
Using JUnit with jGRASP

Preliminaries

1. Java JDK – If you have already installed Java JDK, go to the next step. Otherwise, install Java JDK on
your computer – http://java.sun.com/javase/downloads/index.jsp

2. JUnit – If you have already installed JUnit, go to the next step. Otherwise, download the the ZIP file
version (e.g., junit4.8.2.zip) of the current release of JUnit (http://www.junit.org/). Unzip the installation
file in the program files folder on Windows or as appropriate on other systems. If you have already
installed Checkstyle on your computer, you should use essentially the same procedure to install JUnit.

3. jGRASP – If you have already installed jGRASP 1.8.8_01 or later (which includes a plug-in for JUint),
go to the next step. Otherwise, download and install the latest version of jGRASP (http://www.jgrasp.org/).

4. JUnit Configuration in jGRASP – On the toolbar, select Tools > JUnit > Configure. Make sure that
JUnit Home is set to the folder containing the JUnit executables (e.g., C:\Program Files\JUnit\junit4.8.2).
If JUnit Home is blank or incorrectly set, click the Browse button and set it to the folder containing the
JUnit JAR file.

Procedure for Creating, Compiling, and Running a JUnit Test File
To create a test file for a java source file:

1. Open the source file in jGRASP.
2. On the menu, click Tools > JUnit > Create Test File. Alternatively, you can click the Create Test File

button on the toolbar. After the test file has been created, this menu option becomes Edit Test File. Note
that the naming convention expected by JUnit for the test file is “Test” appended to the name of the source
file (e.g., for source file Triangle.java, the test file will be TriangleTest.java).

3. Test cases are added to the test file in form of test methods. Note that the defaultTest() method provided by
jGRASP asserts that 0 equals 1 (i.e., expected value is 0, actual value is 1) so that the test will fail. This
test method should be replaced by your own relevant test methods. The Triangle Example below
describes the details of creating, compiling and running test methods.

4. The test file is compiled and run using the options Tools > JUnit > Compile Tests and Tools > JUnit >
Run Tests. Alternatively click the corresponding buttons on the toolbar: to compile the test file an

 to run the test fil
d

e.

“Marking” a Test File – If a test file is imported into jGRASP (i.e., not created as indicated above), it must be
marked as a test file: Settings > Compiler Settings > File then select “Java (Test)” as the Environment, click Use
then OK. When a file is recognized by jGRASP as a test file, the buttons for Create/Edit, Compile, and Run Tests
will appear on the toolbar. If you place a test file in a project, it should appear in the Test Files category rather than
the Source Files category. If your test file is in the Source Files category, right-clicking on the file and clicking
“Mark as Test” will move it to the Test Files category. When both categories are present, you can also simply drag
files from one category to another.

Triangle Example

Let’s consider the object-oriented version of the classic triangle program. Given three sides (a, b, and c), we must
determine: (1) if the sides can form a triangle; i.e., all sides are greater than zero, and no single side is greater than
the sum of the other two; and (2) if we have a triangle, classify it as equilateral, scalene, or isosceles. The source
code for this example is included with the jGRASP distribution in the jGRASP\examples\Tutorials\JUnitExamples\
TriangleExample folder. Figure 1 shows Triangle.java opened in jGRASP. The constructor and classify method are
visible in the figure.

http://java.sun.com/javase/downloads/index.jsp
http://www.junit.org/
http://www.jgrasp.org/
http://www.eng.auburn.edu/%7Ecross/comp5710_6710/examples/Triangle.java

Figure 1. Triangle.java

Figure 2 shows TriangleTest.java after several test cases in the form of methods have been added. Note the
following:

1. Each test method is annotated with @Test in the method header; for example:
@Test public void equilateralTest()

2. The most common way to create test cases is by invoking the Assert.assertEquals method which has
the following two forms.

public static void assertEquals(String message,
 Object expected,
 Object actual)

public static void assertEquals(Object expected,
 Object actual)

3. In the test methods for Test 5 - Test 9, the assert.Equals method with arguments for message, expected,
and actual is used. The test input is included in String message, and for actual, the method to be tested
is invoked.

