Building Java Programs

Inner classes, generics, abstract classes

reading: 9.6, 15.4, 16.4-16.5

Hackles

So do you think
you can learn
| our technology ?

I Ha! | can code

A\S

anything with
my 133t h4X0ring
skillz !

Cool. | need you to construct an
abstract class for storing and searching
serialized objects using a self-adjusting

binary tree. Can you do that? |

| ——

By Drake Emko & Jen Brodzik

(I don't like you.)

http://hackles.org

Copyright (€ 2001 Drake Emko & Jen Brodzik

A tree set

e Our searchTree class is essentially a set.
operations: add, remove, contains, size, isEmpty
similar to the TreesSet class in java.util

» Let's actually turn it into a full set implementation.
step 1: create ADT interface; implement it
step 2: get rid of separate node class file

step 3: make tree capable of storing overallRoot
any type of data (not just int) (k)

| D &
We won't rebalance the tree, take a
data structures class to learn how! (c) (@) (m) ()

—_—

* abstract data type (ADT): A specification of a collection
of data and the operations that can be performed on it.

Describes what a collection does, not how it does it.

e Java's collection framework describes ADTs with interfaces:
Collection, Deque, List, Map, Queue, Set, SortedMap

* An ADT can be implemented in multiple ways by classes:
ArrayList and LinkedList implement List

HashSet and TreeSet implement set
LinkedList , ArrayDeque, etc. implement Queue

Inner classes

To get rid of our separate node file, we use an inner class.

e inner class: A class defined inside of another class.
inner classes are hidden from other classes (encapsulated)
inner objects can access/modify the fields of the outer object

Instance of
EnclosingClass Instance of

InnerClass

Inner class syntax

oonrer tenetesinal elass
public class name {

i ate e e Nt % I
private class name ({

}

Only this file can see the inner class or make objects of it.

Each inner object is associated with the outer object that
created it, so it can access/modify that outer object's
methods/fields.

« If necessary, can refer to outer object as OuterClassName. this

Recall: Type Parameters

ArrayList<Type> name = new ArrayList<Type>();

e When constructing a java.util.ArrayList, you specify
the type of elements it will contain in < and >.

ArrayList accepts a type parameter; it is a generic class.

ArrayList<String> names = new ArrayLlist<String>();
names.add ("Marty Stepp")

names.add ("Helene Martin");
namesvadgidoyvawive compa e e e ror

Implementing generics

// a parameterized (generic) class
public class name<Type> |

}

Forces any client that constructs your object to supply a type.
« Don't write an actual type such as String; the client does that.

- Instead, write a type variable name such as E (for "element") or T
(for "type").

« You can require multiple type parameters separated by commas.

The rest of your class's code can refer to that type by name.

= —

Generics and inner classes

publircsveiha s s Roo<SmS
private class Winner<E> wivivy I ineorreet
private class Inner {...} oo oae

If an outer class declares a type parameter,
inner classes can also use that type parameter.

The inner class should NOT redeclare the type parameter.
- (If you do, it will create a second type param with the same name.)

/

Issues with generic objects

public class TreeSet<E> {

public void example (E valuel, E value2) {

// BAD: valuel == value? (they are objects)
// GOOD: wvaluel.equals (value2)

// BAD: valuel < value?2
// GOOD: wvaluel.compareTo (value2) < 0

 When testing objects of type E for equality, must use equals

» When testing objects of type E for < or >, must use compareTo
« Problem: By default, compareTo doesn't compile! What's wrong!

10

Type constraints

// a parameterized (generic) class
public class name<Type extends Class/Interface> {

}

A type constraint forces the client to supply a type that is a
subclass of a given superclass or implements a given interface.

« Then the rest of your code can assume that the type has all of the
methods in that superclass / interface and can call them.

11

//‘,‘vv’vh'- ”

Generic set interface

// Represents a list of wvalues.
public 1nterface Set<E> {
public void add(E value);
public boolean isEmpty () ;
public boolean contains (E value);
public void remove (E value);
public int size();

}

public class TreeSet<E extends Comparable<E>>
implements Set<E> {

S

Our list classes

* We have implemented the following two list collection

classes:

e ArrayIntList

e LinkedIntList data | next data | next data | next

index| 0 | 1] 2
value |42 (-3 |17

front - 42 + | -3 | 17 | —

» Problems:

We should be able to treat them the same way in client code.
Linked list carries around a clunky extra node class.
They can store only int elements, not any type of value.

Some methods are implemented the same way
(redundancy).

It is inefficient to get or remove each element of a linked list.

13

g —

Generics and arrays (15.4)

publresveiha s ssRooT v
pEivate Bomybaeld ek

bRy eI e AN e e e e N R R SR e (Y

myField = new T(); o
M e A ke
myField = param; Lok

T[] a2 = (T[]) (new Object[10]); // ok

You cannot create objects or arrays of a parameterized type.

You can create variables of that type, accept them as
parameters, return them, or create arrays by casting from
Blol Y = nywi

14

Common code

* Notice that some of the methods are implemented the
same way in both the array and linked list classes.

add (value)
contains

S BT

* Should we change our interface to a class? Why / why not?
How can we capture this common behavior?

15

e

Abstract classes (9.6)

» abstract class: A hybrid between an interface and a class.

defines a superclass type that can contain method declarations
(like an interface) and/or method bodies (like a class)

like interfaces, abstract classes that cannot be instantiated
(cannot use new to create any objects of their type)

* What goes in an abstract class?

implementation of common state and behavior that will be
inherited by subclasses (parent class role)

declare generic behaviors that subclasses must implement
(interface role)

16

Abstract class syntax

/) declaring an abstract class
public abstract class nhame {

el N N Y T
Liotanysubolass mustinplcment 1 £)
public abstract type name (parameters) ;

}

e A class can be abstract even if it has no abstract methods

* You can create variables (but not objects) of the abstract
type

» Exercise: Introduce an abstract class into the list hierarchy.

17

—— - ="

Abstract and interfaces

* Normal classes that claim to implement an interface must
implement all methods of that interface:

public class Empty implements IntList {} // error

* Abstract classes can claim to implement an interface
without writing its methods; subclasses must implement
the methods.

publiec abstract class Pnptyviamplements inblhidist 07/
ok

public class Child extends Empty {} e oY

18

An abstract list class

// Superclass with common code for a list of integers.
public abstract class AbstractIntlList implements IntList {
public void add(int value) {
adthisavzeyvivara g ais

}

public boolean contains(int value) {
return indexOf (value) >= 0;

}

publiciboolean i sEmpi vy
return size() == 0;

}

public class ArrayIntlList extends AbstractIntlList { ...
public class LinkedIntList extends AbstractIntList { ...

19

=

e —

Abstract class vs. interface

* Why do both interfaces and abstract classes exist in Java?

An abstract class can do everything an interface can do and
more.

So why would someone ever use an interface?

* Answer: Java has single inheritance.
can extend only one superclass
can implement many interfaces

Having interfaces allows a class to be part of a hierarchy
(polymorphism) without using up its inheritance relationship.

20

Our list classes

* We have implemented the following two list collection
classes:

—

index| 0 | 1] 2
value |42 (-3 |17

e ArrayIntList

e LinkedIntList data | next data | next data | next
front - 42 + | -3 | 17 | —

» Problems:

« We should be able to treat them the same way in client code.
Linked list carries around a clunky extra node class.
They can store only int elements, not any type of value.

Some of their methods are implemented the same way
(redundancy).

It is inefficient to get or remove elements of a linked list.

21

