
Building Java Programs

Chapter 14
Lecture Q-1: stacks and queues

reading: 14.1-14.4

2

3

Runtime Efficiency (13.2)
�  efficiency: measure of computing resources used by code.

�  can be relative to speed (time), memory (space), etc.
�  most commonly refers to run time

�  Assume the following:
�  Any single Java statement takes same amount of time to run.
�  A method call's runtime is measured by the total of the

statements inside the method's body.
�  A loop's runtime, if the loop repeats N times, is N times the

runtime of the statements in its body.

4

�  Efficiency of our ArrayIntList or Java's ArrayList:

�  Which operations should we try to avoid?

Collection efficiency

Method ArrayList
add(value)
add(index value)
indexOf(value)
get(index)
remove(index)
set(index, value)
size

Method ArrayList
add(value) O(1)
add(index value) O(N)
indexOf(value) O(N)
get(index) O(1)
remove(index) O(N)
set(index, value) O(1)
size O(1)

5

Stacks and queues
�  Some collections are constrained so clients can only use

optimized operations
�  stack: retrieves elements in reverse order as added
�  queue: retrieves elements in same order as added

stack

queue

top 3
2

bottom 1

pop, peek push

front back

1 2 3
add remove, peek

6

Abstract data types (ADTs)
�  abstract data type (ADT): A specification of a collection

of data and the operations that can be performed on it.
�  Describes what a collection does, not how it does it

�  We don't know exactly how a stack or queue is
implemented, and we don't need to.
�  We just need to understand the idea of the collection and what

operations it can perform.

 (Stacks are usually implemented with arrays; queues are often
implemented using another structure called a linked list.)

7

Stacks
�  stack: A collection based on the principle of adding

elements and retrieving them in the opposite order.
�  Last-In, First-Out ("LIFO")
�  Elements are stored in order of insertion.

�  We do not think of them as having indexes.
�  Client can only add/remove/examine

the last element added (the "top").

�  basic stack operations:
�  push: Add an element to the top.
�  pop: Remove the top element.
�  peek: Examine the top element.

stack

top 3
2

bottom 1

pop, peek push

8

Stacks in computer science
�  Programming languages and compilers:

�  method calls are placed onto a stack (call=push, return=pop)
�  compilers use stacks to evaluate expressions

�  Matching up related pairs of things:
�  find out whether a string is a palindrome
�  examine a file to see if its braces { } match
�  convert "infix" expressions to pre/postfix

�  Sophisticated algorithms:
�  searching through a maze with "backtracking"
�  many programs use an "undo stack" of previous operations

method3
return var
local vars
parameters

method2
return var
local vars
parameters

method1
return var
local vars
parameters

9

Class Stack

Stack<String> s = new Stack<String>();
s.push("a");
s.push("b");
s.push("c"); // bottom ["a", "b", "c"] top

System.out.println(s.pop()); // "c"

�  Stack has other methods that are off-limits (not efficient)

Stack<E>() constructs a new stack with elements of type E
push(value) places given value on top of stack
pop() removes top value from stack and returns it;

throws EmptyStackException if stack is empty
peek() returns top value from stack without removing it;

throws EmptyStackException if stack is empty
size() returns number of elements in stack
isEmpty() returns true if stack has no elements

10

Collections of primitives
�  The type parameter specified when creating a collection

(e.g. ArrayList, Stack, Queue) must be an object type

 // illegal -- int cannot be a type parameter
 Stack<int> s = new Stack<int>();
 ArrayList<int> list = new ArrayList<int>();

�  Primitive types need to be "wrapped" in objects

 // creates a stack of ints
 Stack<Integer> s = new Stack<Integer>();

11

Wrapper classes

�  Wrapper objects have a single field of a primitive type

�  The collection can be used with familiar primitives:

ArrayList<Double> grades = new ArrayList<Double>();
grades.add(3.2);
grades.add(2.7);
...
double myGrade = grades.get(0);

Primitive Type Wrapper Type
 int Integer
 double Double
 char Character
 boolean Boolean

12

Stack limitations/idioms
�  You cannot loop over a stack in the usual way.

