Adam Blank Lecture 13 Winter 2015

Computer Programming |I

CSE 143: Computer Programming 11

Interfaces & Comparable

I DON'T GET
YOUR CODE.

WHAT ARE
THESE LINES
FOR?

I HAVE NO IDEA.
BUT IT DOES NOT
WORK WITHOUT

THE ART OF PROGRAMMING ~ PART 2: KISS

Outline

1 Understand How To Use Interfaces

2 Learn about the Comparable Interface

Interfaces

Interface

An interface specifies a group of behaviors and gives them a name.

Classes can choose to implement interfaces which require them to
implement all of the methods in the interface.

Interfaces answer the question:

“To be an X, which methods does another class need to have?”

IntList Interface

For example: To be a List, which methods does another class need to
have?

Lists have an add method
Lists have a remove method
Lists have a get method
Lists have a set method
Lists have a size method

Normally, we specify a method and its implementation. Java allows us to
just specify the header:

“public String toString();”

is a valid line of code.

Interface Syntax

To Specify An Interface

public interface IntList {
public void add(int value);
public int remove(int index);
public int get(int index);
public void set(int index, int element);
public int size();
public boolean isEmpty();

1
2
3
4
)
6
7
8

To Use An Interface

Edit the first line of a class (say ArrayIntList or LinkedIntList):
B public class ArrayIntList implements IntList {...}
B public class LinkedIntList implements IntList {...}

Also, make sure it actually has all the methods the interface is supposed
to have. ..

Outline

B Understand How To Use Interfaces

2 Learn about the Comparable Interface

How do sort and TreeSet work?

How do sort and TreeSet KNOW the ordering?

If you were implementing sort for a type T, what would you need to be
able to do with T a and T b?

We would need to be able to COMPARE a and b

That's just an interface! Java calls it “Comparable”.

Comparable

The Comparable interface allows us to tell Java how to sort a type of
object:

I8 public interface Comparable<E> {
2 public int compareTo(E other);
3N

This says, “to be Comparable, classes must define compareTo".

Thinking about compareTo

Think about the following transformation when using compareTo:

this.compareTo(that) < 0
this - that < 0
this < that

This works if you replace < with =, >, 1=, .. .:

Normal compareTo

a<b isto a.compareTo(b) < O
a<=b isto a.compareTo(b) <= 0
a==>b isto a.compareTo(b) == 0
al=b isto a.compareTo(b) != 0
a>b isto a.compareTo(b) >= 0
a>b isto a.compareTo(b) > O

Storing Multiple Choice Quizzes

The text files:
Each text file corresponds to answers for a multiple choice quiz.
Each line contains one answer.

For each quiz, answers.txt represents the correct answers.

MCQuiz Class

public class MCQuiz {
private String studentName;
private String quizName;
private List<String> correctAnswers;
private List<String> studentAnswers;

public MCQuiz(String filename) throws FileNotFoundException { ...

public String getStudent() { ... }
public String getName() { ... }
public int numberCorrect() { ... }

We would like to do the two following tasks:
L Print out the quizzes in worst-to-best order

2 Collect all quizzes of each particular student together and display
them (still from worst-to-best)

Printing The Quizzes in Order

Client Code to Print The Quizzes

List<MCQuiz> quizzes = createQuizzes(2);

// First, let’s get a sorted list of the quizzes

Collections.sort(quizzes);

for (MCQuiz quiz : quizzes) {
System.out.println(quiz);

}

This doesn't work, because Java doesn’'t know how to sort MCQuizzes.

Comparable

The Comparable interface allows us to tell Java how to sort a type of
object:

public interface Comparable<E> {
public int compareTo(E other);

}

This says, “to be Comparable, classes must define compareTo".

MCQuiz: Defining compareTo

b wWN R

DO WN

Attempt #1
public class MCQuiz implements Comparable<MCQuiz> {

public int compareTo(MCQuiz other) {
return this.numberCorrect() — other.numberCorrect();

}

This doesn't; work, because if we have a quiz where someone got 1/10
and another where someone else got 1/5, we treat them as the same.

Attempt #2

public class MCQuiz implements Comparable<MCQuiz> {

public int compareTo(MCQuiz other) {
return (double)this.numberCorrect()/this.correctAnswers.size() —
(double)other.numberCorrect()/other.correctAnswers.size();

}

This won't even compile! We need to return an int.

