Adam Blank Lecture 4 Winter 2015

125

Computer Programming Il

Questions From Last Time 1

m Does a constructor have to use all the fields specified in a class?
Nope. It depends on what you're trying to do.

m For class constants, why write “public”?
We don't technically have to. It's just considered good style.

m public static final int vs. private static final int?
If it's private, clients can't use it.

m Vim or Emacs?
Vim is the way and the light.

m Waffles or Pancakes?
Pancakes | guess?

m Is Euler self-aware?
I'm not sure; I'll have to ask him.

(I'Il continue the game of Tic-Tac-Toe next time.)

(Also, I'll add this time's pictures then too.)

Some Quick Testing/Debugging Tips

Testing/Debugging Tips
m Check EDGE CASES (null, 0, capacity, etc.)

m Test running multiple methods one after another
(list.add(5); list.add(5); list.remove(0);
list.add(5);...)

. CSE 143 Computer Programming Il |

Efficiency; Interfaces

¢ak{ “a' public void run() {
Qrogran 15)ffor (int i = 0; i < 1000000; i++) {
7 ey forens JfdoLongCalculation();
o runl / //anotherAnalysis();
//solvePNP();
Lol me oebinne 175

&
had for Ju Syster.ow . Priakin (*Done 1Y)

Trere! Faedl

Some Quick Debugging Tips 2

Style Tips
m Avoid “obvious comments”. The following is BAD.

//BAD BAD BAD BAD BAD BAD
int count = 0; // Initializes a count of values

m Throw exceptions as early as possible in methods.

//BAD BAD BAD BAD BAD BAD
if (size > 0) {
//Do stuff
}
else {
throw new IllegalArgumentException();
}

Avoid using constants that aren't clear. (Especially if there is a
clearer way to write them.)

//BAD BAD BAD BAD BAD BAD

public static final int LENGTH_OF_JAVA = 4;

//BETTER

public static final int LENGTH_OF_JAVA = "JAVA".length();
m Don't overcomment: a comment on every line is unreadable.

Oddly Prolific Questions. . . 4

m Is most of 143 “style” as opposed to “content”?
m How do TAs judge the “efficiency” of a solution?

What does it mean to have an “efficient program”?

1 System.out.print("h");

2 System.out.print("e");
1 System.out.println("hello"); VS. 3 System.out.print("1");

4 System.out.print("l");

5 System.out.println("o");
OUTPUT

>> left average run time is 1000 ns.
>> right average run time is 5000 ns.

We’re measuring in NANOSECONDS!

Both of these run very very quickly. The first is definitely better style,
but it's not “more efficient.”

Comparing Programs: # Of Steps 7

Timing programs is prone to error:
m We can't compare between computers

m We get noise (what if the computer is busy?)

Let's count the number of steps instead:

public int stepsHasDuplicatel(int[] array) {
int steps = 0;
for (int i=0
for (int
steps++;
if (i '= j & array[i] == array[jl) {
return steps;

¥

i < array.length; i++) {
; j < array.length; j++) {

}
}
return steps;

¥

OUTPUT
>> hasDuplicatel average number of steps is 9758172 steps.
>> hasDuplicate2 average number of steps is 170 steps.

Compari

N U A WN

g Programs: Analytically

Runtime Efficiency
We've made the following observations:
m All “simple” statements (println(“hello”), 3 + 7, etc.) take one step
to run.
m We should look at the “number of steps” a program takes to run.
m We should compare the growth of the runtime (not just one input).

statementl;

statement2; 3

statement3;

for (int i = 0; i < N; i++) {
statement4;

}

> SN +3

for (int i = 0; i < N; i++) {
statement5;
statement6;
statement7; 4N
statement8;

Comparing Prog

hasDuplicate

Given a sorted int array, determine if the array has a duplicate.

public boolean hasDuplicatel(int[] array) {
for (int i=0; i < array.length; i++) {
for (int j=0; j < array.length; j++) {
if (i !'= j & array[i] == array[j]) {
return true;

}
}

return false;
}

public boolean hasDuplicate2(int[] array) {
for (int i=0; i < array.length — 1; i++) {
if (array[i] == array[i+1]) {
return true;

}
return false;
}
OUTPUT
>> hasDuplicatel average run time is 5254712 ns.
>> hasDuplicate2 average run time is 2384 ns.

Comparing Programs: Plotting 8
This still isn't good enough! We're only trying a single array!
Instead, let's try running on arrays of size 1, 2, 3, ..., 1000000, and plot:
Big-Oh 10

We measure algorithmic complexity by looking at the growth rate of the
steps vs. the size of the input.

The algorithm on the previous slide ran in 5N +3 steps. As N gets very
large, the “5" and the “3"” become irrelevant.

We say that algorithm is O(N) (“Big-Oh-of-N") which means the
number of steps it takes is linear in the input.

