Adam Blank Lecture 6 Winter 2015

Computer Programming |I

CSE 143: Computer Programming 11

Linked Nodes

W,

Quick Note on Interfaces and Declarations

First, we haven't actually covered interfaces yet! We're covering them in
depth in three weeks.

1 List<String> list = new ArraylList<String>();

When you declare a variable, its type is always what's on the left. In the
above, 1list is a List.

A Tiny Bit of Learning Theory

Some of you want me to stop giving index cards. I'm not going to, and
here's why.

As humans, we can't pay attention for more than about 20 minutes at a
time. We can increase that span by context-switching.

Some Other Things

An easy way to get rubber duckies is come to office hours, or solve
the problems on my door.

As a general rule, I'm going to start showing up to lecture between
30 minutes and an hour early. Please ask questions!

Today’s Goals

Get familiar with the idea of “references” (things that point to
objects)

Define and explore ListNode

Learn about null

Practice modifying linked lists

Get familiar with matching up code and pictures of linked lists

Memory

Consider the following two documents in a text editor:

® A normal book

® A “choose your own adventure” book

Which tasks are easy/hard in each type of book?
B Find the last page
® Add a new page in the middle of the book
® Add a new page at the end of the book

Books as Data Structures

B Arrays are stored in memory like a normal book; it's contiguous,
and random-access

®m For the next three lectures, we'll discuss the data structure
equivalent to a “choose your own adventure” book

Mystery

List<Integer> 1listl = new ArraylList<Integer>();
listl.add(8);

listl.add(3);

List<Integer> list2 = new ArraylList<Integer>();
list2.add(160);

List<Integer> 1list3 = list2;

list2 = listl;

list2.add(5);

listl.add(2);

10 System.out.println("A: " + listl);

11 System.out.println("B: " + list2);

12 System.out.println("C: " + 1ist3);

OO~NOOOCT A~ WN -

What does this code print?
OUTPUT

>> A: [8, 3, 5, 2]
>> B: [8, 3, 5, 2]
>> C: [100]

Mystery Explained

1 List<Integer> listl = new ArraylList<Integer>(); //ol
listl.add(8);
3 listl.add(3);

N

listl
L

0 1

4 List<Integer> 1list2 = new ArrayList<Integer>(); //02
5 1list2.add(100);

listl list2
4 4
ol: 02: l?O

6 List<Integer> list3 = list2;

listl list2 list3
4 4 i

ol: 02: | 100

0 1]

Mystery Explained (cont.)

7 list2 = listl;

listl list2 1list3
NS e NS
ol: 02: | 100
0 1 0
8 list2.add(5);
9 listl.add(2);
listl list2 1list3
NS e 4
o (81351 7] o2 [100] -

0

What's Going On?

® The keyword new creates an actual new object to point to (o1, 02).

® All the other variables just point to objects that were created with

new (list1,1ist2,1ist3).

ListNode

ListNode Class

public class ListNode {
int data;

ListNode next;

A W N

A ListNode is:

The box represents data, and the arrow represents next.

Since next is of ListNode type, the arrow can either point to nothing
(null) or another ListNode.

ListNode

A 0N

SO W N

ListNode Class

public class ListNode {
int data;

ListNode next;

How can we use code to make this list?

ListNode list = mew ListNode(); [|—

list.data = 5; [5]—

list.next = new ListNode(); ﬂDﬂ
list.next.data = 10; _._.
list.next.next = new ListNode(): ﬁﬁDﬁ
list.next.next.data = 15; ﬂﬂﬂ

What does this code do to our list? ...

ListNode node = list.next; ., .
" This isn't quite

list.next = list.next.next; E]‘»ﬂ‘»

node What's wrong?

: =
list.next.next = node; .y

10

Working With Linked Lists

list.next.next.next = list.next;

list
BOQEHpc

The code sets the arrow coming out of ¢ to the node d.

list

The left side of the assignment is an arrow.

The right side of the assignment is a node.

11

Dereferencing

When we call .next, we follow an arrow in the list. What happens if we
have this list:

And we call the following code:

1 System.out.println(list.next.next.next);

Or this code:

1 System.out.println(list.next.next.next.data);

The first one prints null. The second throws a NullPointerException.

null means “end of the list”!

12

Constructors! 13

1
2
3
4
)
6
7
8

9
10
11
12
13

public class ListNode {
int data;
ListNode next;

public ListNode(int data) {
this(data, null);
}

public ListNode(int data, ListNode next) {

this.data = data;
this.next = next;

}

What list does this code make?

ListNode list = new ListNode(1l, null); TAAT TAAT
list.next = new ListNode(2, null); list: |1 2 3
list.next.next = new ListNode(3, null); [l =]

Can we do this without ever using .next?

ListNode list = new ListNode(1l, new ListNode(2, new ListNode(3, null)));

