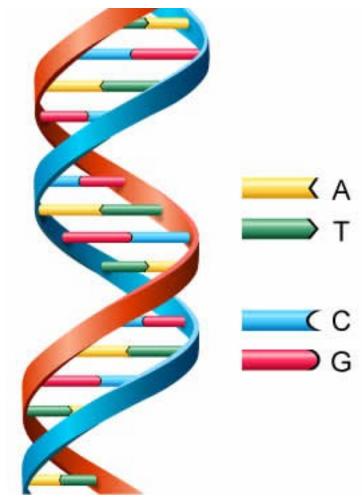
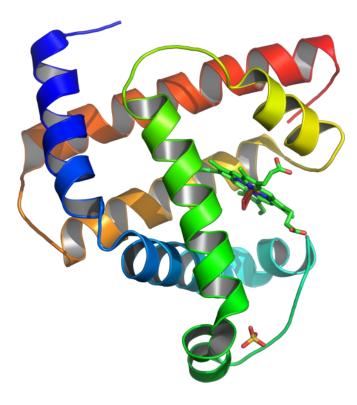
#### Exploration Session Week 8: Computational Biology


Melissa Winstanley: mwinst@cs.washington.edu

(based on slides by Martin Tompa, Luca Cardelli)

# Exploring DNA Sequences


# **Overview of DNA**

- Instructions for cellular functionBuilding proteins
- Composed of *nucleotides* Adenine, thymine, cytosine, guanine
  A pairs with T, C pairs with G
- Double-stranded: forms a double helix
  - Strands have an orientation
  - Pairing of antiparallel strands
- Huge amount of DNA
  - □ 3 billion base pairs, 2m long in a cell
  - 133 AU long in human
  - **2**0 million light years long in human population



### **Overview of Proteins**

- Workhorses of cells
- Composed of sequence of *amino acids* 20 to 5000 amino acids in a protein
- 20 possible amino acids
- Proteins fold into complex 3D shapes
  - Fold-It
- Information to make proteins encoded in DNA
  - Codon: 3 base pairs
  - Ex. CTA  $\rightarrow$  leucine
  - Gene: sequence of DNA for 1 protein



# **Overall Goals**

#### Overall

- Identify key molecules in organisms
- Identify interactions among molecules
- Computational focus: sequence analysis
  - Identify genes
  - Determine gene function (what protein is produced?)
  - Identify proteins involved in gene expression
  - Identify key functional regions
- Why do we care?
  - Determining function of a new sequence
  - Genetic diseases
  - Evolution

# String Alignment

How to judge how well two strings are aligned?

acbcdb a c - b c d b cadbd - c a d b - d -

- Each dash represents an inserted space
- Assign +2 to every exact match, -1 to every mismatch

3 \* 2 + 5 \* (-1) = 1

Higher score indicates a greater match between the strings

# **BLAST Algorithm**

- "Basic Local Alignment Search Tool"
- For comparing biological sequence information
  - Amino acid sequences (proteins) or nucleotide sequences (DNA)
- Inputs
  - A query sequence Q
  - A database D of sequences
- Output
  - Sequences from D that match Q above a certain threshold
- Usefulness
  - Unknown gene in a mouse, so query the human gene database to see if a similar gene exists in humans

Make k-letter subsequences from Q Ex. k = 3: "acbcdb" "acb' "cbc" "bcd" "cdb"

Usually k = 28 for DNA, k = 3 for proteins

□ For each subsequence w, find matching subsequences

- Only consider a matching subsequence if its alignment score is greater than some threshold
- Alignment(seq) >= T

seq = "ACT"  $\rightarrow$  Alignment = 2 \* 1 + 2 \* (-1) = 0 Not considered

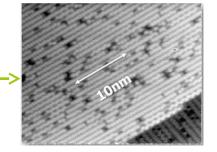
- Scan the database for exact matches with the high scoring subsequences
- Take each exact match and extend in either direction (no gaps)
  - Until the score decreases below a "dropoff"
  - Forms a "high-scoring segment pair" (HSP)
- Only save match extensions above a certain score threshold S

