
Priority Queues!

With Janette

except all the credit goes to Dan Grossman,

from whom I straight up stole these slides

A new data structure: Priority Queue

• A priority queue holds compare-able data
– Unlike stacks and queues, we need to compare items

• Given x and y, is x less than, equal to, or greater than y
• Meaning of the ordering can depend on your data
• Many data structures require this: dictionaries, sorting

– Integers are comparable, so will use them in examples
• But the priority queue is much more general
• Typically two fields, the priority and the data

Priorities

• Each item has a “priority”
– The lesser item is the one with the greater priority
– So “priority 1” is more important than “priority 4”
– (Just a convention)

• Operations:
– insert
– deleteMin
– is_empty

• Key property: deleteMin returns and deletes the item with greatest
priority (lowest priority value)
– Can resolve ties arbitrarily

insert deleteMin

 6 2
 15 23
 12 18
45 3 7

Example

insert x1 with priority 5

insert x2 with priority 3

insert x3 with priority 4

a = deleteMin // x2
b = deleteMin // x3
insert x4 with priority 2

insert x5 with priority 6

c = deleteMin // x4
d = deleteMin // x1

• Analogy: insert is like enqueue, deleteMin is like dequeue
– But the whole point is to use priorities instead of FIFO

Applications

The priority queue arises often…
– Sometimes blatant, sometimes less obvious

• Run multiple programs in the operating system
– “critical” before “interactive” before “compute-intensive”
– Maybe let users set priority level

• Treat hospital patients in order of severity (or triage)

• Select print jobs in order of decreasing length?

• Forward network packets in order of urgency

• Select most frequent symbols for data compression (cf. CSE143)

• Sort (first insert all, then repeatedly deleteMin)

More applications

• “Greedy” algorithms
• Discrete event simulation (system simulation, virtual worlds, …)

– Each event e happens at some time t, updating system state
and generating new events e1, …, en at times t+t1, …, t+tn

– Naïve approach: advance “clock” by 1 unit at a time and
process any events that happen then

– Better:
• Pending events in a priority queue (priority = event time)
• Repeatedly: deleteMin and then insert new events
• Effectively “set clock ahead to next event”

Finding a good data structure

• Will show an efficient, non-obvious data structure
– But first let’s analyze some “obvious” ideas for n data items
– All times worst-case; assume arrays “have room”

data insert algorithm / time deleteMin algorithm / time

unsorted array

unsorted linked list

sorted circular array

sorted linked list

binary search tree

Need a good data structure!

• Will show an efficient, non-obvious data structure for this ADT
– But first let’s analyze some “obvious” ideas for n data items
– All times worst-case; assume arrays “have room”

data insert algorithm / time deleteMin algorithm / time

unsorted array add at end O(1) search O(n)

unsorted linked list add at front O(1) search O(n)

sorted circular array search / shift O(n) move front O(1)

sorted linked list put in right place O(n) remove at front O(1)

binary search tree put in right place O(n) leftmost O(n)

More on possibilities

• If priorities are random, binary search tree will likely do better
– O(log n) insert and O(log n) deleteMin on average

• One more idea: if priorities are 0, 1, …, k can use array of lists
– insert: add to front of list at arr[priority], O(1)
– deleteMin: remove from lowest non-empty list O(k)

• We are about to see a data structure called a “binary heap”
– O(log n) insert and O(log n) deleteMin worst-case

• Possible because we don’t support unneeded
operations; no need to maintain a full sort

– Very good constant factors
– If items arrive in random order, then insert is O(1) on

average

Tree terms (review?)

The binary heap data structure
implementing the priority queue ADT will be
a tree, so worth establishing some
terminology

A

E

B

D F

C

G

IH

LJ MK N

Tree T

root(tree)

leaves(tree)

children(node)

parent(node)

siblings(node)

ancestors(node)

descendents(node)

subtree(node)

depth(node)

height(tree)

degree(node)

branching factor(tree)

Kinds of trees

Certain terms define trees with specific structure

• Binary tree: Each node has at most 2 children (branching factor 2)
• n-ary tree: Each node has at most n children (branching factor n)
• Perfect tree: Each row completely full
• Complete tree: Each row completely full except maybe the bottom row, which is

filled from left to right

What is the height of a perfect tree with n nodes? A complete tree?

