs a branch node with the given data and links.
public IntTreeNode (int data, IntTreeNode left,

IntTreeNode right) {
this.data = data;
this.left = left;
atia i oo s o e i e e i

} left | data | right

Tt Free class

S e e A
public class IntTree {

private IntTreeNode overallRoot; // null for an empty tree
} methods overallRoot

— Client code talks to the IntTree,
not to the node objects inside it.

— Methods of the IntTree create
and manipulate the nodes,

their data and links between them. @ @ @ @

IntTree constructors

* For now, assume we have the following constructors:

public IntTree (IntTreeNode overallRoot)
public IntTree (int height)

— The 2nd constructor will create a tree and
fill it with nodes with random data values overallRoot
from 1-100 until it is full at the given height.

T ooy o= ayaymaelaad e aatd s

L ——
Traversals

e traversal: An examination of the elements of a tree.

— A pattern used in many tree algorithms and methods

e Common orderings for traversals:
— pre-order: process root node, then its left/right subtrees
— in-order: process left subtree, then root node, then right
— post-order:process left/right subtrees, then root node

overallRoot

®0O ©®®

0

Traversal example

overallRoot

17
(45 O

2 © @ @

e pre-ofder: 17 4129 6 0 R 1 4
* in-order: 29 41 6 17 81 9 40
e post-order: 29 6 41 81 40 9 17

11

L —— g
Traversal trick

* To quickly generate a traversal: overallRoot
— Trace a path around the tree.
— As you pass a node on the @

proper side, process it.

- pre-order: left side @ 9

« in-order: bottom

- post-order: right side @ G @ @

e pre-order: 17 41 29 6 9 81 40
* in-order: 29 41 6 17 81 9 40
e post-order: 29 6 41 81 40 9 17

_ 12

Exercise

overallRoot

* Give pre-, in-, and post-order
traversals for the following tree:

. pre 42152748986125 339
- in:154827428651293 39
— post: 4827 155128639342

TSR 13

Exercise

* Add a method print tothe IntTree class that prints the elements of
the tree, separated by spaces.

— A node's left subtree should be printed before it, and its right subtree should
be printed after it.

overallRoot
— Example: tree.print () ;

29 delvn i B e On 4) @

29 © @ @

14

Exercise solution

e e O e

public class IntTree {
private IntTreeNode overallRoot; // null for an empty tree

public void print () {
print (overallRoot) ;

System.out.println () ; // end the line of output

}

o la o e e e i e R (e wie b e e et s ot = A Ve A Wi e) e
// (base case is implicitly to do nothing on null)

aias i Galote ol i bl B e
// recursive case: print left,
print (overallRoot.left) ;
VA n R SR O e T e e e e

print (overallRoot.right) ;

center, right

b

15

Template for tree methods

bl e n e e Ra S Y R eV
private IntTreeNode overallRoot;

public type name (parameters) {
name (overallRoot, parameters) ;

}

private type name (IntTreeNode root, parameters)

}

* Tree methods are often implemented recursively
— with a public/private pair
— the private version accepts the root node to process

16

Exercise

Add a method contains to the IntTree class that searches the tree
for a given integer, returning t rue if it is found.

— Ifan IntTree variable tree referred to the tree below, the following calls
would have these results:

e tree.contains (87) — true overallRoot
e tree.contains (60) > true

e tree.contains (63) > false

e tree.contains (42) - false

87 29
B @ @ @0

17

e
Exercise solution

// Returns whether this tree contains the given integer.
Pl el le g cont s v eiie ey
return contains (overallRoot, wvalue);

}

private boolean contains (IntTreeNode node, int value) ({

1f (node == null) {

retirn. faliser Livhasescagaviipgatibenndihere
} else 1if (node.data == value) {

i b i e R b // base case: found here
iy =

// recursive case: search left/right subtrees
return contains(node.left, wvalue) ||
contains (node.right, wvalue) ;

18

Exercise

e Add a method named printSideways tothe IntTree class that prints
the tree in a sideways indented format, with right nodes above roots above
left nodes, with each level 4 spaces more indented than the one above it.

— Example: Output from the tree below:

overall root
ey
14
B
9
7
6

19

e
Exercise solution

// Prints the tree in a sideways indented format.
Sbletiie e el shaiois Chlle o0 s
printSideways (overallRoot, "");

}

plrivate void prantSidewaystintirecNode rooy
SErdng TnaenEyad
PV R ik
printSideways (root.right, indent + " S
System.out.println(indent + root.data);
printSideways (root.left, indent + " e

20