HSP: score = 2 + 2 + 2 - 1 + 2 = 7

□ For each HSP, do a gapped extension (spaces possible)

Output each extension that has probability of randomly occurring below a pre-set threshold x

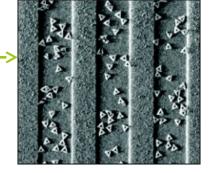
### More Complicated Analysis

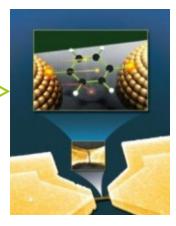

- Multiple sequence alignment
- Different ways to score subsequences
- Considering context around a sequence
- Predicting 3D structures of proteins

# **Programming Molecules**

# **Getting Smaller**

First transistor


25nm NAND flash



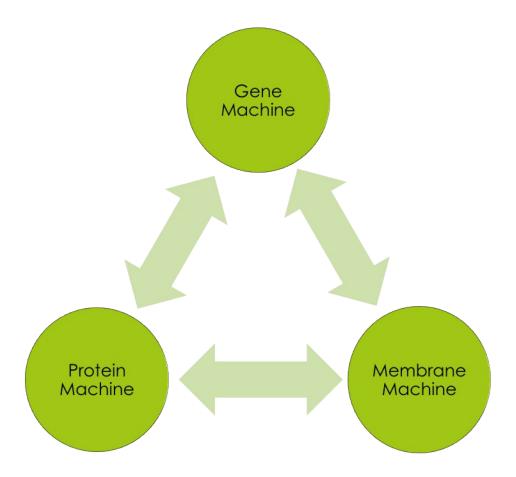


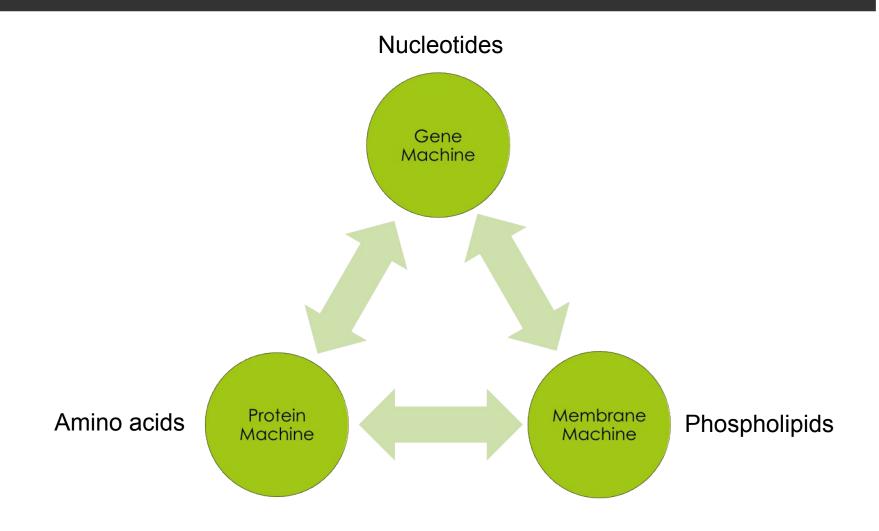

Single molecule transistor

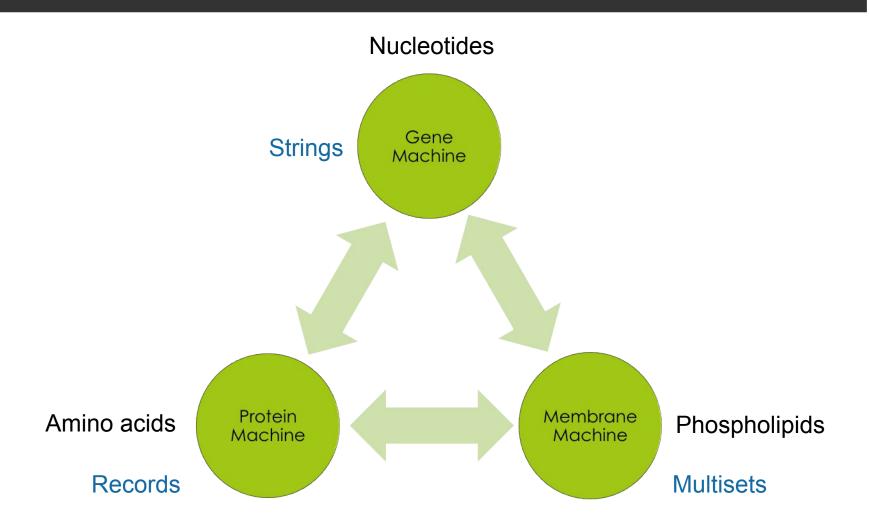
Molecules on a chip

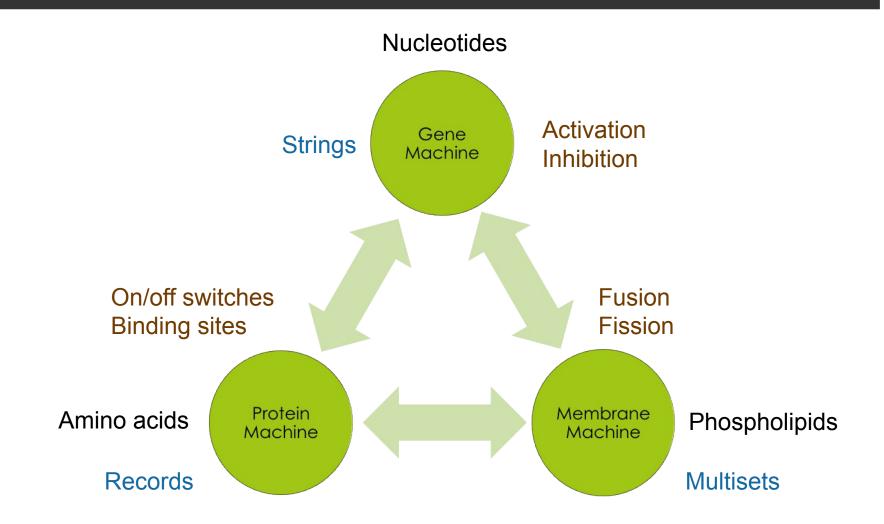





#### ~10 Moore's Law cycles left


http://upload.wikimedia.org/wikipedia/commons/thumb/b/bf/Replica-of-first-transistor.jpg/200px-Replica-of-first-transistor.jpg http://www.blogcdn.com/www.engadget.com/media/2010/01/01-30-10intelflash.jpg http://www.wired.com/images\_blogs/gadgetlab/2009/12/molecular-transistor-264x300.jpg http://www.internetnews.com/img/2009/08/ibm\_dna\_chips.jpg


# **Building Smaller**


- How to build things smaller than your tools?
- You can't
  - Solution: self-assembly
- Molecular IKEA