Our data structure
Finally, then, a binary min-heap (or just binary heap or just heap) is:
• Structure property: A complete binary tree
• Heap property: The priority of every (non-root) node is greater than the

priority of its parent
– Not a binary search tree

1530

8020

10

996040

8020

10

50 700

85

not a heap a heap

So:
• Where is the highest-priority item?
• What is the height of a heap with n items?

Operations: basic idea

• findMin: return root.data
• deleteMin:

1. answer = root.data
2. Move right-most node in last

row to root to restore
structure property

3. “Percolate down” to restore
heap property

• insert:
1. Put new node in next position

on bottom row to restore
structure property

2. “Percolate up” to restore
heap property

996040

8020

10

50 700

85

Overall strategy:
• Preserve structure property
• Break and restore heap

property

DeleteMin

34

9857

106911

1. Delete (and later return) value at
root node

2. Restore the Structure Property

• We now have a “hole” at the root
– Need to fill the hole with another

value

• When we are done, the tree will have
one less node and must still be complete

34

9857

106911

34

9857

106911

3. Restore the Heap Property

Percolate down:
• Keep comparing with both children
• Swap with lesser child and go down one level
• Done if both children are ≥ item or reached a leaf node

Why is this correct? What is the run time?

34

9857

10

6911

4

9857

10

6911

3

84

91057

6911

3
?

?

DeleteMin: Run Time Analysis

• Run time is O(height of heap)

• A heap is a complete binary tree

• Height of a complete binary tree of n nodes?
– height =  log2(n) 

• Run time of deleteMin is O(log n)

Insert

• Add a value to the tree

• Afterwards, structure and heap
properties must still be correct

84

91057

6911

1

2

Insert: Maintain the Structure Property

• There is only one valid tree shape after
we add one more node

• So put our new data there and then
focus on restoring the heap property

84

91057

6911

1

2

Maintain the heap property

2

84

91057

6911

1

Percolate up:
• Put new data in new location
• If parent larger, swap with parent, and continue
• Done if parent ≤ item or reached root

Why is this correct? What is the run time?

?

2
5

84

9107

6911

1

?

2

5

8

91047

6911

1?

Insert: Run Time Analysis

• Like deleteMin, worst-case time proportional to tree height
– O(log n)

• But… deleteMin needs the “last used” complete-tree position and
insert needs the “next to use” complete-tree position
– If “keep a reference to there” then insert and deleteMin have

to adjust that reference: O(log n) in worst case
– Could calculate how to find it in O(log n) from the root given the

size of the heap
• But it’s not easy
• And then insert is always O(log n), promised O(1) on

average (assuming random arrival of items)

• There’s a “trick”: don’t represent complete trees with explicit edges!

Array Representation of Binary Trees

GED

CB

A

J KH I

F

L

From node i:

left child: i*2
right child: i*2+1
parent: i/2

(wasting index 0 is
convenient for the
index arithmetic)

7

1

2 3

4 5 6

98 10 11 12

A B C D E F G H I J K L

0 1 2 3 4 5 6 7 8 9 10 11 12 13

implicit (array) implementation:

Judging the array implementation

Plusses:
• Non-data space: just index 0 and unused space on right

– In conventional tree representation, one edge per node
(except for root), so n-1 wasted space (like linked lists)

– Array would waste more space if tree were not complete
• For reasons you learn in CSE351, multiplying and dividing by 2 is

very fast
• Last used position is just index size

Minuses:
• Same might-be-empty (wasted space) or might-get-full (have to

resize) problems we saw with ArrayLists

Plusses outweigh minuses: “this is how people do it”

Not only is that terrible in general, but you just KNOW
Billy’s going to open the root present first, and then
everyone will have to wait while the heap is rebuilt.

	Slide 1
	A new data structure: Priority Queue
	Priorities
	Example
	Applications
	More applications
	Finding a good data structure
	Need a good data structure!
	More on possibilities
	Tree terms (review?)
	Kinds of trees
	Our data structure
	Operations: basic idea
	DeleteMin
	2. Restore the Structure Property
	3. Restore the Heap Property
	DeleteMin: Run Time Analysis
	Insert
	Insert: Maintain the Structure Property
	Maintain the heap property
	Insert: Run Time Analysis
	Array Representation of Binary Trees
	Judging the array implementation
	Slide 24

