
Adam Blank Winter 2015Lecture 16

CSE
143

Computer Programming II

CSE 143: Computer Programming II

Recursive Backtracking

Outline

1 Solving Mazes

2 Words & Permutations

Recursion Reminder 1

Solving Recursion Problems
Figure out what the pieces of the problem are.
What is the base case? (the smallest possible piece of the problem)
Solve one piece of the problem and recurse on the rest.

paintbucket Review
A piece of the problem is one surrounding set of squares
The base case is we hit a non-white cell
To solve one piece of the problem, we color the cell and go left,
right, up, and down

Solving a Maze 2

Solving a maze is a lot like paintbucket. What is the difference?

Instead of filling everything in, we want to stop at dead ends!

If you were in a maze, how would you solve it?
Try a direction.
Every time you go in a direction, draw an X on the ground.
If you hit a dead end, go back until you can go in another direction.

This is recursive backtracking!

1 public boolean canSolveMaze(int x, int y) {
2 if (isGoal(x, y)) {
3 return true;
4 }
5 else if (inBounds(x, y) && isPassage(x, y)) {
6 return solveMaze(x + 1, y) ||
7 solveMaze(x − 1, y) ||
8 solveMaze(x, y + 1) ||
9 solveMaze(x, y − 1);

10 }
11 }

Solving a Maze 3

1 public static boolean solveMaze(Point p) {
2 // We found a path to the goal!
3 if (p.isGoal()) {
4 p.makeVisited(panel);
5 return true;
6 }
7
8 // If the point is a valid part of a path to the solution...
9 if (!p.isOOB() && p.isPassage(panel)) {

10 p.makeVisited(panel); // Choose this point
11 panel.sleep(120);
12 if (solveMaze(p.getLeft()) || // Try each direction
13 solveMaze(p.getRight()) || // until we get a
14 solveMaze(p.getAbove()) || // solution.
15 solveMaze(p.getBelow())) {
16 return true;
17 }
18 panel.sleep(200);
19 p.makeDeadEnd(panel); // Undo the choice
20 }
21 return false;
22 }

Recursive Backtracking 4

Definition (Recursive Backtracking)
Recursive Backtracking is an attempt to find solution(s) by building up
partial solutions and abandoning them if they don’t work.

Recursive Backtracking Strategy
If we found a solution, stop looking (e.g. return)
Otherwise for each possible choice c. . .

Make the choice c
Recursively continue to make choices
Un-make the choice c (if we got back here, it means we need to
continue looking)

Words & Permutations 5

All Words
Find all length n strings made up of a’s, b’s, c’s, and d’s.

words(2)

words(1)

dddcdbda

a b c d

words(1)

cdcccbca

a b c d

words(1)

bdbcbbba

a b c d

words(1)

adacabaa

a b c d

a b c d

To do this, we build up partial solutions as follows:
(Assume there is a variable part that is initialized to "".)

The only length 0 string is ""; so, part is a solution.
Otherwise, the four choices are a, b, c, and d:

To make the choice letter, we set part += letter.
Then, we need to find all solutions with one fewer letter recursively.
Now, we unmake the choice (to continue looking) by removing
letter from part.

All Words Solution 6

1 String part = "";
2 private static void words(int length) {
3 String[] choices = {"a", "b", "c", "d"};
4 // The empty string is the only word of length 0
5 if (length == 0) {
6 System.out.println(part);
7 }
8 else {
9 // Try appending each possible choice to our partial word.

10 for (String choice : choices) {
11 part += choice; // Add the choice
12 words(length − 1); // Recurse on the rest
13 int size = part.length()
14 part = part.substring(0, size − 1); // Undo the choice
15 }
16 }
17 }

Permutations
How do we change words to only print out words that have each
character exactly once?

Permutations Solution 7

Idea: When a solution becomes “bad” (it has multiple of the same
letter), stop trying that branch.

1 String part = "";
2 private static void permutations(int length) {
3 String[] choices = {"a", "b", "c", "d"};
4 // If we have a repeat letter, the solution is invalid.
5 if (hasRepeats(part)) {
6 return;
7 }
8 else if (length == 0) {
9 System.out.println(part);

10 }
11 else {
12 for (String choice : choices) {
13 part += choice;
14 permutations(length − 1);
15 int size = part.length()
16 part = part.substring(0, size − 1);
17 }
18 }
19 }

Recursive Backtracking Tips! 8

The most important part is figuring out what the choices are.

It can help to draw out a tree of choices

Make sure to undo your choices after the recursive call.

You will still always have a base case.

	Solving Mazes
	Words & Permutations

