
Priority Queues!

With Janette

except all the credit goes to Dan Grossman,

from whom I straight up stole these slides



A new data structure: Priority Queue

• A priority queue holds compare-able data
– Unlike stacks and queues, we need to compare items

• Given x and y, is x less than, equal to, or greater than y
• Meaning of the ordering can depend on your data
• Many data structures require this: dictionaries, sorting

– Integers are comparable, so will use them in examples
• But the priority queue is much more general
• Typically two fields, the priority and the data



Priorities

• Each item has a “priority”
– The lesser item is the one with the greater priority
– So “priority 1” is more important than “priority 4”
– (Just a convention)

• Operations: 
– insert
– deleteMin
– is_empty

• Key property: deleteMin  returns and deletes the item with greatest 
priority (lowest priority value)
– Can resolve ties arbitrarily

insert deleteMin

        6        2
  15        23
          12   18
45   3    7



Example

insert x1 with priority 5

insert x2 with priority 3

insert x3 with priority 4

a = deleteMin // x2
b = deleteMin // x3
insert x4 with priority 2

insert x5 with priority 6

c = deleteMin // x4
d = deleteMin  // x1

• Analogy: insert is like enqueue, deleteMin is like dequeue
– But the whole point is to use priorities instead of FIFO



Applications

The priority queue arises often…
– Sometimes blatant, sometimes less obvious

• Run multiple programs in the operating system
– “critical” before “interactive” before “compute-intensive”
– Maybe let users set priority level

• Treat hospital patients in order of severity (or triage)

• Select print jobs in order of decreasing length?

• Forward network packets in order of urgency

• Select most frequent symbols for data compression (cf. CSE143)

• Sort (first insert all, then repeatedly deleteMin)



More applications

• “Greedy” algorithms
• Discrete event simulation (system simulation, virtual worlds, …)

– Each event e happens at some time t, updating system state 
and generating new events e1, …, en at times t+t1, …, t+tn

– Naïve approach: advance “clock” by 1 unit at a time and 
process any events that happen then

– Better:
• Pending events in a priority queue (priority = event time)
• Repeatedly: deleteMin and then insert new events
• Effectively “set clock ahead to next event”



Finding a good data structure

• Will show an efficient, non-obvious data structure
– But first let’s analyze some “obvious” ideas for n data items
– All times worst-case; assume arrays “have room”

data        insert algorithm / time      deleteMin algorithm / time

unsorted array     

unsorted linked list

sorted circular array

sorted linked list

binary search tree



Need a good data structure!

• Will show an efficient, non-obvious data structure for this ADT
– But first let’s analyze some “obvious” ideas for n data items
– All times worst-case; assume arrays “have room”

data        insert algorithm / time      deleteMin algorithm / time

unsorted array          add at end          O(1)     search                O(n)

unsorted linked list     add at front         O(1)     search                O(n)

sorted circular array   search / shift       O(n)         move front          O(1)

sorted linked list         put in right place O(n)         remove at front   O(1)

binary search tree      put in right place O(n) leftmost               O(n)



More on possibilities

• If priorities are random, binary search tree will likely do better
– O(log n) insert and O(log n) deleteMin on average

• One more idea: if priorities are 0, 1, …, k can use array of  lists
– insert: add to front of list at arr[priority], O(1)
– deleteMin: remove from lowest non-empty list O(k)

• We are about to see a data structure called a “binary heap”
– O(log n) insert and O(log n) deleteMin worst-case

• Possible because we don’t support unneeded 
operations; no need to maintain a full sort

– Very good constant factors
– If items arrive in random order, then insert is O(1) on 

average



Tree terms (review?)

The binary heap data structure 
implementing the priority queue ADT will be 
a tree, so worth establishing some 
terminology
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Kinds of trees

Certain terms define trees with specific structure

• Binary tree:  Each node has at most 2 children (branching factor 2)
• n-ary tree:    Each node has at most n children (branching factor n)
• Perfect tree: Each row completely full
• Complete tree:  Each row completely full except maybe the bottom row, which is 

filled from left to right

What is the height of a perfect tree with n nodes?  A complete tree?



Our data structure
Finally, then, a binary min-heap (or just binary heap or just heap) is:
• Structure property: A complete binary tree 
• Heap property: The priority of every (non-root) node is greater than the 

priority of its parent
– Not a binary search tree
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not a heap a heap

So:
• Where is the highest-priority item?
• What is the height of a heap with n items?



Operations: basic idea

• findMin: return root.data
• deleteMin: 

1. answer = root.data
2. Move right-most node in last 

row to root to restore 
structure property

3. “Percolate down” to restore 
heap property

• insert:
1. Put new node in next position 

on bottom row to restore 
structure property

2. “Percolate up” to restore 
heap property
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Overall strategy:
• Preserve structure property
• Break and restore heap 

property



DeleteMin
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1. Delete (and later return) value at 
root node



2. Restore the Structure Property

• We now have a “hole” at the root
– Need to fill the hole with another 

value

• When we are done, the tree will have 
one less node and must still be complete
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3. Restore the Heap Property

Percolate down: 
•   Keep comparing with both children 
•   Swap with lesser child and go down one level
•   Done if both children are ≥  item or reached a leaf node

Why is this correct?  What is the run time?
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DeleteMin: Run Time Analysis

• Run time is O(height of heap)

• A heap is a complete binary tree

• Height of a complete binary tree of n nodes?
– height =   log2(n) 

• Run time of deleteMin is O(log n)



Insert

• Add a value to the tree

• Afterwards, structure and heap 
properties must still be correct
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Insert: Maintain the Structure Property

• There is only one valid tree shape after 
we add one more node

• So put our new data there and then 
focus on restoring the heap property
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Maintain the heap property
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Percolate up:
•   Put new data in new location
•   If parent larger, swap with parent, and continue
•   Done if parent ≤  item or reached root

Why is this correct?  What is the run time?
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Insert: Run Time Analysis

• Like deleteMin, worst-case time proportional to tree height
– O(log n)

• But… deleteMin needs the “last used” complete-tree position and 
insert needs the “next to use” complete-tree position
– If “keep a reference to there” then insert and deleteMin have 

to adjust that reference: O(log n) in worst case
– Could calculate how to find it in O(log n) from the root given the 

size of the heap
• But it’s not easy
• And then insert is always O(log n), promised O(1) on 

average (assuming random arrival of items)

• There’s a “trick”: don’t represent complete trees with explicit edges!



Array Representation of Binary Trees
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From node i:

left child: i*2
right child: i*2+1
parent: i/2

(wasting index 0 is 
convenient for the 
index arithmetic)
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implicit (array) implementation:



Judging the array implementation

Plusses:
• Non-data space: just index 0 and unused space on right

– In conventional tree representation, one edge per node 
(except for root), so n-1 wasted space (like linked lists)

– Array would waste more space if tree were not complete
• For reasons you learn in CSE351, multiplying and dividing by 2 is 

very fast
• Last used position is just index size

Minuses:
• Same might-be-empty (wasted space) or might-get-full (have to 

resize) problems we saw with ArrayLists

Plusses outweigh minuses: “this is how people do it”



Not only is that terrible in general, but you just KNOW 
Billy’s going to open the root present first, and then 
everyone will have to wait while the heap is rebuilt.
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