Building Java Programs

Binary Search Trees; TreeSet
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FOR ADDED SECURITY, AFTER
WE ENCRYPT THE DATA STREAM,
WE SEND 1T THROUGH OUR
NAVAJO CODPE TALKER.
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Recall: x = change(x)

*» Methods that modify a tree should have the following
pattern:
input (parameter): old state of the node

output (return): new state of the node
node parameter |  your return  node
before 1 method - after

e In order to actually change the tree, you must reassign:

node = change (node, parameters) ;

node.left = change (node.left, parameters) ;

node.right = change (node.right, parameters);
(

overallRoot = change (overallRoot, parameters);



Exercise

Add a method getMin to the IntTree class that returns the
minimum integer value from the tree. Assume that the
elements of the IntTree constitute a legal binary search
tree. Throw a NoSuchElementException if the tree is
empty.

int min = tree.getMin(); // -3 overall root
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Exercise solution

// Returns the minimum value from this BST.
// Throws a NoSuchElementException if the tree is empty.

public int getMin() {
Mh i o nya =Y M M P o o R p e M D Y R
throw new NoSuchElementException()

}

return getMin (overallRoot) ;

}

private 1nt getMin (IntTreeNode root) {

TR e oE e R P overallRoot
return root.data;
Firesie e @

return getMin (root.left);
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Exercise

* Add a method remove to the IntTree class that removes a
given integer value from the tree, if present. Remove the
value in such a way as to maintain BST ordering.
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Cases for removal 1

1. a leaf: replace with null
2. a node with a left child only: replace with left child
3. a node with a right child only: replace with right child

overaII root overaII root overall root overall root
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Cases for removal 2

4. a node with both children: replace with min from right
- (replacing with max from left would also work)

overall root overall root
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Exercise solution

evRemovesv s a e n el en e e B S e e e
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overallRoot = remove (overallRoot, wvalue);
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}

private IntTreeNode remove (IntTreeNode root, int wvalue) {
if (root == null) {
N AR B ) VAN AU M A A
Pieiligevaytantrootdatanyanralue) vy

root.left = remove (root.left, wvalue);
N e A P Y A e A D R L S N ST
root.right = remove (root.right, value);
e s et dat A ee Al e Riirameve i i aied e
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return root.left; Vi have el st i s el e Ve s Al
} else 1f (root.left == null) {
return root.right; D e VS P e n G A oY o Vel S ST o
} else {

Lilvborhyehiddrenyreplace wiimin  FromiR
root.data = getMin (root.right);
rooberightv=rremove troobiurightyroot i dataly;

}
}

return root;



What orders are "better" for searching?
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Searching BSTs

The BSTs below contain the same elements.
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Trees and balance

* balanced tree: One whose subtrees differ in height by at
most 1 and are themselves balanced.

A balanced tree of N nodes has a height of ~ log, N.
A very unbalanced tree can have a height close to N.

The runtime of adding to / searching a
BST is closely related to height.

overall root

Some tree collections (e.g. TreeSet)
contain code to balance themselves
as new nodes are added.

height = 4 |
(balanced)
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