Some Common Complexities

o(1) Constant ~ The number of steps doesn't depend on n

O(n) Linear If you double n, the number of steps doubles
O(n*) Quadratic If you double 7, the number of steps quadruples
O(2") Exponential The number of steps gets infeasible at n < 100

More Examples 11

statementl;)
statement2; 3
statement3;

for (int i = 0; i < N; i++) {
statement4;
for (int j=0; i < N/2; j++) {
}-IV/Z

statement5; N+N(N/2)
}

©CONOG A WN =

$0.5N% +5N +3

Pl el
wWN = O
-

for (int i = 0; i < N; i++) {
statement6;
statement7;
statement8; 4N
statement9;

R
~N oo s

=
<Y
-

So, the entire thing is O(NZ), because the quadratic term overtakes all
the others.

What are the time complexities of these functions?

1 public static void numbersl(int max) {

2 ArraylList<Integer> list = new ArrayList<Integer>(); O(1)

3 for (int i = 1; i < max; i++) { n
4 list.add(i); //O(1) }O(n) O(n)
5 }

6

VS.

public static void numbers2(int max) {
ArrayList<Integer> list = new ArrayList<Integer>(); O(1)
for (int i = 1; i < max; i++) {

1
2
3
4 Uist.add(i); //O(1) O(n)
5 list.add(i); 0(1)) oa) o)

6

7

Find the Runtime 15

public boolean isl0(int number) {
return number == 10; o(1)

}

1

2

3

4

5 public boolean twolOs(int numl, int num2, int num3) {

6 return (isl0(numl) && is1@(num2) && !is1@(num3)) ||

7 (is10(numl) & !is10(num2) & is10(num3)) || p O(1)
8 (!'is10(numl) && is1lO(num2) && is1lO(num3));

9 }

11 public void loops(int N) {
12 for (int i = 0; i < N; i++) {
13 for (int j = 0; j < N; j++) {

; o 2
14 System.out.println(i + +3); C)(")
15 }

63 > O(n?)

19 for (int i = 0; i < N; i++) {
20 System.out.println(N - i); CQ(")

21 }

ArrayList Efficiency 12
add (val) o(1)
add(idx, val) | O(n)
get (idx) o(1)
set (idx, val) | O(1)
remove(idx) | O(n)
size() o(1)
Investigating Our Answer With Pictures 14
numbersil
numbers2
It’s the WORST CASE! 16

1 public static int has5(int[] array) {

2 for (int i = 0; i < array.length; i++) {

3 System.out.printin(array[i]); o)

4 if (array[i] == 5) { o1

5 return true; 051))} o(1) O(n) O(n)
6 }

7 }

8 return false; o(1)

9}

Sometimes, these will finish in fewer than array.length steps, but in
the worse case, we have to go through the whole array. This makes both
of them O(n).

max Example

public int max() {
if (this.size < 1) {
throw new IllegalStateException();
}

int result = this.data[0];

for (int i = 1; i < this.size; i++) {

10 if (this.data[i] > result) {

11 result = Math.max(result, this.data[il);
12 }

13 }

14 return result;

15 }

©CONO G A WN -

This code sucks! It's O(n). Can we do it in O(1)?

Yes! Create a max field in the ArrayIntList class and update it when
we add/remove.

Locking a Safe

What are some different locking mechanisms for safes?
m Door Lock

m Combination Lock

m Padlock

m Digital Lock

m etc.

Note the following:
m All mechanisms have a way to “lock” and “unlock” the safe.

m Each mechanism works completely differently, is made up of
different parts, and is used differently.

19

Shapes

public interface Shape {
public double area();
public double perimeter();
}

public class Circle implements Shape {
int radius;
public double area() {

9 return Math.PI * r x r;

10 }

12 }

14 public class Square implements Shape {
15 int side;

16 public double area() {

17 return side * side;

18 }

All shapes have an area and a perimeter, but they calculate them
differently!

max Example (add and remove)

private int slowMax() { o)
int result = this.data[0];
for (int i = 1; i < this.size; i++) {
if (this.data[i] > result) {
result = Math.max(result, this.data[i]);

}

return result;

}

public void add(int index, int value) { O(n)
this.size++; o(1)
this.grow(this.size); O(n)
this. checkIndex (index); o(1)
for (int i = this.size — 1; i > index; i--) { o(n)

this.data[i] = this.data[i-1]; //O(1)
}

int oldvalue = this.data[index]; o(1)
this.dataindex] = value; o
if (value > max) { this.max = value; } o(1)

else if (oldvalue == max) { this.max = this.slowMax(); } //O(n)
}

public void remove(int index) { O(n)
this.checkIndex(index); o(1)
int oldvalue = this.data[index]; o(1)
for (int i = index; i < size — 1; i++) { o(n)

this.data[i] = this.data[i+1]; //O(1)
}
this.size——; o)
if (this.max oldvalue) {

this.max = this.slowMax(); O(n)
}

}

Interfaces 20

Interface

An interface specifies a group of behaviors and gives them a name.
Classes can choose to implement interfaces which require them to
implement all of the methods in the interface.

The idea is the same as with the safe: there might be multiple different
ways to implement the interface.

Lists 22

In Java, List is an interface:

1 List<String> list = new ArrayList<String>();
2 List<String> list = new LinkedList<String>();

By using the interface on the left instead of the specific class, we allow
more general code!

