Building Java Programs

Binary Search Trees; TreeSet

ALATH, DONEHLI,
DONEHLINL, ALA'IH,

ALAH, DONEHLIN|,
DONEHLINI DONEHLINI,
ALAlH ALAIH,

DONEHLINL ~ ALATH,

DONEHI_lNl DONEHLlNl,
DONEHLINY'

~
-~
~
-

FOR ADDED SECURITY, AFTER
WE ENCRYPT THE DATA STREAM,
WE SEND 1T THROUGH OUR
NAVAJO CODPE TALKER.

... IS HE JUST USING
NAVATO WORDS FOR
'ZERD' AND "ONE"?

WHOA, HEY, KEEP
YOUR \/OlCE DOWN!

M_,_,

——

Recall: x = change(x)

*» Methods that modify a tree should have the following
pattern:
input (parameter): old state of the node

output (return): new state of the node
node parameter | your return node
before 1 method - after

e In order to actually change the tree, you must reassign:

node = change (node, parameters) ;

node.left = change (node.left, parameters) ;

node.right = change (node.right, parameters);
(

overallRoot = change (overallRoot, parameters);

Exercise

Add a method getMin to the IntTree class that returns the
minimum integer value from the tree. Assume that the
elements of the IntTree constitute a legal binary search
tree. Throw a NoSuchElementException if the tree is
empty.

int min = tree.getMin(); // -3 overall root

29 @
@ ® @ @

Exercise solution

// Returns the minimum value from this BST.
// Throws a NoSuchElementException if the tree is empty.

public int getMin() {
Mh i o nya =Y M M P o o R p e M D Y R
throw new NoSuchElementException()

}

return getMin (overallRoot) ;

}

private 1nt getMin (IntTreeNode root) {

TR e oE e R P overallRoot
return root.data;
Firesie e @

return getMin (root.left);

) 29 &7

Exercise

* Add a method remove to the IntTree class that removes a
given integer value from the tree, if present. Remove the
value in such a way as to maintain BST ordering.

ey

Lree

ey

ey

(
. remove (
(
(

remove overall root

LEIOVEe

ESINOVEe

—

Cases for removal 1

1. a leaf: replace with null
2. a node with a left child only: replace with left child
3. a node with a right child only: replace with right child

overaII root overaII root overall root overall root

@
L)

tree.remove (Yo tree.remove (

—

Cases for removal 2

4. a node with both children: replace with min from right
- (replacing with max from left would also work)

overall root overall root

29 87 29 87
@ @ @ 6

Exercise solution

evRemovesv s a e n el en e e B S e e e
PG eEem sl iiase b Metee e S e

overallRoot = remove (overallRoot, wvalue);

—

}

private IntTreeNode remove (IntTreeNode root, int wvalue) {
if (root == null) {
N AR B) VAN AU M A A
Pieiligevaytantrootdatanyanralue) vy

root.left = remove (root.left, wvalue);
N e A P Y A e A D R L S N ST
root.right = remove (root.right, value);
e s et dat A ee Al e Riirameve i i aied e
AV R (el @ T M B T e RN ot 9 I A
return root.left; Vi have el st i s el e Ve s Al
} else 1f (root.left == null) {
return root.right; D e VS P e n G A oY o Vel S ST o
} else {

Lilvborhyehiddrenyreplace wiimin FromiR
root.data = getMin (root.right);
rooberightv=rremove troobiurightyroot i dataly;

}
}

return root;

What orders are "better" for searching?

overall root

overall root 0
0 ® & @
56
&)

Searching BSTs

The BSTs below contain the same elements.

19
14
(10
O
(Z
(&
@

overall root

10

Trees and balance

* balanced tree: One whose subtrees differ in height by at
most 1 and are themselves balanced.

A balanced tree of N nodes has a height of ~ log, N.
A very unbalanced tree can have a height close to N.

The runtime of adding to / searching a
BST is closely related to height.

overall root

Some tree collections (e.g. TreeSet)
contain code to balance themselves
as new nodes are added.

height = 4 |
(balanced)

17