  - Dear IKEA, please send me a chest of drawers that assembles itself.
- At a molecular scale, many such materials exist
  - Proteins, DNA/RNA, membranes
  - http://youtu.be/0N09BIEzDII












## How do we form a "language"?

- Chemical reactions
  - $\Box A + C \rightarrow_{\Gamma} B + D$
  - Instructions in a "program"
- Problem: combinatorial explosion
  - SO MANY chemical reactions in a cell
- Model reactions as automata machines that perform a task

- Problem: chemistry is not an executable language
  - Dear Chemist, please execute this arbitrary reaction.

#### Controlling Systems on a Nanoscale



#### **DNA** Tweezers



#### One Approach to Autonomous Computing

- Goal: precisely control organization and dynamics of matter and information at the molecular level
  - Uses DNA, but use is accidental
  - No genes involved



"Gates" and "transducers"

#### Molecular programming workflow

- First figure out what gates you want to use and signals you want to send
- □ Signals + gates  $\rightarrow$  structures of DNA
- □ Structures  $\rightarrow$  sequences of DNA (NUPACK)
- □ Sequences  $\rightarrow$  DNA synthesis (IDT)
- DNA synthesis  $\rightarrow$  mail
- □ Receipt of DNA  $\rightarrow_{water}$  execution
- Florescence is your "print" statement