spikedmath.com

@ 2015
DO YOU KNOW
WHAT A FRACTAL IS?
YES
NO
NOW DO YOU KNOW
WHAT A FRACTAL IS?

Lecture 13: Interfaces, Comparable y lm

, D)
reading: 9.5 - 9.6, 16.4, 10.2

V j
NO
NOW DO YOU KNOW
HAT A FRACTAL IS7

YES
NO

Related classes

Consider classes for shapes with common features:
¢ Circle (defined by radius r):

area =L perimeter =T

® Rectangle (defined by width w and height h):
area =wh, perimeter =2w+ 2h

* Triangle (defined by side lengths a, b, and ¢)

area =V(s(s-a)(s-b)(s-c))
wheres=% (a+ b + ¢),

perimeter =a+b+c

» Every shape has these, but each computes them differently.

s ——— e
Interfaces (9.5)

* interface: A list of methods that a class can promise to implement.

* Inheritance gives you an is-a relationship and code sharing.
e A Lawyer can be treated as an Employee and inherits its code.

* Interfaces give you an is-a relationship without code sharing.
« ARectangle object can be treated as a Shape but inherits no code.

* Analogous to non-programming idea of roles or certifications:

e "I'm certified as a CPA accountant.
This assures you | know how to do taxes, audits, and consulting."

o "I'm 'certified' as a Shape, because | implement the Shape interface.
This assures you | know how to compute my area and perimeter."

s ——— T e
Interface syntax

public interface name {
public type name (type name, ..., type name) ;
public type name (type name, ..., type name) ;

public type name (type name, ..., type name) ;

Example:
public interface Vehicle {
public int getSpeed|();
bl vondecat i rachpa i nt e diire oo n

s — e
Shape interface

// Describes features common to all shapes.

public interface Shape {
public double areal();

ikl el e b e ()

}

* Saved as Shape. java

«interface»
Shape

arear

peimeter)
iy

__

Circle

radius

Rectangle

Circledradius)
areal
petimeterd

width, height

Rectangleiny,h)
areal
perimetert

* abstract method: A header without an implementation.
* The actual bodies are not specified, because we want to allow each class to

implement the behavior in its own way.

Triangle

ah o

Triangleia, b, ¢
areai
perimeterd

Implementing an interface

public class name implements interface ({

}

® A class can declare that it "implements" an interface.
* The class must contain each method in that interface.

public class Bicycle implements Vehicle ({

(Otherwise it will fail to compile.)

Bamanay java iy “Banana s notvabstract iandydoes nok
override abstract method area() 1in Shape

public class Banana implements Shape {

N

Cse— e
Interfaces + polymorphism

® |nterfaces benefit the client code author the most.

* They allow polymorphism.
(the same code can work with different types of objects)

public static void printInfo (Shape s) {

System.out.println ("The shape: " + s);

Systemioub prantin{larca e bgiarea (1

SRy e e e P T S e e e e e e e
(

Systemzout i pEEntin),

Glrclervairer=rneyw o el e
Triangle tri = new Triangle (b5, 12, 13);
Drint Nt olcire)

printinfotEri);

Linked vs. array lists

* We have implemented two collection classes:
e DirrayIinthiust

index| 0|12]| 3
value |42 |-3|17| 9

R NAR S YR B M AR e

data | next data | next data | next data | next
front —— | 42 3 | 17 9

* They have similar behavior, implemented in different ways.
We should be able to treat them the same way in client code.

L s— T e
An Intlist interface

// Represents a list of integers.
publac interiadce Inthistif
pub e e arr i addh i b e
vublac ‘vord addlantiandex, "int wvaluce)y
public int get (int index);
public int indexOf (int wvalue) ;
public boolean i1sEmpty ()
public void remove (int index);
public void set (int index, 1nt wvalue);
public int size();

public class ArrayIntList implements IntList { ...
public class LinkedIntlList implements IntList { ...

s e— s
Client code w/ interface

public class ListClient {
publicistatic void i main(Stringliargs) i
fnthilisht Fastl —ipnew Rrravinthist ()
process (listl) ;

Tk s bvalmg e mayr ek plcerd Ena b e
process (list2) ;

}

e e S e S e D Rl S AT N ol W B o B G e
iy S eV T A e A e
i e stels A iR
TratadeitYsy -
At n R o L nh e e MR a
R i el v N AV S R O
bR el et e

10

L ss— T e
ADTs as interfaces (11.1)

* abstract data type (ADT): A specification of a collection of data and the
operations that can be performed on it.

