CSE 143

Lecture 14: binary search and complexity
reading: 13.1-13.2

N

I know, the _

I heard Java is an exception That's not the object
exceptional language. hierarchy is of what I was saying.
awful.

Oh, don't be
so primitive.

v

http://www.alexsweet.co.uk/comics.php?comic=2

http://www.alexsweet.co.uk/comics.php?comic=2

L s— T e
Searching methods

* Implement the following methods in ArrayIntList:
e indexOf —returns first index of element, or -1 if not found
°* contains - returns true if the list contains the given int value

s ——— e
Sequential search

* sequential search: Locates a target value in an array / list by examining
each element from start to finish. Used in indexOf.

* How many elements will it need to examine?

* Example: Searching the array below for the value 42:

4127 (10115]20(22|25|30({36|42|50|56|68|85|92|103

* The array is sorted. Could we take advantage of this?

L s— T e
Sequential search

* What is its complexity class?

public int indexOf (int wvalue) {

for (int 1 = 0; 1 < size; 1++) { =
if (elementData[li] == wvalue) {
VAV SR e s A U
} - N
}
e = e G b T -

-412|7|10(15{20|22|25[30|36(42|50|56|68|85[92|103

® On average, "only" N/2 elements are visited
» 1/2is a constant that can be ignored

J— =

s ——— T e
Binary search (13.1)

* binary search: Locates a target value in a sorted array or list by
successively eliminating half of the array from consideration.

* How many elements will it need to examine?

* Example: Searching the array below for the value 42:

4127 (10115]20(22|25|30({36|42|50|56|68|85|92|103

min mid max

Cm— e
Binary search runtime

® For an array of size N, it eliminates % until 1 element remains.
N, N/2, N/4,N/S, ..., 4,2, 1

* How many divisions does it take?

® Think of it from the other direction:
* How many times do | have to multiply by 2 to reach N?
1,2,4,8, ..., N/4,N/2, N
» Call this number of multiplications "x".

2*x=N
x =log, N

® Binary search is in the logarithmic complexity class.

e 6

Css—— T e
Complexity classes

e complexity class: A category of algorithm efficiency based on the
algorithm's relationship to the input size N.

Class Big-Oh If you double N, ... Example
constant O(1) unchanged 10ms
logarithmic O(log, N) increases slightly 175ms
linear O(N) doubles 3.2 sec
log-linear O(N log, N) | slightly more than doubles 6 sec
quadratic O(N2) quadruples 1 min 42 sec
cubic O(N3) multiplies by 8 55 min
exponential o(2N) multiplies drastically 5 * 1081 years

—
Complexity classes

Big-0 Complexity

1800

m -
F00
—0f1)
F e —O{logn)
B s00 B{n)
& . —0){rilogn]
—0(nr2)
a0 —0{2%n)
300 + — 0}

http://recursive-ds

http://recursive-design.com/blog/2010/12/07/comp-sci-101-big-o-notation/

s ——— T e
E o

// searches an entire sorted array for a given value
// returns its index if found; a negative number if not found
// Precondition: array is sorted

Arrays.binarySearch (array, value)

// searches given portion of a sorted array for a given value
// examines minIndex (inclusive) through maxIndex (exclusive)
// returns its index if found; a negative number if not found
// Precondition: array is sorted

Arrays.binarySearch (array, minindex, maxindex, value)

® The binarySearch method in the Arrays class searches an array very
efficiently if the array is sorted.

* You can search the entire array, or just a range of indexes
(useful for "unfilled" arrays such as the one in ArrayIntList)

s ——— e
Using binarySearch

// index sl e 4 oS 6 7 8 T e e L S e e e B
b e e e s
int index = Arrays.binarySearch(a, 0, 16, 42); // indexl is 10

int index2 = Arrays.binarySearch(a, 0, 16, 21); // index2 is -7

® binarySearch returns the index where the value is found

* if the value is not found, binarySearch returns:

—tinseyrtionboinrdaly

where insertionPoint is the index where the element would have been, if
had been in the array in sorted order.

To insert the value into the array, negate insertionPoint +1

int indexToInsert2l = -(index2 + 1); // 6

10

Cm— e
Binary search code

// Returns the index of an occurrence of target in a,
// or a negative number if the target is not found.
// Precondition: elements of a are in sorted order

ebl el e cheic e el e nii s et i AR e el sk B A T e s e B e (o
R i e
rRnEmaxiv=radlengih iy

while (min <= max) {

Y e N e AR B A A R

B e R e
M =ami gl

} else 1f (a[mid] > target) {
max = midv=ril

} else {

LU hm e // target found
}
k

refurn =(min 1) - // target not found

11

s —
Recursive binary search (13.3)

® Write a recursive binarySearch method.

* |f the target value is not found, return its negative insertion point.

-412|7|10{15{20|22|25[30|36(42|50|56|68|85[92|103

inbiindes e hiparySeareh ot 420 /10
intiindex?2 = binaryScareh (data; 66) ;L) =14

1.2

s — e
The compareTo method (10.2)

® The standard way for a Java class to define a comparison function for its
objects is to define a compareTo method.

* Example: in the String class, there is a method:

pubil et eomoare oo ng o hiot)

® Acall of A.compareTo (B) will return:
avalue< O if A comes "before" B in the ordering,
avalue> O if A comes "after" B in the ordering,

or 0 if A and B are considered "equal" in the ordering.

13

Using compareTo

® compareTo can be used as a test in an i f statement.

stringav=avalvces
string.bri=""bob:
if (a.compareTo(b) < 0) { // true

}

Primitives Objects
SR e TR ta e ompareTo b gy
TR e =y 1f (a.compareTo (b) <= 0) {
whstar==r v TEvtan compareTotbyis==2039
S mEaE e e e e e e)
TEvila St IE (o compareTolh)y =m0y
R a e TR ts e oMb areTo by

_ 14

