Building Java Programs

Binary Search Trees; TreeSet

Recall: x = change(x)

- Methods that modify a tree should have the following pattern:
 - input (parameter): old state of the node
 - output (return): new state of the node

• In order to actually change the tree, you must reassign:

```
node = change(node, parameters);
node.left = change(node.left, parameters);
node.right = change(node.right, parameters);
overallRoot = change(overallRoot, parameters);
```

Exercise

 Add a method getMin to the IntTree class that returns the minimum integer value from the tree. Assume that the elements of the IntTree constitute a legal binary search tree. Throw a NoSuchElementException if the tree is empty.

Exercise solution

```
// Returns the minimum value from this BST.
// Throws a NoSuchElementException if the tree is empty.
public int getMin() {
    if (overallRoot == null) {
        throw new NoSuchElementException();
    return getMin(overallRoot);
private int getMin(IntTreeNode root) {
    if (root.left == null) {
        return root.data;
    } else {
        return getMin(root.left);
```


Exercise

 Add a method remove to the IntTree class that removes a given integer value from the tree, if present. Remove the value in such a way as to maintain BST ordering.

```
tree.remove(73);tree.remove(29);tree.remove(87);tree.remove(55);
```


Cases for removal 1

- 1. a **leaf**:
- 2. a node with a **left child only**:
- 3. a node with a **right child only**:

replace with null replace with left child replace with right child

ot overall root

42

52

ove (29);

Cases for removal 2

- 4. a node with **both** children: replace with **min from right**
 - (replacing with max from left would also work)

Exercise solution

```
// Removes the given value from this BST, if it exists.
public void remove(int value) {
    overallRoot = remove(overallRoot, value);
private IntTreeNode remove(IntTreeNode root, int value) {
    if (root == null) {
        return null:
    } else if (root.data > value) {
        root.left = remove(root.left, value);
    } else if (root.data < value) {</pre>
        root.right = remove(root.right, value);
    } else { // root.data == value; remove this node
        if (root.right == null) {
            return root.left; // no R child; replace w/ L
        } else if (root.left == null) {
            return root.right; // no L child; replace w/ R
        } else {
            // both children; replace w/ min from R
            root.data = getMin(root.right);
            root.right = remove(root.right, root.data);
    return root;
```

Searching BSTs

- The BSTs below contain the same elements.
 - What orders are "better" for searching?

overall root

Trees and balance

- **balanced tree**: One whose subtrees differ in height by at most 1 and are themselves balanced.
 - A balanced tree of N nodes has a height of ~ log₂ N.
 - A very unbalanced tree can have a height close to N.
 - The runtime of adding to / searching a BST is closely related to height.
 - Some tree collections (e.g. TreeSet)
 contain code to balance themselves
 as new nodes are added.

height = 4 (balanced)