* Describes what a collection does, not how it does it.

e Java's collection framework uses interfaces to describe ADTs:

® Collection, Deque, List, Map, Queue, Set

® An ADT can be implemented in multiple ways by classes:

e ArrayListand LinkedList implement List
e HashSet and TreeSet implement Set
e LinkedList, ArrayDeque, etc. implement Queue

e« They messed up on Stack; there's no Stack interface, just a class.

e 11

L e—
Using ADT interfaces

When using Java's built-in collection classes:

* |tis considered good practice to always declare collection variables using
the corresponding ADT interface type:

List<String> list = new ArrayList<String>();

®* Methods that accept a collection as a parameter should also declare the
parameter using the ADT interface type:

public void stutter (List<String> list) {

1.2

The Comparable Interface

reading: 10.2

| - .o tlass

Method name

Description

binarySearch (list, value)

returns the index of the given value in
a sorted list (< 0 if not found)

copy (listTo, listFrom)

copies listFrom's elements to listTo

emptylList (), emptyMap (),
emptySet ()

returns a read-only collection of the
given type that has no elements

fill (list, value)

sets every element in the list to have
the given value

max (collection), min (collection)

returns largest/smallest element

replaceAll (list, old, new)

replaces an element value with another

reverse (list)

reverses the order of a list's elements

shuffle (list)

arranges elements into a random order

sort (list)

arranges elements into ascending order

14

L s— T e
Ordering and objects

® Can we sort an array of Strings?
e Operators like < and > do not work with String objects.
* But we do think of strings as having an alphabetical ordering.

* natural ordering: Rules governing the relative placement of all values of a
given type.

® comparison function: Code that, when given two values A and B of a given
type, decides their relative ordering:

°* A<B, A == B, A>B

15

s — e
The compareTo method (10.2)

® The standard way for a Java class to define a comparison function for its
objects is to define a compareTo method.

* Example: in the String class, there is a method:

pubil et eomoare oo ng o hiot)

® Acall of A.compareTo (B) will return:
avalue< O if A comes "before" B in the ordering,
avalue> O if A comes "after" B in the ordering,

or 0 if A and B are considered "equal" in the ordering.

16

Using compareTo

® compareTo can be used as a test in an i f statement.

stringav=avalvces
string.bri=""bob:
if (a.compareTo(b) < 0) { // true

}

Primitives Objects
SR e TR ta e ompareTo b gy
TR e =y 1f (a.compareTo (b) <= 0) {
whstar==r v TEvtan compareTotbyis==2039
S mEaE e e e e e e)
TEvila St IE (o compareTolh)y =m0y
R a e TR ts e oMb areTo by

_ 17

s —— s
compareTo and collections

® You can use an array or list of strings with Java's included binarySearch
method because it calls compareTo internally.

S e e S b e e e
int index = Arrays.binarySearch(a, "dan"); // 3

® Java's TreeSet/Map use compareTo internally for ordering.

® A call to your compareTo method should return:
avalue< 0 if this objectis "before" the other object,
avalue> 0 if this objectis "after" the other object,
or O if this objectis "equal” tothe other.

18

Css—— T e
Comparable (10.2)

public interface Comparable<E> {
pubibvesrnt s compareTotE obhcr):

® A class can implement the Comparable interface to define a natural
ordering function for its objects.

® A call to your compareTo method should return:
avalue< 0O ifthis objectis "before" the other object,
avalue> 0 if this objectis "after" the other object,
or O if this objectis"equal” tothe other.

e |f you want multiple orderings, use a Comparator instead (see Ch. 13.1)

_ 19

public class name implements Comparable<name> {

public int compareTo (name other) {

}

20

s — e
compareTo tricks

® delegation trick - If your object's fields are comparable (such as strings),
use their compareTo results to help you:

// sort by employee name, e.g. "Jim" < "Susan"
BHv sE et ey e e e e R et e e o)
return name.compareTo (other.getName()) ;

}

® toString trick - If your object's toString representation is related to
the ordering, use that to help you:

// sort by date, e.g. "09/19" > "04/01"
public int compareTo (Date other) {
return toString () .compareTo (other.toString()) ;

}

e 21

compareTo tricks

® subtraction trick - Subtracting related values produces the right result for
what you want compareTo to return:

// sort by x and break ties by y
pubilacrinticonmpareTotPoint otherj) |

1f (x != other.x) {
return x - other.x; // different x
} else {
return y - other.y; // same x; compare y
}
}
* The idea:
o oifsc e ey thenx - other.x > 0
s oifist e ey thenx - other.x < 0
o fxxi==tGihevix fthent ' —iother ==

o NOTE: This trick doesn't work for doubles (butseeMath.signum)
' 22

