CSE 143

Lecture 8: Complex Linked List Code
reading: 16.2 — 16.3

prev —rnext = toDelete -» next;
delete toDelete; ossert “Its going to be okay.";

#'if only forgetting were \'Lb

Jthis epsy for me.

Y

In some languages (C++), —> is used for dereferencing

addSorted

®* Write a method addSorted that accepts an int as a parameter and

adds it to a sorted list in sorted order.

e Before addSorted (17) :

front =-7_>data next data | next data | next
| 4 | 8 22

element O element 1 element 2
o After addSorted(17) :

front =-7_>data next data | next| |data |next data | next
| -4 | 8 17 22

element 0 element 1 element 2 element 3

The common case

® Adding to the middle of a list:

addSorted (17)
front = | data | next data | next data | next
-4 8 22
element 0 element 1 element 2

* Which references must be changed?
* What sort of loop do we need?
* When should the loop stop?

First attempt

® Anincorrect loop:

e R R T P R e o L i
while (current.data < wvalue) {
CD e S e R A AT e A

element 0 element 1

®* What is wrong with this code?
* The loop stops too late to affect the list in the right way.

current

v

data | next data | next
front = o |
o 4 H—IH-

data | next |
22

element 2

L ee—
Recall: changing a list

® There are only two ways to change a linked list:
* Change the value of front (modify the front of the list)

* Change the value of <node>.next (modify middle or end of list to point
somewhere else)

® |mplications:
» To add in the middle, need a reference to the previous node
* Front is often a special case

Key idea: peeking ahead

® Corrected version of the loop:

b e RN e | i b D e e et v Y o
while (current.next.data < wvalue) {
CREE e e e
} current
front = | data | next data | next data | next
-4 8 22
element 0 element 1 element 2

* This time the loop stops in the right place.

Another case to handle

® Adding to the end of a list:
addSorted (42)

data | next

front = i
=

element 0

Exception in thread "main":

* Why does our code crash?

data | next | data | next |
8 | 22

element 1

* What can we change to fix this case?

element 2

java.lang.NullPointerException

Multiple loop tests

* A correction to our loop:

b e RN e | i b D e e et v Y o
while (current.next !'= null &&
current.next.data < value) {
ChasEg i e e e current
}
front = | data | next data | next data | next

-4 8 22
element 0 element 1 element 2

* We must check for a next of null before we check its . data.

Third case to handle

® Adding to the front of a list:
addsorted =103

_ data | next data | next data | next
front = o |

element 0 element 1 element 2

e What will our code do in this case?
* What can we change to fix it?

Cse— e
Handling the front

e Another correction to our code:

if (value <= front.data) {
// insert at front of list

front = new ListNode (value, front):;
} else {
// insert in middle of 1list
ListNode current = front;
while (current.next != null &&
current.next.data < wvalue) {
current = current.next;

* Does our code now handle every possible case?

10

L ——
Fourth case to handle

* Adding to (the front of) an empty list:
addSorted (42)

front = -

o What will our code do in this case?
* What can we change to fix it?

13

ey
Final version of code

// Adds given value to list in sorted order.
// Precondition: Existing elements are sorted
publyeivord addSorted (int valuc)

1f (front == null || value <= front.data) {
// insert at front of list
front = new ListNode (value, front):;
} else {
// insert in middle of list
ListNode current = front;
e N e e e e AV e el s A

current.next.data < value) {
SRR A St e R SR O SR S

1.2

ey
Common cases

* middle: "typical” case in the middle of an existing list

® back: special case at the back of an existing list

* front: special case at the front of an existing list

* empty: special case of an empty list

1.3

Other list features

® Add the following methods to the LinkedIntList:
® size
e 1sEmpty
e clear
BB eIt A e
e 1ndexOf

s conbains

* Add a size field to the list to return its size more efficiently.

* Add preconditions and exception tests to appropriate methods.

14