Comparable: Tricks #1 & #2

int Fields

If we have a field int x in our class, and we want to compare with it,
our code should look like:

public class Sample implements Comparable<Sample> {
public int compareTo(Sample other) {
return this.x — other.x;

}

Object Fields

If we have a field Thing x in our class, and we want to compare with it,
our code should look like:

public class Sample implements Comparable<Sample> {
public int compareTo(Sample other) {
return this.x.compareTo(other.x);
t
}

In other words, just use the existing compareTo on the field in the class!

MCQuiz: Defining compareTo

Attempt #3

public class MCQuiz implements Comparable<MCQuiz> {

public int compareTo(MCQuiz other) {
Double thisPer = (double)this.numberCorrect()/this.correctAnswers.size();
Double otherPer = (double)other.numberCorrect()/other.correctAnswers.size();
return thisPer.compareTo(otherPer);

}

This still doesn’t work, because it doesn't take the names of the
students into account.

In particular, if two students both get 1/10 on a quiz, our compareTo
method says “it doesn't matter which one goes first”.

Attempt #4

public class MCQuiz implements Comparable<MCQuiz> {

public int compareTo(MCQuiz other) {
Double thisPer = (double)this.numberCorrect()/this.correctAnswers.size();
Double otherPer = (double)other.numberCorrect()/other.correctAnswers.size();
int result = thisPer.compareTo(otherPer)
if (result == 0) { result = this.studentName.compareTo(other.studentName); }
return result;

}

This still doesn't work, but it's not as clear why. Let's try the second
task.

Grouping the Quizzes by Student

O O~NOOOTA WN -

What data structure should we use to group the quizzes? A Map!
Map Question: “Which quizzes were taken by this student?”

Keys: Strings (the student names)
Values: Set<MCQuiz> (all the quizzes that student took).

List<MCQuiz> quizzes = createQuizzes(2);
Map<String, Set<MCQuiz>> quizzesByStudent = new TreeMap<>();

// We want to loop over all the quizzes, adding them one by one
for (MCQuiz quiz : quizzes) {

String name = quiz.getStudent();

if (!quizzesByStudent.containsKey(name)) {

quizzesByStudent.put(name, new TreeSet<MCQuiz>());

}

quizzesByStudent.get(name).add(quiz);
}

// Now, we want to print out the quizzes student by student:

for (String student : quizzesByStudent.keySet()) {
System.out.println(student + ": " + quizzesByStudent.get(student));

}

11

Grouping the Quizzes by Student

The output looks like this: T

>> AdamBlank: [AdamBlank (quizi1): 1/11, AdamBlank (quiz0): 4/11]

>> BarbaraHarris: [BarbaraHarris (quizl): 3/11, BarbaraHarris (quiz0): 4/11]
>> ChrisHill: [ChrisHill (quiz0): 3/11, ChrisHill (quizil): 4/11]

>> JessicaHerna: [JessicaHernan (quizi): 1/11, JessicaHernan (quiz0): 2/11]
>> TeresaHall: [TeresaHall (quiz0): 4/11]

Why does Teresa only have one quiz? She scored the same on both of
her quizzes and compareTo said they were the same!

Final Attempt
public class MCQuiz implements Comparable<MCQuiz> {

public int compareTo(MCQuiz other) {
Double thisPer = (double)this.numberCorrect()/this.correctAnswers.size();
Double otherPer = (double)other.numberCorrect()/other.correctAnswers.size();
int result = thisPer.compareTo(otherPer);
if (result == 0) {
result = this.studentName.compareTo(other.studentName);

}
if (result == 0) {
result = this.quizName.compareTo(other.quizName);

}

return result;

Lesson: When you write compareTo, make sure that
a.compareTo(b) == 0 exactly when a.equals(b)

Some Interface/Comparable Tips

Understand multi-level structures

Use the most general interface as possible

When implementing compareTo, make sure to use all the fields that
make it different (to put another way: a.compareTo(b) ==
exactly when a.equals (b))

Remember that inside classes, you can look at the fields of other
instances of that class

	Understand How To Use Interfaces
	Learn about the Comparable Interface