 Stack<Integer> s = new Stack<Integer>();
 ...
 for (int i = 0; i < s.size(); i++) {
 do something with s.get(i);
 }

�  Instead, you pull elements out of the stack one at a time.
�  common idiom: Pop each element until the stack is empty.

 // process (and destroy) an entire stack
 while (!s.isEmpty()) {
 do something with s.pop();
 }

13

What happened to my stack?
�  Suppose we're asked to write a method max that accepts a

Stack of integers and returns the largest integer in the
stack:

// Precondition: !s.isEmpty()
public static void max(Stack<Integer> s) {
 int maxValue = s.pop();

 while (!s.isEmpty()) {
 int next = s.pop();
 maxValue = Math.max(maxValue, next);
 }
 return maxValue;
}

�  The algorithm is correct, but what is wrong with the code?

14

What happened to my stack?
�  The code destroys the stack in figuring out its answer.

�  To fix this, you must save and restore the stack's contents:

public static void max(Stack<Integer> s) {
 Stack<Integer> backup = new Stack<Integer>();
 int maxValue = s.pop();
 backup.push(maxValue);

 while (!s.isEmpty()) {
 int next = s.pop();
 backup.push(next);
 maxValue = Math.max(maxValue, next);
 }

 while (!backup.isEmpty()) { // restore
 s.push(backup.pop());
 }
 return maxValue;
}

15

Queues
�  queue: Retrieves elements in the order they were added.

�  First-In, First-Out ("FIFO")
�  Elements are stored in order of

insertion but don't have indexes.
�  Client can only add to the end of the

queue, and can only examine/remove
the front of the queue.

�  basic queue operations:
�  add (enqueue): Add an element to the back.
�  remove (dequeue): Remove the front element.
�  peek: Examine the front element.

queue

front back

1 2 3
add remove, peek

16

Queues in computer science
�  Operating systems:

�  queue of print jobs to send to the printer
�  queue of programs / processes to be run
�  queue of network data packets to send

�  Programming:
�  modeling a line of customers or clients
�  storing a queue of computations to be performed in order

�  Real world examples:
�  people on an escalator or waiting in a line
�  cars at a gas station (or on an assembly line)

17

Programming with Queues

Queue<Integer> q = new LinkedList<Integer>();
q.add(42);
q.add(-3);
q.add(17); // front [42, -3, 17] back

System.out.println(q.remove()); // 42

�  IMPORTANT: When constructing a queue you must use a
new LinkedList object instead of a new Queue object.
�  This has to do with a topic we'll discuss later called interfaces.

add(value) places given value at back of queue
remove() removes value from front of queue and returns it;

throws a NoSuchElementException if queue is empty
peek() returns front value from queue without removing it;

returns null if queue is empty
size() returns number of elements in queue
isEmpty() returns true if queue has no elements

18

Queue idioms
�  As with stacks, must pull contents out of queue to view

them.

 // process (and destroy) an entire queue
 while (!q.isEmpty()) {
 do something with q.remove();
 }

�  another idiom: Examining each element exactly once.

 int size = q.size();
 for (int i = 0; i < size; i++) {
 do something with q.remove();
 (including possibly re-adding it to the queue)
 }

�  Why do we need the size variable?

19

Mixing stacks and queues
�  We often mix stacks and queues to achieve certain effects.

�  Example: Reverse the order of the elements of a queue.

 Queue<Integer> q = new LinkedList<Integer>();
 q.add(1);
 q.add(2);
 q.add(3); // [1, 2, 3]

 Stack<Integer> s = new Stack<Integer>();

 while (!q.isEmpty()) { // Q -> S
 s.push(q.remove());
 }

 while (!s.isEmpty()) { // S -> Q
 q.add(s.pop());
 }

 System.out.println(q); // [3, 2, 1]

20

Exercises
�  Write a method stutter that accepts a queue of integers

as a parameter and replaces every element of the queue
with two copies of that element.

�  front [1, 2, 3] back
becomes
front [1, 1, 2, 2, 3, 3] back

�  Write a method mirror that accepts a queue of strings as a
parameter and appends the queue's contents to itself in
reverse order.

�  front [a, b, c] back
becomes
front [a, b, c, c, b, a] back