4. For example, in Test 5, which is attempting to determine if the classify method can correctly classify
an equilateral triangle, a triangle object is created as follows:

íÏTriangle t = new Triangle(12, 12, 12);

http://java.sun.com/javase/6/docs/api/java/lang/String.html
http://java.sun.com/javase/6/docs/api/java/lang/Object.html
http://java.sun.com/javase/6/docs/api/java/lang/Object.html
http://java.sun.com/javase/6/docs/api/java/lang/Object.html
http://java.sun.com/javase/6/docs/api/java/lang/Object.html

This is followed by the assert statement with the following arguments.
 message is set to the String "\nSides: " + 12 + " " + 12 + " " + 12
 expected is set to "equilateral"
 actual is set to t.classify()

If the value returned by t.classify() does not equal the expected value “equilateral” then the test fails
and message, expected, and actual are printed out by JUnit with the failure notification.

ÏÏ§ /** Test 5 - for "Equilateral" triangle. **/
ÏÏ§ÏÞßà@Test
ÏÏ§ÏÏ§Ïpublic void equilateralTest1() {
ÏÏ§ÏÏ¨¹íÏTriangle t = new Triangle(12, 12, 12);
ÏÏ§ÏÏ¨¹¹ÏAssert.assertEquals("\nSides: " + 12 + " " + 12 + " " + 12,
ÏÏ§ÏÏ§ÏÏÏÏÏÏ "equilateral",
ÏÏ§ÏÏ§ÏÏÏÏÏÏ t.classify());
ÏÏ§ÏÏ©}

Figure 2. TriangleTest.java

5. When you run JUnit Tests , the results are shown in the Run I/O tab. For example:

ÏÏ§ÏJUnit version 4.8.2
ÏÏ§Ï.........
ÏÏ§ÏTime: 0.015
ÏÏ§Ï
ÏÏ§ÏOK (9 tests)

Results are also indicated in the project tab. A green check mark is shown in the JUnit status
symbol in front of each test file and associated source file in the project tab to indicate that all tests are
passed. A red X indicates at least one test failed. When neither the check mark or the red X is
displayed, it means either the test file or source file as been edited and the tests need to be run again.
In Figure 2 above, the green check marks are displayed in the project tab to indicate that all tests for
the Triangle.java source file passed.

6. You can experiment with failure by changing Test 5 to make it fail. For example, change one of the
sides in the constructor from 12 to 15 and run the tests. Alternatively, misspell “equilateral” as
“equilatera”. You can also make the test fail by “making a mistake” in the classify method. A failed
test indicates there is either an error in the method you are testing (e.g., the classify method) or an error
in the test case itself, or possibly errors in both. When a test passes, it increases the level of confidence
in the correctness of the program.

7. If you are new to JUnit and Java, you should probably not be concerned with Test1 - Test 4 in the
Triangle example. Test 5 - Test 9 are much more typical. However, if you are familiar with throwing
Java exceptions, let’s consider Test 1 and Test 4. Test 1 indicates that it is expecting an exception
(IllegalArgumentException.class) to be thrown when we attempt to create a triangle with the first side
set to -12 (i.e., a = -12). Since this exception will occur in the constructor, the object will never be
created.

ÏÏ§ /** Test 1 - for bad arguments. **/
ÏÏ§ÏÞßà@Test(expected = IllegalArgumentException.class)
ÏÏ§ÏÏ§Ïpublic void argumentTest1() {
ÏÏ§ÏÏ¨¹íÏTriangle t = new Triangle(-12, 5, 10);
ÏÏ§ÏÏ©}

In the constructor, we have an if statement that throws the exception if a side of the triangle is not
greater than zero.

ÏÏ§ÏÏ¨¹³´if (a <= 0 || b <= 0 || c <= 0) {
ÏÏ§ÏÏ§Ï6¾êîìthrow new IllegalArgumentException("Sides: " + a + " " + b
ÏÏ§ÏÏ§Ï6ÏÏÏÏÏÏÏ+ " " + c
ÏÏ§ÏÏ§Ï6ÏÏÏÏÏÏÏ+ " S T - - each must be greater than zero.");
ÏÏ§ÏÏ§Ï¶Ï}

In the case of one side being greater than the sum of the other two, a RuntimeException is thrown in
the source file. Test 4 is a check for this.

ÏÏ§ /** Test 4 - for "Not a triangle". **/
ÏÏ§ÏÞßà@Test (expected = RuntimeException.class)
ÏÏ§ÏÏ§Ïpublic void notTriangleTest() {
ÏÏ§ÏÏ¨¹íÏTriangle t = new Triangle(2, 5, 10);
ÏÏ§ÏÏ©}

