Adam Blank Lecture 6 Winter 2015

Computer Programming Il

Quick Note on Interfaces and Declarations 1

First, we haven't actually covered interfaces yet! We're covering them in
depth in three weeks.

1 List<String> list = new ArraylList<String>();

When you declare a variable, its type is always what's on the left. In the
above, list is a List.

Some Other Things 3

m An easy way to get rubber duckies is come to office hours, or solve
the problems on my door.

m As a general rule, I'm going to start showing up to lecture between
30 minutes and an hour early. Please ask questions!

. CSE 143 Computer Programming Il |

Linked Nodes

W,

A Tiny Bit of Learning Theory 2

Some of you want me to stop giving index cards. I'm not going to, and
here's why.

As humans, we can't pay attention for more than about 20 minutes at a
time. We can increase that span by context-switching.

Today’s Goals 4

m Get familiar with the idea of “references” (things that point to
objects)

m Define and explore ListNode
m Learn about null
m Practice modifying linked lists

m Get familiar with matching up code and pictures of linked lists




Consider the following two documents in a text editor:
m A normal book
m A “choose your own adventure” book

Which tasks are easy/hard in each type of book?
m Find the last page
= Add a new page in the middle of the book
m Add a new page at the end of the book

Books as Data Structures
m Arrays are stored in memory like a normal book; it's contiguous,
and random-access
m For the next three lectures, we'll discuss the data structure
equivalent to a “choose your own adventure” book

Mystery Explained 7

1 List<Integer> listl = new ArraylList<Integer>(); //ol
2 listl.add(8);
3 listl.add(3);
listl
+

4 List<Integer> list2 = new ArraylList<Integer>(); //02
5 list2.add(100);

listl list2
4 4

0 1

6 List<Integer> list3 = list2;

ListNode 9

ListNode Class

1 public class ListNode {
2 int data;

3 ListNode next;

4}

A ListNode is:

[J—

The box represents data, and the arrow represents next.

Since next is of ListNode type, the arrow can either point to nothing
(null) or another ListNode.

1 List<Integer> listl = new ArrayList<Integer>();
2 listl.add(8);

3 listl.add(3);

4 List<Integer> list2 = new ArrayList<Integer>();
5 list2.add(100);

6 List<Integer> list3 = list2;

7 list2 = listl;

8 list2.add(5);

9 listl.add(2);

10 System.out.println("A: " + listl);

11 System.out.println("B: " + list2);

12 System.out.println("C: " + list3);

What does this code print?
QUTPUT

>> A: [8, 3, 5, 2]
>> B: [8, 3, 5, 2]
>> C: [100]

Mystery Explained (cont.) 8

7 list2 = listl;

list2

8 list2.add(5);
9 listl.add(2);

list3
+

0

What's Going On?
m The keyword new creates an actual new object to point to (o1, 02).

m All the other variables just point to objects that were created with
new (list1,1ist2,1ist3).

ListNode 10

ListNode Class

public class ListNode {
int data;
ListNode next;

ENRE NI

}

How can we use code to make this list?
list: —>—>—>

ListNode list = new ListNode(); [j——
list.data = 5;

list.next = new ListNode();
list.next.data = 10;
list.next.next = new ListNode();
list.next.next.data = 15;

oA W R

What does this code do to our list? ..

. This isn't quite

= [

node What's wrong?

1 ListNode node = list.next;

2 list.next = list.next.next;

3 list.next.next = node;




11
list.next.next.next = list.next;
list
1 LI e
The code sets the arrow coming out of ¢ to the node d.
list
1l _[bl_[cF5d] Je]
The left side of the assignment is an arrow.
The right side of the assignment is a node.
13

public class ListNode {
int data;
ListNode next;

this(data, null);

1
2
3
4
5 public ListNode(int data) {
6
7 }

8

9 public ListNode(int data, ListNode next) {

10 this.data = data;
11 this.next = next;
12 }

13 }

What list does this code make?

ListNode list = new ListNode(1l, null)
list.next = new ListNode(2, null); list:
list.next.next = new ListNode(3, null);

—{2l—{3}—

Can we do this without ever using .next?

ListNode list = new ListNode(1l, new ListNode(2, new ListNode(3, null)));

Dereferencing

When we call .next, we follow an arrow in the list. What happens if we
have this list:

And we call the following code:

1 System.out.println(list.next.next.next);

Or this code:

1 System.out.println(list.next.next.next.data);

The first one prints null. The second throws a NullPointerException.

null means “end of the list”!




